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A scaling of a non-negative, square matrix A .. 0 is a matrix of the form DAD-I, where Dis 
a non~negatjve. non-singular, diagonal, square matrix. For a non.-negative, rectangular matrix 
B .. 0 we define a scaling to be a matrix CBE- I where C and E are non-negative, non-singular, 
diagonal, square matrices of the corresponding dimension. (For square matrices the latter 
definition allows more scalings.) A measure of the goodness of a scaling X is the maximal 
ratio of non-zero elements of X. We characterize the minimal value of this measure over the 
set of all scalings of a given matrix. This is obtained in terms of cyclic products .associated 
with a graph corresponding to the matrix. Our analysis is based on converting the scaling 
problem into a linear program. We then characterize the extreme points of the polytope which 
occurs in the linear program. 
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1. Introduction 

Let A'" 0 be an n x n, non-negative matrix. A scaling of A is a matrix of the 
form DAD-1 where D E D~ and D~ is the set of n x n non-negative, non­
singUlar, diagonal matrices. In this paper we consider the measure of a scaling 
DAD- 1 given by 

(J .1) 

We characterize Cl' '" inf OED" a(D) in terms of cyclic products for cycles of a 
directed graph associated v:,ith A. We then apply our results to characterize 
scalings of rectangular matrices. Let 0'" B be an nl x n20 non-negative matrix. 
We use the above results to characterize 
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CB·EC' 
{3 '" inf max '" '_,. 

CED21.EED~~ Brj >O.B~.,. >O CkBJi,pE" 

In this case the characterization is particularly simple: 
1r.1 

(3 = maxV 1'( 7T) 

where the maximum is taken over all polygonal products 7T is the half length of 
the polygon 7T and 1'(7T) is the cyclic product of the elements of the polygon (see 
Section 5 for precise definitions and more details). M. v. Golitscheck has pointed 
out to us that our characterization of (3 is related to some theorems found in 
Diliberto and Straus [7], Aumann [1,2), Golitscheck [10. II) and Bank [19). 

The purpose of this paper is to develop characterizations of a and {3 for given 
matrices A and B (as above), respectively. In Section 2 we show how to 
compute a by solving a linear program. For this purpose we use a well-known 
minmax theorem for polyhedra due to Wolfe [18). For the sake of completeness, 
we include a proof of the theorem (communicated to us privately by B.C. 
Eaves) in the Appendix. We show that log a is the maximum of a linear function 
over a polytope P. We then give algebraic characterizations (in Section 3) and 
geometric characterizations (in Section 4) of the extreme points of P. Correspond­
ing characterizations of optimal scalings of rectangular matrices are then developed 
in Section 5. 

The characterization of the extreme points of the polytope P is important 
since it enables us to characterize the basic feasible solutions of the correspond­
ing linear program. Of course, the explicit ennumeration of the extreme points is 
typically not an efficient computational method. However, it might be possible to 

use our characterizations to develop variants of the simplex method which use 
the special structure of the basic feasible solutions to accelerate computation. 

There are many models in which a matrix can be replaced by anyone of its 
scalings without changing the character of the problem (e.g., linear program­
ming). So, one would like to find a scaling of a matrix which is efficient in some 
way (e.g., Bauer [3, 4), Curtis and Reid (6), Fulkerson and Wolfe [8], Hamming 
[12), Orchard-Hays [13], Saunders and Schneider [15). and Tomlin [16]). The 
first to consider the ratios of the non-zero elements of a non-negative matrix and 
to use the maximum ratio so obtained as a measure of the goodness of the 
scaling of the matrix were Fulkerson and Wolfe[8] . Of course, when the matrix 
has negative elements one can consider absolute values (e.g., Saunders and 
Schneider [15] where a different measure is used). Fulkerson and Wolfe 
developed an algorithm for computing the quantity (3 above. One motivation for 
using the Fulkerson-Wolfe criterion is the fact that high ratios cause difficulties 
in linear programming. A limitation of their measure is that it does not depend 
continuouslY on the elements of the matrix; namely, replacing a zero by a small 
positive number will change the measure drastically. Other measures have also 
been used. For example, Saunders and Schneider [15) used a maximal element 
measure whereas Curtis and Reid [6) used a least square approach. Tomlin [16] 
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has compared the Fulkerson-Wolfe criterion with Curtis-Reid's in numerical 
experiments which favored the latter. Tomlin summarizes the issue by saying 
that "The scaling of linear programming problems remains a rather poorly 
understood subject (as indeed it does for linear equations). Although many 
scaling techniques have been proposed, the rationale behind them is not always 
evident and very few numerical results are available." 

