
SIAM REVIEW 
Vol. 21, No.4, October 1979 - © 1979 Society for Industrial and Applied Mathematics 

0036-1445/79/ 2104-0004$01 .00/0 

APPLICATIONS OF THE GORDAN-STIEMKE THEOREM IN 
COMBINATORIAL MATRIX THEORY* 

Dedicated to Leon Mirsky on the occasion of his 60th birthday 

B. DAVID SAUNDERSt AND HANS SCHNEIDERI: 

Abstrad. By u~ of the Gordan-Stiemke Theorem of the alternative we demonstrate the similarity of 
four theorems in combinatorial matrix theory. Each theorem contains five equivalent conditions, one of which 
is the existence in a given pattern of a line-sum-symmetric or constant-line-sum matrix which is semi-positive 
or strictly positive for the pattern. A generalization of the Gordan-Stiemke Theorem is stated in terms of 
complementary faces of the positive orthant and combinatorial applications are given. Many of our results are 
classical, but some may be new. 

Introduction. The fascinating interpl~y between the theory of linear inequalities 
and combinatorics has been much exploited in the past quarter century; see the surveys 
by A. J. Hoffman [25], [26]. Our paper is offered as another'example of this interplay. 
However, our thrust is directed towards basic and classical results, not recent general
izations. Specifically, we use a geometric form of a theorem of the alternative in the 
theory of linear inequalities to derive results in combinatorial matrix theory. 

Some of the combinatorial results obtained have a long history and many appli
cations. For example, we derive the famous Frobenius-Konig Theorem [29], [18]. A 
slightly more general theorem is P. Hall's theorem on systems of distinct representatives 
[22], [36, p. 27]. This is a basic result in combinatorics, which Mirsky in his book on 
Transversal Theory has called "the master key which has unlocked many closed doors" 
[36, p. 38]. 

Theorems of the alternative playa fundamental role in linear programming and 
hence in such related areas as linear complementarity and nonlinear programming, see 
Dantzig [11, pp. 136-139], where a short historical survey may be found [11, p. 21], See 
also Gale [19], Cottle-Dantzig [10], Mangasarian [32], [33]. 

Early theorems of the alternative are the theorems of Gordan [21] and Stiemke 
[45]. Expressed in terms of complementary subspaces the theorems coincide in what we 
call the Gordan-Stiemke Theorem. This is our chief tool and it permits us to prove 
combinatorial results on matrices. Though the theorems we obtain are largely known, 
they have not been considered previously in a unified manner. By means of our 
approach, we stress the underlying similarity of the structure of four theorems. 

Our four principal theorems are labeled Theorems AA, AB, BA, BB and each 
contains five equivalent conditions numbered (i)-(v), where corresponding numbers 
refer to corresponding parts of the theorems. Thus condition (ii) in each theorem refers 
to the existence of a certain type of matrix for a given pattern P. (For precise definitions, 
see § 2 and § 3.) The types of matrices are line-sum-symmetric matrices (ith row sum 
equal to ith column sum) and constant-line-sum matrices (all row and column sums 
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equal), and the four conditions numbered (ii) are: 

A B 

A There exists a line-sum-symmetric There exists a line-suM-symmetric matrix 
matrix semi-positive for P strictly positive for P 

B There exists a constant-line-sum There exists a constant-line-sum matrix 
. matrix semi-positive for P strictly positive for P 

Conditions (i) and (ii) are easily seen to be equivalent, and from conditions (ii) we derive 
by means of the Gordan-Stiemke Theorem the equivalent conditions (iii), which 
involve the nonexistence in the given pattern of certain types of matrices which we 
have called difference and bidifference matrices. Conditions (iii), (iv) and (v) are then 
shown to be equivalent by elementary arguments. A direct graph theoretic proof of the 
equivalence of (i), (iii), (v) is easy and known in the case of Theorems AA and AB (in the 
case of, Theorem AA, cf. Harary-Norman-Cartwright [24, Thm. 10.1]). We have not 
found such a proof in the case of Theorems BA and BB, and here the equivalence of (iii) 
to the other conditions may be new. 

There are two types of proof of the Gordan-Stiemke Theoremin the literature: 
those that depend on a separation theorem in real n-space, e.g. Nikaido [38, § 3.3], 
Ben-Israel [6], Levine and Shapiro [31], and inductive proofs thatuse inequalities and 
are valid over any (totally) ordered field, e.g. Gordan [21], Stiemke [45], Tucker [46], 
Gale [19, § 2.3]. We have chosen to state our result for matrices with elements in an 
ordered field and we use Gale [19] as our basic reference. The real numbers obviously 

, form the most important example of an ordered field. But our results also hold over the 
rational numbers, and it is then an easy exercise to show that our Theorems AA, AB, 
BA, BB as well as Theorems 4.8 and 4.9 are also valid for matrices of integers. 

We have stated our results in terms of patterns, i.e. (0, 1)-matrices. There is an 
obvious 1-1 correspondence between patterns and directed simple graphs, and in order 
to minimize definitions, we use graphs in a very restricted manner in the formal part of 
the paper. But in our comments we use some familiar concepts that have not been 
defined formally. 

In § 1 we give the relevant geometric definitions andwe state the Gordan-Stiemke 
Theorem without proof. In § 2 we apply the Gordan-Stiemke Theorem to nonnegative 
line.,.sum-symmetric matrices and nonnegative difference matrices. In § 3 the appli
cations are to nonnegative constant-line-sum matrix and nonnegative bidifference 
matrices. A semi-positive constant-line-sum matrix is just a multiple of a doubly
stochastic matrix; we have used our own (new) terminology in the theorems in order to 
have a name for the class of matrices involved. Further, the pattern given by the 
O-matrix would be exceptional in the results if they were stated in terms of doubly
stochastic matrices. 

In § 4 we state and prove a generalization of the Gordan-Stiemke Theorem to 
complementary faces of the positive orthant in a form which is more general ~han 
required subsequently. Though several closely related theorems are known, e.g. Gale 
[19, p. 71,Ex. 24], Ben-Israel [5], we have not found in the literature our formulation 
which is natural for the combinatorial application in this section. In § 5 we summarize 
without proof additive analogs of applications of the Gordan-Stiemke Theorem to 
multiplicative minmax theorems for real matrices which are considered in detail in [42]. 
For these results the duaHty between line-sum-symmetric ' matrices and difference 
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matrices, and between constant-line-sum matrices and bidifference matrices is crucial. 
It was the need to explore the dualities implicit in 'the above and similar situations (e.g~ 
[12], [13], [40], [4\]) that motivated the investigations in this paper. 

For related theorems valid over arbitrary (unordered) fields see [41]. References to 
alternative proofs of many results will be found in our comments throughout. 

1. The Gordan-Stiemke Theorem. In this paper IF will denote an ordered field. 
For m ;= 0, 1,2, ... , we call x E IFm nonnegative (x ~ 0) if Xi ~ 0, i = 1, ... , m, semi-
positive (x ~ 0) if Xi ~ 0, i = 1, ... , m, and for some k, 1 ~ k ~ m, Xk > 0; and strictly 
positive (x >0) if Xi >0, i = 1, ... , m. It is advantageous to include the apparently 
trivial case m = 0; here lFo == {O}, and 0 is nonnegative, strictly positive but not semi
positive. We put 

IF:' = {x E IF m 
: x ~ O}. 

If W is a subspace of IFm we write W+ == W n IF:'. A (convex) cone K is a nonempty 
subset of IF m such that x, y E K, a ~ 0, a E IF imply that x + y E K and ax E K. The 
(positive) dual in IF m of a cone K is the set KD defined by 

KD =={y ElFm :ylx ~O, Vx EK}. 

It is easy to check that KD is again a cone. For a subspace W of IFm
, WD = Wl., the 

orthogonal coinplement. If K , L s; IFm
, then K + L == {x + y : x E K, y EL}. 

We are now ready to state our principal lemmas. Our first lemma follows 
immediately by combining the Corollary on p. 58 of Gale [19], with parts of his 
Theorem (2.14); 

LEMMA 1.1. Let W be a subspace of IFm. Then 
(i) (W n IF:,)D = W D + IF:', 

(ii) (W + IF:,)D == W D n IF:'. 
LEMMA 1.2. (Gordan-Stiemke theorem, Gale [19, p. 48]). Let W be a subspace of 

IFm. Then the following are equivalent: 
(i) W contains a semi-positive vector. 

(ii) Wl. contains no strictly positive vector. 
Comments. (i) ObserVe the result is valid in the case m = 0, when clearly W = 

Wl. = {O}, and (i), (ii) are both false. 
(ii) Let r E IF

mn
, and let 

W ={y ElFm :y'r=O}. 

Then Lemma (1.2) becomes the result of Gordan [21], rediscovered by Stiemke [45, 
Thm. II]: Either there is a semi-positive y E IFm such that y Ir = 0, or there is an x E IFn 

such that rx is strictly positive, but not both. Observe that 

Wl. = {rx ': x E IFn}. 

If we interchange the roles of Wand Wl. in Lemma (1.2) we obtain Stiemke [45, Thm. 
I]: Either there is a strictly positive y E IFm such that y Ir = 0, or there is ,an x E IF

n such 
that rx is semi-positive, but not both. Conversely, each of the results quoted implies our 
Lemma 1.2, since a subspace W of IFm may be considered as either the left-hand kernel 
or the right-hand image of matrix rE IFmn. 

i. Line-sum-symmetric matrices and difference matrices. 
DEFINITION 2.1. (i) A pattern P is a square {O, 1}-matrix, viz. Pij = 0 or Pij = 1, for 

i, j = 1, ... , n. Throughout, n = n (P) will denote the' order of P and m = m (P) the 
number of entries of P that equal 1. (Thus n > 0, and 0 ~ m ~ n 2). 
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(ii) Let P be an (n x n) pattern. Then 

G{P) = Hi, j}E (n) x (n) :Pij = 1} 

where (n) = {1, ... , n}. We order G{P) lexicographically and we thus obtain G{P) = 
{gl> ... , gm}. (The set G{P) is of course the arc set of a directed graph on the vertex set 
(n).) 

(iii) The incidence matrix r = r(P) of P is the (m x n) matrix defined thus: 

'rqi = 1, if gq = (i, j) and i # j 

'rqi = -1, if gq = (j, i) and i # j 

'rqi = 0, otherwise. 

{Observe 'rqi = 0 if gq = (i, i).) 
(iv) The set of matrices in the pattern P is defined as 

M{P) = {A E IF nn 
: aij = 0 whenever Pij = O}. 