Fulkerson and Wolfe [8], Curtis and Reid [6] and Tomlin [15] contributed 
algorithms and numerical results. Like Bauer [3, 4] and Saunders and Schneider 
[15], our main aim is to develop theoretical analysis of a specific scaling criterion, 
though we do have some computational results (in Section 2). Our paper is 
certainly not an endorsement of the Fulkerson-Wolfe method over others. It is 
offered in the hope that our theoretical analysis will eventually lead to a better 
understanding of the relationship between the theoretical properties and the 
numerical efficiency of scaling criteria. 

2. Conversion of the multiplicative scaling problem into a linear program 

In this section we convert the multiplicative scaling 'problem into an additive 
one. We then convert the additive problem into a linear program. 

We shall find it convenient to look at the graph associated with a given matrix. 
We first need some definitions. A (directed) graph G is an ordered pair (G" Gu ) 

where Ga k; G,. x G •. Elements of G,. are called vertices and elements of GD are 
called arcs. In this paper we shall typically have G,. ~ {I, .... n} == (n) for some 
positive integer n. In this case we order Gu lexicographically, viz., Gu = 
(at> ... , am) where m denotes the number of elements of Gu. If G is 'a graph, the 
vertex-arc incidence matrix, denoted nG), is the n x m matrix defined by 

1
1 if aq = (i,j) for some ir" i E Go. 

nG)iq = - I if aq = (j,i) for some ir" i E G" 

o otherwise. 

(Observe that riq = 0 if au = (i,i).) 

Let R be the real field and let R+ be the set of non-negative reals. By R nm 

(resp., R~'") we denote the set of all n x m matrices with elements in R (resp., 
R+). As usual, Rn (resp., R~) will stand for Rn' (resp., R~'). Throughout. we use 
SUbscripts for coordinates. Next, let D~ denote the set of non-singular diagonal 
matrices in R~n. For D E D~ let Di "" Dii , i = I, .... n. 

Let A E Rnn. The (directed) graph associated with A, written G(A), has 
G(A), = (n) and G(Ala = {(i,j) E (n) x (n) I Aij r" OJ. Also. the incidence matrix 
associated with A. written rcA). is the matrix T[G(A)] . 

Throughout this paper, let 0;= A E R~n be a fixed matrix. Let G "" G(A) and 
r = rcA). For D E D~ we consider 
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Define dE R" and wE R m by 

d; = log D;, i = I, ... , n, 

Wq = log A ;j, if Qq = (i,j) E G •. 

Then, if (i,j) = Qq 

log D;A;;Dj l = (wT + dTnq = (wT + dTne q 

where eq is the qth unit vector in Rm, i.e., 

q _ {I if r = q, 
e, - 0 if r;>! q and r = I, .. . , m. 

So, 

10ga(D)= max (wT+dTn(eq-e') 
q.r=l . ... , m 

= max(wT +dTnx = max(w T + dTnx 
xEF xE Q 

where 

F = {eq - e' I q,r = I, ... , m} 

and 

Q = convex hull of F. 

Notice that 0 E F, so 

log a(D) ?: 0 for all D E D~ . (2.2) 

We next obtain an explicit representation of Q. We need two additional 
definitions . First, let e E Rm be the vector all of whose coordinates are one. Also. 
for x E Rm. let Ilxll = 2:7'=1 Ix;!. i.e .. IIII denotes the II> norm in Rm. 

Theorem 1. 