(v) Let A E M{P). We say that A is a. line-sum-symmetric matrix for P (or, in 
M{P» if L7=1 aij = L7=1 aji, j = 1, ... ,n. The line-sum-symmetric space Ws = Ws{P) for 
P consists of allline-sum-symmetric matrices for P. S 

(vi) Let A EM{P). We call A a circuit matrix for P (or, in M{P» if there exists a 
sequence (it. .. . , iK.) of distinct integers in (n) such that aij = 1 if i = ip, j = ip+t. when 
1 ~p ~ k and ik+1 = i 1 ; but aij = 0 otherwise. (A circuit matrix is line-sum-symmetric.) 

(vii) Let A EM (P). Then A is called a differe~ce matrix for P if there is a diagonal 
matrix X in IF nn such that A = XP - PX, {viz. aij = Xi - Xj whenever (i, j) E G{P), and 
au = 0 otherwise). 

(viii) For cP s; as; (n), let a' = (n)\a. Put Za = diag (zt. ... , zn), where Zi = 1 if 
i E a, Z i = 0 if i E a'. The matrix A EM (P) is called a cocircuit matrix for P if A is 
semi-positive and A = ZaP- PZa, for some a, cP CaS; (n). (We use c for strict 
inclusion.) (A co circuit matrix is a difference matrix.) 

(ix) We define the canonical isomorphism 11 of M{P) onto IFm thus: Let A E M{P). 
Then a = 11 (A) is the vector in IF m given by aq = ail'> if gq = (i, j) E G{P). 

For some additional remarks on some of the concepts defined above see [34]. 
The mapping 11 is an isomorphism of M{P) onto IFm considered as an inner product 

space where we use the usual inner product (x, y) = ytx in IF m and (A, B) = trace (AtB) 
in M{P). The isomorphism 11 will allow us to apply the results of § 1 to M{P). Let 
A E M{P). It is easy to see that A E Ws if and only if a = 11 (A) E [Rm satisfies atr = 0, cf. 
[41]. Further, if b E IF m

, then a tb = 0 for all a satisfying a tr = 0 if and only if b = rx, for 
some x E [Rn. But this is equivalent to b = 11 (B), where B is a difference matrix for B. 
Hence, on applying Lemma 1.1 to W = Ws we obtain: 

THEOREM 2.2. The following cones are dual to each other in M{P): 
(i) The cone of all nonnegative line-sum-symmetric matrices in M{P). 

(ii) The cone of all matrices A of form A = B + C, where B is a difference matrix for 
P, and C is nonnegative in M{P). 

For A E M{P) we use the terms strictly positive and semi-positive relative to 
M{P): A is strictly positive for P if aij > 0 whenever (i, j) E G{P) and aij = 0 otherwise. 

We now come to the first of our applications of the Gordan-Stiemke Theorem. 
THEOREM 2.3 (AA). Let P be a (n x n) pattern and let A E M{P). Then the 

fol/owing are equivalent : 
(i) There is a circuit matrix in M{P). 

(ii) There is a semi-positive line-sum-symmetric matrix in M{P). 
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(iii) There is no difference matrix strictly positive for P. 
(iv) There is (i, j) E G(P) such that aij = ° lor every cocircuit matrix A for P. 
(v) There is no permutation matrix Q such that QPQ-l is strictly upper triangular. 

Proof. (i)~(ii): The proof is trivial. 
(ii) ~ (i): Let A be a semi-positive line-sum-symmetric matrix in M (P). Since A 

contains at least one positive element, we have m (P) > 0. But A is line-sum-symmetric; 
hence if the ith row (column) of A contains a positive element, so does the ith column 
(row). Thus there exists an infinite sequence (kb k2' k3, ... ) of elements of (n) such that 
ak

4
k

4
+ 1 >0, q = 1, 2, 3,···. Since (n) is finite there exists a subsequence of distinct 

integers (ib' ... ip ) such that (liqi
4

+1 > 0, q = 1, ... , p, where ip + l = i l . If C is the 
corresponding circuit matrix, then C E M (P). 

(ii)¢:>(iii): This is the Gordan-Stiemke Theorem applied to W = W., the space of 
line-sum-symmetric matrices. 

Not (iv)~Not (iii): Suppose that for every (i,j)EG(P), X(i,i)p_PXU,il is a 
cocircuit matrix whose (i, j)-entry is 1. Let X = LU.j)EG(P)X(i,i). Then XP - PX is a 
difference matrix strictly positive for P. 

Not (v)~Not (iv): If A =XP-PX is a difference matrix for P, and Q is a 
permutation matrix, then QAQ-l = (QXQ-l)(QPQ-l) - (QpQ-l)( QXQ-l) is 
difference matrix for the pattern QpQ-l. Hence we may assume that P itself is strictly 
upper triangular. Let (i, j) E G(P), and let a = (i). Observe that i < j and hence 
4J c: a c: (n). Then A = ZaP - PZa is nonnegative, since Pkl = ° if k Ell", lEa. But 
aij = 1. Hence A is a cocircuit matrix. 

Not (iii)~Not (v): Let XP-PX be strictly positive for P. After simultaneous 
permutation of rows and columns we may assume that Xl ~ ••• ~xn' So if 1 ~j ~i ~n, 
then Xi - Xj ~ 0, and hence (i, j) e G(P). It follows that P is strictly upper triangular. 0 

Comments., The implication (ii) ~ (i) of Theorem AA and Theorem AB below is 
closely related to Afriat [3, Thm. 1], which in turn is an analog of a theorem to be found 
in Berge [7, p. 91, Thm. 4] concerning circulations on graphs. The essence of (ii) ~ (i) is 
that the extremals of the cone of nonnegative line-sum-symmetric matrices are non
negative multiples of circuit matrices. Our proof is an application of the following 
obvious graph theoretic observation: A finite (directed) graph with no sink vertex must 
contain a circuit, e.g. [24, p. 64, Thm. 3.8]. When considering alternative proofs of 
Theorem AA, note that the implication (i) ~ (v) is trivial, and the converse (v) ~ (i) is a 
consequence of the result that the transitive closure of a graph without a circuit is a 
partial order. For a proof along these lines see Harary-Norman-Cartwright [24, p. 268, 
Thm. 10.1.], where one may also find the equivalence of (i), (iii) (in a restricted form) and 
(v). 

DEFINITION 2.4. Let P be an (n x n) pattern. 
(i) If 4J c: a, f3 ~ (n), then P[a 1f3] is the 1£1'1 x 1f31 submatrix of P indexed by the rows 

of a and columns of f3 in their natural orders, where 1£1'1, 1f31 denote the cardinality of 
a, f3 resp. 

(ii) We call P completely reducible if P[ala'] = ° implies that P[a'la] = 0, for all 
a, 4J c: a c: (n), where as before a' = {n)\a. Thus an irreducible P is completely reduci
ble. Note that some other authors have used the term completely reducible in a slightly 
different sense. 

THEOREM 2.5 (AB), Let P be an (n x n) pattern. Then the following are equivalent. 
(i) For every (i, j) E G(P), there is a circuit matrix C E M (P) with Cij = 1. 

(ii) There is a line-sum-symmetric matrix strictly positive for P. 
(iii) There is no semi-positive difference matrix for P. 
(iv) There is no cocircuit matrix for P. 
(v) P is completely reducible. 
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Proof. (i) ~ (ii): By assumption, for every (t, j) E G(P) there is a circuit matrix 
whose (t, j)-th entry is 1. The sum of all such matrices is a line-sum-symmetric matrix 
positive for P. 

(ii)~ (i): The proof is by induction on m(P), the number of positive elements in P. 
If P = 0, the result is true. If m(P) > 0, by Theorem (AA), (ii)~ (i): we can find a circuit 
matrix C E M(P). Let A be a line-sum-symmetric matrix strictly positive for P. If 

p. = min {akl : Ckl = I} 

then A -p.C is a line-sum-symmetric matrix strictly positive for a pattern P' with 
m (PI) < m (P). For (i, j) E G(P), either Cij = 1 or else (i, j) E G(PI) and the conclusion 
follows from the inductive hypothesis. 

(ii)~(iii): This is the Gordan-Stiemke Theorem with W.L = Ws. 
Not (iv)~Not (iii): This is trivial. 
Not (v)~Not (iv): There exists a, cP Cae (n) such that P[a/a '] = 0 but P[a/la] ~ 

O. Then A = Za'P - PZa, is a cocircuit matrix, since aij = 1 for some (t, j) E a I X a. 
Not (iii) ~ Not (v): Let XP - PX be a semi-positive difference matrix. Without loss 

of generality assume XI ~ ••• ~ Xn. There exist (k, I) E G(P) sUfh that Xk - XI> O. Hence 
there is a r, I ~ r < k, such that Xk ~ ... ~ Xr < Xr+1 ~ ... ~ Xn. Then for a = (r), 
P[ala ' ] = 0, but P[a/la] ~ 0, since k E a', lEa. 0 

Comments. The equivalence of (i) and (v) is of course well known, see, for 
example, [13, Remark (2.15)]. In graph theoretic language, it asserts that the connected 
components of a directed graph are strongly connected if and only if the vertex
adjacency matrix (pattern) of the graph is completely reducible. A direct proof of 
(ii) ~ (v) is easy. 

3. Constant-line-sum matrics and bidifference matrices. 
DEFINITION 3.1. Let P be an (n xn) pattern. 

(i) Let a = a(p) be the incidence matrix of 

where all blocks are (n x n). Note a is an (m x 2n) matrix. 
(ii) Let A E M(P). Then A is a constant-line-sum matrix for P if L7= 1 aij = L7= 1 ajk, 

i, k = 1, ... , n. The constant-line-sum space We for P consists of all such matrices. 
(iii) A matrix L E M(P} is called a polygon matrix for P, if there exist sequences 

(ih ... , ik), (h, ... ,jk) in (n) with the following properties: 
(a) Each sequence consists of distinct integers; 
(b) (iq, jq) E G(P), (iq+l, jq) E G(P), q = 1, ... ,k, where ik+1 = i l ; 

(c) lij = 1 if (i, j) = (iq, jq), for some q, lij = -1 if (i, j) = (iq+h jq), for some q, lij = 0 
otherwise. 

(A polygon matrix is a constant-line-sum matrix.) 
(iv) A matrix A E M(P) is called a bidifference matrix for P, if there exist diagonal 

matrices X, Y with trace X = trace Y such that A = XP - PY; viz. there exist 
(Xh ... , xn), (Yh ... , Yn) with L7=1 Xi = L7=1 Yi such that aij = Xi - Yj if (i, j) E G(P) and 
aij = ° otherwise. 

(v) The matrix A E M(P) is called a copermutation matrix for P if A is semi
positive for P and A = ZaP- PZ/3, for some a, f3 with /a/ = /f3/, cP c a, f3 ~ (n)}, where 
Za, Z/3 are defined as in Definition 2. 1 (viii). (A copermutation matrix is a bidifference 
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matrix.) If we apply the canonical isomorphism 1/ (see Definition 2.1(ix)) to We we see 
that 

We =={a E IF m: 3k E IF, at a = kept} 

where ep E 1R2n
, epi = 1, i = 1, ... , n, ept= -1, i = n + 1, ... , 2n. It follows that 

But this latter space is the isomorphic image under 1/ of the space of bidifference 
matrices. 