(2.3) 

Proof. Let Q' be the right-hand side of (2.3). It is easily seen that Q' is convex 
and eq, == eq 

- e' E Q' for all q,r = I , .. . ,m. This assures that Q (;; Q'. 
We next show that Q' (;; Q. Let x E Q'. We prove that x E Q by induction on 

the number of non-zero coordinates of x, which we denote A(x). If A(x) = 0, then 
x = 0 E Q. If A(x) = 2, then x is proportional to some eq" q,r = I, .. . • m with q;>! r, 

and 

x = (0.5 + O.25llxll)(eq 
- e') + (0.5 - 0.25Iixll)(e' - eq) E Q. 
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Of course, A(x) = 1 is impossible. 
Assume that for some t;;,: 3 every z E Q' with A(z) < t belongs to Q and 

consider x E Q' having A(x) = t. Let , = minx,~olxql = Ixqol. Since A(x) = t ;;,: 
3, IIxil > 2,. Also, since e T x = 0, there exists ro, 1 :s ro:S m, such that xqox'o < O. Let 
y==x-xqOeqO'o. Notice that eTy=O and IIyll = IIXll-27" >0. So, z==2y/ilyllEQ'. 
Also observe that A(z) < A(x) = t. So, by our induction hypothesis z E Q. It is 
easily seen that x = 0.511Yllz + (1- 0.511yll)u where u == xqOeqO'o/O - 0.511yll). Since 
O:s IIyll :s IIxil :s 2 and Q is convex, it suffices to prove that u E Q. But, e T u = 0 
and (as IIxil :s 2) 

II II - 21xqo l - 27". <: 2 
u - 1 - 0.511yll- 1 + 7" - 0.511xll . 

So u E Q'. But, as A(u) = 2, this assures u E Q, completing our proof. 

We next examine the quantity of chief interest in this paper: 

It follows from (2.1) and (2.2) that 

log a = inf max(wT + dTT)x;;,: O. 
dERI1 :rEQ 

(2.4) 

For each d E R", max, _ Q( w T + dT Ox < 00. So the above infmax is finite and we can 

apply the minmax theorem of Wolfe [18] (found in the Appendix). Combining this 
theorem with the fact that if rx¢ 0, then infdER• wTrx = -x to get that 

log a = sup inf (wT + dTOx = sup wTx 
:rEQ dER" :rEP 

where 

P "" {x E Q I rx = O}. (2.5) 

Notice that 0 E P, so P ¢ 0. Also note that P is a bounded polytope as it is the 
intersection of the bounded polytope Q an'd a subspace. In particular it follows 
that maXxEP w T x = maXuEU w T u, where U is the set of extreme points of P. We 
now collect the results of this section into a theorem. 

Theorem 2. Let 0 ¢ A E R~n and let r = r[G(A)]. Let P = {x E Rm I eT x = 0, 
Ilxil :s 2. rx = O}. Then 

(2.6) 

where wE Rm is the vector whose coordinates are given by log A;j for (i,j) E 
G(A). taken in lexicographical order and U is the set of extreme points of P. 
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3. An algebraic characterization of the extreme points of P 

The purpose of this section is tb obtain an algebraic characterization of the 
extreme points of the polytope P given by (2.5). 

We first need some definitions. We say that a graph G' = (G;" G~) is a 
subgraph of G = G(A) = (G,., Ga), if G: ~ G,. and G~ ~ Ga. The subgraph of G 
associated with a vector x E R m

, written G(x), is the subgraph of G having 

G(X)a = {aq EGa I xq;e O} 

and 

G(x),. = {i E G, I (i,j) E G(x)a or (j,i) E G(x)a for some j EGo}. 

We shall call x E R m a circulation for the subgraph G' or G, if Tx = 0 and 
G(x)a ~ G~ . The term circulation (when no subgraph is mentioned) will refer to 
a circulation for G itself, i.e., x is a circulation if Tx = O. The set of all 
circulations for a given subgraph G' of G is clearly a subspace of Rm. This 
subspace will be called the circulation space of G' and will be denoted C(G'). 

We shall also use the abbreviated notation C(x) for C[G(x)] where x E Rm. The 
dimension of these subspaces will be denoted dim C(G') and dim C(x), respec­
tively. 

We say that two vectors x and y in R m conform if for every q = 

1, ... , m, xq)'q ~ O. It is easily seen that x and)' conform if and only if Ilx + YII = 
Ilxll+IIYII· 

A cycle of a subgraph G' of G is a vector Z E R m with G(z)a ~ G' such that 

Z is a non-zero circulation, 

Zq E {I, - I,O} for all q = 1, .. . , m 

and 

if Y is a circulation and G(Y)a C G(z)a, then Y = O. 

(3.1) 

(3.2) 

(3.3) 

The term "cycle" (when no subgraph of G is mentioned) will refer to a cycle of 
G itself. Of course, if Z is a cycle, so is - z. Also, it is well-known that the 
circulation space of any subgraph G' of G is spanned by the set of cycles of G' 
(ef . [5, p. 90]). Observe that for a circulation u, 

dim C(u) = 1 if and only if u is a non-zero mUltiple of a cycle. (3.4) 

Also, for two cycles Z I and Z2 

G(zl);e G(Z2) if and only if ZI and Z2 are linearly independent. (3 .5) 

We are now ready to begin our consideration of the polytope 

P = {x E R m I Tx = 0, e T x = 0 and Ilxll:5 2}. 
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Theorem 3. The polytope P r' {O} if and only if either there exists a cycle Z for 
G(A) having e T z = 0 or there exists two linearly independent cycles for G(A) . 

Proof. Suppose P r' {O}. Then there exists a circulation x r' 0 with e T x = O. Since 
the circulation space is spanned by the set of cycles it follows that for some 
k 2: 1 there exist independent cycles z I, ... , z' and non-zero real numbers 
gl, -.. , g, such that x = :Lt=1 g,z'. If k = I, eT Zl = 0 and if k 2: 2, then Zl and Z2 are 
two independent cycles. This proves one direction of our theorem. 

Next assume that for some cycle z, eT z = O. Then 0 r' 2z/llzli E P. Finally let Zl 
and Z2 be two linearly independent cycles having e T z, r' 0 for i = 1,2. Then for 
some real numbers {3" {32, X == {3 I Z I + (32z2 has e T x = 0, Ilxll = 2. Hence 0 r' x E P, 
which proves that P r' {O} and completes our proof. 

From now on we shall always assume that P r' {O}. We shall identify the 
extreme points of P by proving a sequence of lemmas. 

Lemma 1. Suppose P r' {O}. Then u E P is an extreme point of P if and only if 
Ilull=2 and there exist no linearly independent conforming vectors xl,x2ERm, 
having eTx' =0, r;i = 0 for i ~ 1,2 and u = Xl +x2. 

Proof. Suppose u is an extreme point of P. We first show that u r' O. Since 
P r' {O}, there exists 0 r' x E P. Notice that - x E P and 0 = 0.5x + 0.5( - x). So. 0 
is not an extreme point of P. So, u r' O. We next show that Ilull = 2. Suppose 
Ilull < 2, then for sufficiently small €>O,(1+€)uEP and (l-€)uEP. Since 
u = 0.5(1 + e)u + 0.5(1- €)u it follows that u is not an extreme point. So, Ilull = 2. 
Next. let Xl, x 2 be linearly independent conforming vectors in R m having 
TXi = 0, eTxi = 0 for i = 1,2, and u = Xl + x 2. Then Ilx'll + IIx211 = Ilxl +x211 = Ilull = 2 
and u=~llxlllul+~llx21Iu2 where ui =2xilllxillEP implying that u is not an 
extreme point of P. We have thereby shown that any extreme point of P 
satisfies the conditions of the lemma. 

Next suppose u satisfies the conditions of the lemma; in particular Ilull = 2. If u 
is not an extreme point of P, then some u I .u 2 E P, u I r' u2 and positive numbers 
t,,12 with II + t2 = I such that u = tlu l + t2U

2. Thus, 

2 = Ilull s tiliu III + t211u
2

11 s 2. 