We now immediately obtain from Lemma 1.1: 
THEOREM 3.2. Let P be an (n x n) pattern. The following cones are dual to each 

other in M(P). 
(i) The cone of nonnegative constant-line-sum matrices. 

(ii) The cone of matrices A of form A = B + C, where B is a bidifference matrix for P, 
and C is nonnegative in M(P). 

THEOREM 3.3 (BA). Let P be an (n x n) pattern. The following are equivalent: 
(i) There is a permutation matrix in M(P). 
(ii) There is a semi-positive constant-line-sum matrix in M(P). 

(iii) There is no bidifference matrix strictly positive for P. 
(iv) There is (i, j) E G(P) such that aij = 0 for every copermutation matrix A for P. 
(v) P has no O-submatrix of orderr x s, where r + s = n + 1. 

Comment. (ii) is equivalent to: There is a doubly-stochastic matrix in M(P). 
Proof. (i)~(ii): This is trivial. 
(ii)~ (i): The proof is by induction on the number m(P) of nonzero elements inP. 

Let A be a semi-positive constant-line-sum matrix in M(P). Since A contains at least 
one positive element in each line (i.e. row or column), m (P) ~ n. If A is a multiple of a 
permutation matrix (in particular if m(P) = n) then the implications holds. So suppose 
inductively that m(P) > n and that A is not a multiple of a permutation matrix. Let the 
pattern P* be given by 

pt = 1 if and only if 0 < aij < S, 

where s is the (positive) sum of each line of A. Since A has at least two nonzero entries in 
some line, p* c;t. O. But, again since A is a constant-line-sum matrix, every line of p* 
either is 0 or has at least two positive entries. It follows that there is a polygon matrix L 
in M(P*). Let 

p., = {min aii : Iii> O}. 

Then A - p.,L is a semi-positive constant-line-sum matrix and A - p.,L E M(P'), where 
m (PI) < m (P). Hence by inductive hypothesis there is a permutation matrix Q E 

M(P I
) ~ M(P). 

(ii) ¢:> (iii): This is the Gordan-Stiemke Theorem applied to W = We. 
Not (iv) ~ Not (iii): For each (i, n E G(P), let X(i,ilp - py(i,il be a copermutation 

matrix whose (i, nth entry is 1. Let X = L(i,j)EG(P)X(i,j) and Y = L(i,ilEG(P) y(i,il, Then 
XP - py is a bidifference matrix strictly positive for P. 

Not (v)~Not (iv): Let P[al~] = 0, where lal+ I~I = n + 1. Let (i,j)E G(P), Then 
(i, n e a X ~ and three cases arise, 

(a) (i, j) E a ' x~, Let a = a ' and ii = ~\{j}, 
(b) (i, j) E a ' X ~/, Let a = a ' U{k}, ii ""'~' where k is any element of a, 
(c) (i,j)Ea X~/, Let a =a/U{i}, ii =~, 

In each case, lal = liil, and A = ZaP - PZfj is a copermutation matrix with aij = 1. 
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Not (iii) ~ Not (v): There exist diagonal X, Y with trace X = trace Y such that 
XP- PYis strictly positive for P. AfterreplacingP by 01P02,X by 01P011, and Y by 
0"21 Y02 we may suppose that X1~ ... ~ Xm and Y1 ~ ... ~ Yn' Since trace X = trace Y, 
there is a k E (n) such that Xk ~ Yk. Let a = {I, ... , k}, P = {k, .. . ,n}. Since Xi - Yj ~O 
for (i, j) E a X p, it follows that PEa Ip] = O. Clearly la I + Ipl = n + 1. 0 

Comments. The result (ii) ~ (i) is due to Konig [29], who deduced it from a more 
general theorem in graph theory; see at so [30, p . 238, A]. Subsequently, Frobenius [18], 
proved (ii) ~ (i) by observing the rather easy implication (ii) ~ (v) and giving a 
combinatorial proof of (v) ~ (i) (which is now known as the Frobenius-Konig 
Theorem). Birkhoff [9] and most recent authors, e.g. Marcus-Minc [34, pp. 238-9], 
Mirsky [36, pp. 184-5], have followed Frobenius' sequence (ii)~(v)~(i). In Theorem 
BA, on the other hand, we obtain the combinatorial result (v) ~ (i) by the sequence 
(v)~(iii) (an easy computation with inequalities), (iii)~(ii) (Gordan-Stiemke 
Theorem) and (ii) ~ (i), where our proof of this last implication rests on the following 
obvious graph-theoretic result: A finite undirected graph with"no vertex of degree 1 and 
a non empty arc sets contains a cycle [23, p. 34, Thm. 4.1 (4)], for a polygon matrix 
corresponds to a cycle of G(P+). Our proof owes something to von Neumann's [37] 
proof of Birkhoff's tIleorem (see comment following Theorem BB), but it is a little 
different, for von Neumann also uses the theorem that every element in a convex cone is 
a positive linear combination of extremals. Also, with minor changes in the definitions, 
our inductive proof applies to matrices over ordered Abelian groups, d. [44], while von· 
Neumann's proof avoids induction at the cost of requiring a field and division by 2. For 
proofs by means of the duality theorem of linear programming of results closely related 
to the Frobenius-Konig theorem, see Hoffman-Kuhn [27] and Hoffman [25]. More 
information concerning the origins of Theorems BA and BB may be found in Biggs
Lloyd-Wilson [8, pp. 203-4] and [43]. 

DEFINITION 3.4. Let P be an (n x n) pattern. Then P is called completely decom
posable if for every a, p, 4> c a, pc (n) with la I + Ipl = n, P[alp] = 0 implies P[a'lp'J = 

0. 
THEOREM 3.4 (BB). Let P be an (n x n) pattern. Then the following are equivalent: 

(i) Forevery (i, j) E G(P) there is a permutation matrix 0 in M(P) such thatqij = 1. 
(ii) There is a constant-line-sum matrix strictly positive for P. 

(iii) There is no semi-positive bidifference matrix for P. 
(iv) There is no copermutation matrix for P. 
(v) P is completely decomposable. 

Comment. If P ~ 0, condition (ii) is obviously equivalent to (iO': There is a 
doubly-stochastic matrix in M(P) strictly positive for P. But if P = 0, then (ii) and (ii)' 
are not equivalent, see § 1. 

Proof. (i) ~ (ii): For each (i, j) E G(P), choose a permutation matrix whose (i, j)th 
element is positive. Their sum is a constant-line-sum matrix strictly positive for P. 

(ii) ~ (i): If P = 0, there is nothing to prove. If P ~ 0, the proof is by induction on 
m (P). Let A be a constant-line-sum matrix strictly positive for P. By (ii) ~ (i) of 
Theorem (BA) there is a permutation matrix 0 in M(P) . Let 

/.L = min {aij : qij = I}. 

Then A - /.LO is a constant-line-sum matrix strictly positive for a pattern P' with 
m (P') < m (P). For (i, j) E G(P) either qij = 1 or (i, j) E G(P') and the conclusion follows 
from the inductive hypothesis. 

(ii)~(iii): This is the Gordan-Stiemke Theorem with W.L = We. 
Not (iv)~Not (iii): This is trivial. 
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Not (v)=?Not (iv): Let P[aIP]=O and P[a'IP'];eO, where lal+lpl=n. Then 
B = Za'P - PZ/3 is a copermutation matrix for P. 

Not (iii)=?Not (v): Let XP- PY be a semi-positive bidifference matrix. Let 
X = diag(xt, ... ,xn ), Y = diag(Yh . .. , Yn). Without loss of generality we may assume 
that Xl ~ ••• ~ X", YI ~ ... ~ Yn. There are two cases. 

Case 1. Suppose X = Y. In this case P is not completely reducible by Theorem 
(AB), Not (iii)=?Not (v), and hence P is completely decomposable. 

Case 2. Suppose X ;e Y. Since tr X = tr Y, there is a k, 1 ~ k ~ n; such that Xk < Yk. 
Let a={1, · ··,k}, p={k,···,n}. Since Xi -Yj<O for (i,j)EaXp it follows that 
P[a Ip] = o. If P is also completely decomposable, the following argument shows that 
P = 0, which however is impossible, since we have assumed the existence of a semi
positive matrix in M(P). Let (r, s) E (n) x (n). If (r, s) E a x p, then P,s = o. So suppose 
that (r, s)e a xp, say re a . Then lal <n and Ipi ;S;2.1f s E p, choose t = s. If se p, let t be 
any element of p. Put P, = m{t}. Then p,;e cP, P[alp,] = 0 and lal + Ip,1 = n. Hence also 
P[a'IP;] = 0 and so Prs = o. If se p, a similar argument again yields P,s = o. Thus P = 0, 
and the result follows. 0 

Comments. An easy consequence of (ii)~(i) is the Birkhoff-Konig Theorem: A 
constant-line-sum matrix is a linear combination with positive coefficients of permu
tation matrices. This result was proved for integral matrices by Konig [29], [30, p. 239, 
Thm. B] and for real matrices by Birkhoff [9]; see Mirsky [35] for much information and 
see [44] for a previous unification. We refer to Birkhoff's Theorem or Konig's Theorem 
when we wish to distinguish between the real and integer case. A proof of Birkhoff's 
Theorem using inequalities and induction has' been given by Hoffman-Wielandt [28]. 
The equivalence (v)<=>(ii) is due to Perfect-Mirsky [39], cf. [36, p. 199, Thm. 11.4.1]. 

4. A generalization of the Gordan-Stiemke Theorem with applications. In this 
section we apply a generalization of the Gordan-Stiemke Theorem to obtain further 
results. Theorem 4.6 below is easiiy derived from Gale's "key theorem" [19, p. 44, 
Thm. 2.6]. Here we give a simple proof based on standard geometric results which are 
part of [19, Thm. 2.14]. (As remarked by Gale [19, p. 59], his Theorem 2.6 may be 
proved in a similar manner.) We first define the relevant concepts. 

DEFINITION 4.1. (i) A cone is polyhedral (called finite in [19, p. 55]) ifit is the set of 
all linear combinations with nonnegative coefficients of a finite set of vectors in IFm. 

(ii) A face F of IF m is a subset of IF:' such that for some a, if> £; a£; (n) 

F =Fa = {x E IF:' : Xi > O=?i E a}. 

(iii) If F is a face of IF:', the complementary face F' is the face of IF:', satisfying 
{O} =F nF' and IF:' =F+F' = {x + y :x EF, Y EF'}. Indeed, ifF = Fa, if> £; a£; (n), then 
F'=Fa ,. 