We deduce that lIu i ll=2.i=I.2. and that for x i =liui,i=I,2,lIx'+x211= 
IIX'Il+llx211. Thus Xl and x 2 conform. Since lIu 111=lIu211=2,u ' r'u

2 and u l and u 2 

conform, we gel that XI,X2 are linearly independent. Also, eT Xi = 0 and Tx' = 0 
for i = 1,2. So u does not satisfy the conditions of the lemma. 

Lemma 2. Suppose u E ·P, lIuli = 2 and dim C(u) = 1. Then u is an extreme point 
of P. 
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Proof. Since dim Cluj = I, by (3.4) there is a cycle z such that all elements in 
Cluj are scalar mUltiples of z. Let u = Xl + x", where Xl, x" conform and for 
i = 1,2, TX' = 0 and e T Xl = O. Then G(x l), <;;:: G(u). whence Xl E C(u), i = 1,2. So 
Xl, i = 1,2, is a scalar mUltiple of z. Thus, Xl and x" are linearly dependent. The 
conclusion of this lemma now follows from Lemma I. 

Lemma 3. Suppose u E P, Ilull = 2 and dim Cluj = 2. If eT z'" 0, for some cycle z 
in Cluj, then u is an extreme point of P. 

Proof. Let u = Xl + x', where Xl, x' conform and for i = 1,2, TX' = 0 and e T Xl = O. 

Then G(xl)a <;;:: G(u)a whence Xl E Cluj. Suppose Xl '" O. Since e T z'" 0 = e T Xl and 
xl",O the vectors Xl and i are linearly independent. Since x'EC(u) and 
dim C(u) = 2, there exist (3,)' E R for which x' = (3x 1+ )'Z. But as e T x' = 0 we 
have that )' = O. Hence x I and x' are linearly dependent. This conclusion is 
immediate when Xl = O. It now follows from Lemma 1 that u is an extreme point 
of R. 

Lemma 4. Suppose u E P, Ilull = 2 and dim Cluj = 2. If every cycle z in Cluj 

satisfies eTz = 0, then u is not an extreme point of P. 

Proof. Since the cycles in C(u) span C(u), there exists a cycle z E Cluj such that 
z and u are linearly independent. For € > 0 which is sufficiently small, u 1== 

U + €Z and U' == u - €Z conform and are linearly independent. Since u = 

0.5(u I + u'), Tu l = 0 and e T u l = 0, i = 1.2, the conclusion follows from Lemma I. 

Lemma 5. Suppose u E P, Ilull = 2 and dim C(u) > 2. Then u is not an extreme 
point of P. 

Proof. It follows from the assumptions that there exist x, y E C(u) such that u, x 
and yare linearly independent. There exist t, T/ E R for which v = tx + T/Y has 
eTv = O. For sufficiently small E > 0, U I == U + EV and u' == u - €V conform. Clearly 
u and v are linearly independent and hence, so are u l and u". Of course. for 
i = 1,2, Tu l = 0 and eTu l = O. But, u = 0.5(u l + u 2). It follows from Lemma 1 that 
u is not an extreme point of P. 

We next collect the results of Lemmas 2-5 to obtain an algebraic charac­
terization of the extreme points of P. 

Theorem 4. Suppose p", {O}. Then u is an extreme point of P if and only if 

u E P, Ilull = 2 and either 

dim C(u) = 1 (3.6) 
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or 

dim C(u) = 2 and some cycle z E C(u) satisfies e T zr" a. (3.7) 

4. A geometric characterization of the extreme points of P 

The purpose of this section is to obtain a geometric characterization of the 
extreme points of P. We first need some additional definitions. 

A path from i to j, where i,j = I, ." , n, is a vector z E Rm such that 

Zq E{I,- I,a} for all q = I, ... ,m (4.1) 

and 

(4.2) 

where here, e; and ej denote the corresponding unit vectors in Rn. (Notice that 
in Section 2 we considered the unit vectors in Rm.) A given path z does not 
necessarily determine uniquely the points i and j, e.g., the path z = a is a path 
from i to i for every i = I, ... , n. 