(iv) If K is any 'subset of IF:' then the face (j) (K) of IF:' generated by K is the smallest 
face of IF:' which contains K. 

We collect properties of (j) (K) in the following lemma. 
LEMMA 4.2. (i) If K £; IF:' then (j)(K) = Fa, where 

a ={iE(n) :3xEK,xi> 0}. 

(ii) If K is a subcone of IF:', then there is an x E (j)(K) = Fa such that Xi > 0, for all 
iEa. 

Proof. The proof is easy, for (ii); just add a finite number of vectors in K. 0 
Indeed, (j) is a closure operator in the usual sense. In particular 

K £; K' £; IF:'=? (j)(K) S; (j)(K ' ) S; IF:'. 
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For a corresponding definition of face for a general cone in IFm see Barker [4]. 
The following results are needed in our proof of Theorem 4.6. Let K and L be 

polyhedral cones. Then 

(4.3) 

(4.4) 

(4.5) 

KD is a polyhedral cone, 

KDD=K, 

(K nL)D =KD +LD. 

Result (4.3) is easily derived from [19, p. 54, Thm. 2.14]. Result (4.4) is a form of 
Farkas' Lemma [14], (4.4) and (4.5) are parts.of [19, p. 54, Thm. 2.14]. For the real 
field, proofs based on a separation theorem are to be found in Ben-Israel [6]. 

THEOREM 4.6 (generalization of Gordan-Stiemkeh Let K be a polyhedral cone in 
IFm. Then q;(K nlF:') and q;(( -KD)nlF:') are complementary faces of IF:'~ 

Proof. Let a £ (n). We first show that it is enough to prove the equivalence of (i) 
and (ij): 

(i) K n IF:' £ Fa, 
(ii) q;((-KD)nlF:'):2F,;, .. 

For, by (4.3) and (4.4), the roles of K and _K D maybe interchanged in (i) and (ii). Thus, 
if we also interchange a and a' we obtain the equivalence ~f 

(iii) (-KD)nlF:'£Fa" 
(iv) q;(KnlF:'):2Fa. 

The conclusion of the theorem then follows. It remains to show that (j) and (ii) are 
equivalent. 

(i)=?(ii): Let K nlF:'£Fa • Then (K nlF:,)D:2 -Fa" Hence by (4.5) and since 
(IF:,)D =;= IF:', we have 

Let x E IF:', where Xj > 0 if i E a', Xj = 0, if i E a. Since x E Fa" there exist U E K D
, V E IF:' 

such that -x = U + v. Hence -u = x + V E IF:,n (_KD) and Uj >0 if i E a'. Thus Fa ·£ 
q;(-u) £ q;(( _KD) n IF:'). 

(ii) =? (i): Let i E a'. By assumption, there exist x E ( - K D) n F:' such that Xj > O. 
Let y E K nlF:'. On the one hand, y'x ~ 0, since x, y E IF:'. On the other hand y'x ~ 0 
since x E - KD and y E K. Hence y'x = O. It follows that Yj = 0 and so y E Fa. 0 

Comments. (i) In our applications below we use Theorem 4.6 when K = W, a 
subspace of IF:'. For this purpose we do not neetl the general form of (4.3) and (4.4), but 
instead we may use standard results on subspaces; also (4.5) reduces to Lemma 1.1. 

(if) Let x E IF:'. Then q;(x) = IF:' if and only if x is strictly positive. Hence the 
Gordan-Stiemke Theorem is the special case of Theorem 4.6 with K = W, a subspace, 
and W n IF:' = {OJ. 

(iii) For K = W, a subspace, results close to Theorem 4.6 are Levin-Shapiro [31, 
Thm. 3.4] and the following theorem, Ben-Isra~l [5, Cor. 6], Gale [19, p. 71, Ex. 24]: 
Let W be a subspace of IFm. Then there exists a strictly positive x E IFm such that x = y + z, 
where YEW n IF:', Z E W J. n IF:'. By putting 

W = {y E IFm 
: Y '[ = O} 

where [E IFmn, we obtain the following result due to Tucker [46, Thm. 1], cf. Ben-Israel 
[5], Nikaido [38, p. 36]: There exists Y E IFm and XE IFn, x ~ 0, such that Y '[ ~ 0, [x = 0 
and y'[+x'>O. 
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(iv) Theorem 4.6 also holds when IF is the real field, and K is an arbitrary (not 
necessarily polyhedral) closed cone satisfying K n IF:' = {O}; see Nikaido [38, p. 33, 
Thm. 3.6J. Our proof essentially goes through in this situation with (4.5) replaced by the 
weaker result (K n L)D = cl (K D + L D), which can be found in [5J. However, Theorem 
4.6 is false for closed cones K without a further hypothesis. We give an example which 
is based on Ben-Israel [6, Ex. I.4J. 

Example 4.7. Let IF be the real field. Let K be the cone of all vectors in 1F3 which 
make an angle of 45° or less with (1, -1,0)'. Thus 

K = {(x 10 X2, X3)' E1F3:X1 ~O, X2~0, -2XIX2~X~}. 

ThenK nlF! =F{1} and (- KD) n IF! =F{2}o sinceKD = K, but the complement of F{1} is 
F{2.3}' 

In order to apply Theorem 4.6 we require some terminology. 
If P is an (n x n) pattern, then a sub pattern P' of P is an (n x n) pattern such that 

P:j = 1 implies Pij = 1. If A E M(P) and P' is a subpattern of P, we say that A is strictly 
positive (zero) on P' if aij> 0 (aij = 0) for all (i, j) E G(P'). We identify the space M(P) 
with its image Tf(M(P)) = IFm under the canonical isomorphism Tf. Similarly we identify 
the cone M(P)+ of all nonnegative matrices in M(P) with IF:'. 

THEOREM 4.8. Let P be an (n x n) pattern. Then there exists a subpattern P' such 
that, for P" = P - P', the following conditions hold: 

(i) (a) Every line-sum-symmetric matrix for P is zero on P" and 
(b) there exists a line-sum-symmetric matrix for P which is strictly positive on P'. 

(ii) (a) Every difference matrix for P is zero on P', and 
(b) there exists a difference matrix for P strictly positive on P". 

Further, P' is the unique subpattern for which either (i) or (ii) holds. 
Proof. LetP' be the sub pattern of P such thatM(P')+ = <peWs n M(P)+), where, as 

usual, Ws is the space of line-sum-symmetric matrices in M(P). The complementary 
face of M(P')+ in M(P)+ is M(P")+ and hence by Theorem 4.6, M(P")+ = 

<peW: n M(P)+). Thus ((i)(a)) and ((ii)(a)) hold and since Ws n M(P)+ and W;- n 
M(P)+ are cones, so do ((i)(b)) and ((ii)(b)) by Lemma 4.2 (ii). 

Let P~ be a subpattern of P for which (i) holds. By ((i)(a)), applied to P" and ((i)(b)) 
applied to P~, P~ is a subpattern of P'. By ((i)(a)) applied to PI and ((i)(b)) applied to P', 
P' is a subpattern of P~. Hence P~ = P'. 

By a similar argument, if P2 is a sub pattern of P for which (ii) holds, then 
P2 =P'. 0 

THEOREM 4.9. Let P be an (n Xn) pattern. Then there exists a subpattern P' such 
that for P" = P - P', the following conditions hold: 

(i) (a) Every constant-line-sum matrix for P is zero on P", and 
(b) there exists a constant-line-sum matrix for P which is positive on P'. 

(ii) (a) Every bidifference matrix for P is zero on P', and 
(b) there exists a bidifference matrix positive on P". 

Further, P' is the unique subpattern of P for which either (i) or (ii) holds. 
Proof. The proof is similar to the proof of Theorem 4.8 with Ws replaced by 

We. 0 
Comments. (i) Graph theoretic versions of Theorem 4.8 are familiar, even in a 

stronger form: Every arc of a directed graph either lies on a circuit or on a cocircuit, but 
not both, see, e.g., Berge [7, p. 15]. To obtain the matrix version of this result, we would 
need to show the following: If A is a nonnegative difference matrix for P such that 
aij > 0, then there exists a cocircuit matrix B for P with bij = 1. This may easily be done 
by arguments similar to some found in § 3. 
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(ii) We may strengthen Theorem 4.9 in J! .. ~milfl.I ._manner. For, if A is a 
nonnegative bidifference matrix for P and aij > 0, then there exists a copermutation 
matrix B for P such that bij = 1. 

(iii) Finally we remark that Theorems 4.8 and 4.9 could also have been deduced 
without use of Theorem 4.6 from the theorems in § 2 and § 3 by considering the 
Frobenius normal form of the pattern P. This normal form is found in many places, e.g. 
[17], [20, Vol. II, p. 75] or [12, Remark 3.5]. The pattern P' in Theorem 4.8 
corresponds to pc as defined in [12, Def. 2.12], while in Theorem 4.9 P' corresponds to 
p', see [12, Def. 2.17]. 

S. Minmax applications of Gordan-Stiemke. Theorems 5.1 and 5.2 are addi
tive analogs of theorems on optimal multiplicative scalings of matrices by means of 
diagonal transformations. For further details and for proofs using the Gordan-Stiemke 
Theorem see [42]. Though the results in [42] were proved for the field of reals, here the 
theorems are stated in a form valid over every ordered field IF. 

Let P be an (n x n) pattern. For A E M {P) we put 

JoL(A) = max {aij: (i, j) E G(P)}. 

THEOREM 5.1. Let P be an (n x n) pattern and let A EM(P). Let 
• 

JoLl = min {JoL (A + B) : B is a difference matrix for Pl. 

(i) If there is no circuit matrix for P, then 

JoLl=-OO. 

(ii) If there is a circuit matrix for P, then 

{
trCtA } 

JoL 1 = max tr CtC : C is a circuit matrix for P . 

Comment. For the full pattern P, Pij = 1, i, j E (n), Afriat [1], [2], [3] proved the 
following special case of Theorem 5.1: JoLl ~ 0 if and only if tr CIA ~ 0 for all circuit 
matrices in M(P). Afriat [2], [3], used the Gordan-Stiemke Theorem in his proof. For a 
multiplicative analogue of the special case with a different type of proof, see Fiedler
Ptak [15], [16] and Engel-Schneider [12, Lemma 6.3]. In [13, Thm. 4.23] the result is 
proved for a matrix with elements in a lattice ordered group. A multiplicative analogue 
for the general case was proved for a real matrix in [13, Thm. 7.2, Remark 7.3]. 

THEOREM 5.2. Let P be an (n x n) pattern, and let A EM(P). Let 

JoL2 = min {JoL (A + B): B is a bidifference matrix for Pl. 
(i) If there is no permutation matrix for P, then 

JoL2 = - 00 . 

(ii) If there is a permutation matrix for P, then 

1 
JoL2 = - max {tr CtA : C is a permutation matrix for Pl. 

n 
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