We next give the well-known geometric interpretation of paths and cycles (e.g. 
[5, p. 8)). Namely, a vector z E Rm is a path from i to j if and only if there exists 
a positive integer k and i" ... , it in G(z ),. such that i I = i, ik = j and for every 
r = I, ... , k - I precisely one element of (in i,+I) and (i,+" i,) is in G(z). and each 
element of G(z). has this form: if aq = (in i,+I) we have Zq = I and if aq = (i,." i,) 
we have Zq = -1. Of course, a vector Z E Rm is a cycle if in addition i" ... ,'ik - I are 
distinct and il = it. 

By considering subgraphs of subgraphs of G, it is easily seen that the set of 
subgraphs of G is partially ordered. It follows that this partially ordered set is a 
lattice, where for subgraphs G I and G2 of G, we have G I v G l = 
(0; U G;, G! U G~) and G I

" G 2 = (G~ n G;, G! n G~). 
Given a subgraph G' of G, we say that i and j in G~ are connected if there 

exists a path y from i to j having G(y). ~ G:. Of course, the connectedness 
relation is an equivalence relation. Thus for every subgraph G' of G we get a 
partition of G ~ into equivalence classes. The number of components in this 
partition will be denoted p(G'). Using the geometric interpretation of paths one 
can see that for every subgraph G' of G with p(G') = p, there exist subgraphs 
G I

, ... , GP of G such that 

P 
G=VG; and G;"Gj=(0,0) fori;o!j,i,j=I, .. . ,p 

;= 1 

where {G;, I i = I, ... , p} are the equivalence classes of the connectedness rela­
tion on G~ . A subgraph G' of G is called ,connected if every i,j E G:. are 
connected, or equivalently, if either p(G') = I or G' = (13,13). 
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Let IHI denote the number of elements in the set H. No confusion should 
arise with the fact that this notation is also used to denote absolute values of real 
numbers. Recall the well-known formula (e.g. [5, p. 16]) which states that for 
every subgraph G' of G 

dim C(G') = IG~I-IG~I + p(G'). (4.3) 

Lemma 6. Let Zl and z' be linearly independent cycles for which G(ZI),. n 
G(Z2),. ;" e. Then 

dim C[G(ZI) v G(z' )) = p[G(ZI)" G(z')) + I. (4.4) 

Proof. Let G I, ... , GP be the connected components of G(ZI) " G(z') . Intuitively. 
it follows from the geometric interpretation of paths and cycles that both z I and 
z, may be decomposed into the above connected components G I, ... , Gr (of 
G(ZI) "G(Z2)) together with p "disjoint paths" each of which has no arcs In 
common with vf=1 G' and only the two "end vertices" are in Uf=1 G; .. More 
precisely, there exist paths y", i = 1,2, t = 1, ... , P such that for i = 1,2 

. 'r 
G(Zi) = V [G' v G(y")) 

1=1 

and for t = I, ... , p 

G(yi') " ( V G') = (Hit,e) 
,-I 

where IHi'l,;= 2. (Notice that some G~ may be empty.) So, 

P 

[G(ZI) V G(z'»). = 2: (IG~I + IG(y").1 + IGV')./). (4.5) 
'-I 

Also notice that 

I[G(zl) v G(z')),·1 = IG(zl),·1 + IG(z'),.I-I[G(zl) " G(z'),·1 (4 .6) 
, P P 

= ! 2: (IG;·I + IG(i'),·I- 2) - 2: IG:·I 
i - ll=1 t=1 

P 

= 2: (/G;·I + IG(yl'),1 + IG(y2'LI) - 4p . 
1=1 

It is easily seen that for t = I, ... , p and i = 1,2 

(4.7) 

and 

IG~I-IG;.I = - I. (4.8) 

Also, as G(z ') ,. " G(z') , ;" 13 and z I and z, are cycles we get that 

p[G(ZI) V G(z')) = I. (4.9) 
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It follows from (4.3) with G' = G(z') V G (Z2) and (4.5)-(4.9) that 

dim C[G(z ' ) v G(z")] = ~ [IG~I-IG~I + t, ClG~I-IG:~D ] +4p + 1 

= - 3p + 4p + 1 = p + 1. 

Lemma 7. Let z, and Z2 be cycles such that G(z');" G(Z2). Then dim C[G(z') v 
G(Z2)] = 2 if and only if G(z') A G(Z2) is connected. 

Proof. First recall that (3.5) implies that Zl and Z2 are linearly independent. Using 
the geometric interpretation of paths and cycles, one can verify that if G(ZI), n 

G(z2L = 0, then G(ZI) and G(Z2) are the only two connected components of 
G(ZI) v G(Z2). In thi~ case G(z l) A G(Z2) = (0, 0) is connected and (4.3) with 
G' = G(ZI) V G(Z2) combined with the fact that IG(z).1 = IG(z), 1 for every cycle z 
imply that 

dim C[G(ZI) v G(z")] = IG(ZI).1 + IG(Z2). I-IG(ZI),I-IG(Z2)" + 2 = 2 . 

. If G(z '),. nG(z2),.;"0, then G(ZI) A G(Z2) is connected if and only if p[G(ZI)A 

G(z")] = 1 and the result of the corollary follows directly from Lemma 6. 

By a result of Tutte [17, p. 23] every circi.I1ation u is a linear combination with 
positive coefficients of cycles which conform with u. We next use this result to _ 
prove that C(u) has a basis of cycles which conform with u. This result might be 
known-but we prove it here for completeness. 

Lemma 8. Let u be a circulation. Then C(u) has a basis of cycles which conform 
with u. 

Proof. It is enough to show that C (u) is contained in the span of the set of cycles 
which conform with u, which we denote C*(u) . Let x E C(u). Then u and u + EX 

conform for all sufficiently small E > O. Hence, by Tutte's result both u and 
u + EX are in C*(u). It immediately follows that x E C*(u) . 

We are now ready to obtain the geometric characterization of the extreme 
points of P. 

Theorem S. Suppose p;" {O}. Then u is an extreme point of P if and only if 

u E P, lIuli = 2 and either 

or 

u = ax for some a > 0 and cycle x having e T x = 0, (4.10) 

u = SOI Z' + S02Z2 for some SO, > 0, S02 > 0 and conforming cycles Zl and 
Z2 for which G(z') A G(Z2) is connected and e T Zl > 0 > 
eT z2

• (4.11) 
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Proof. Suppose u E P, Ilull = 2 and u satisfies (4.10). Then by (3.4), dim C(u) = 1, 
whence u is an extreme point by Theorem 4. Suppose u E P, Ilull = 2 and u 

satisfies (4.11». Then Zl ,Z2 E C(u) and G(ZI) ,e G(Z2). So Lemma 7 assures that 
dim C(u) = dim[G(zl) v G(Z2)] = 2. Since e T Zl ,e ° Theorem 4 implies that u is an 
extreme point of P. 

Conversely, let u be an extreme point of P. By Theorem 4, u E P, Ilull = 2 and 
either (3.6) or (3.7) hold. If (3.6) holds, i.e., dim C(u) = I, then (4.10) follows 
directly from (3.4). Alternatively, assume that (3.7) holds, i.e., dim C(u) = 2 and 
for some cycle z E C(u), e T z,e 0. Lemma 8 implies that there exist two cycles Zl 
and Z2 both conforming with u such that Zl and Z2 form a basis of C(u). Let 
u = ~IZI + 6z2

• Since u is not a scalar mUltiple of a cycle (in which case (3.4) 
implies that dim C(u) = 1), ~I,e ° and f,e 0. Since Zl and Z2 are independent 
G(ZI) ...... G(Z2).,e 0 and G(Z2). -... G(ZI).,e 0. The above and the fact that u 

conforms with both z I and Z2 imply that ~ I > ° and e > 0. Since e T z,e ° for some 
z E C(u) either eT Zl ,e ° or e T Z2,e 0. But 0= e T u = ~Ie T Zl + ~Ie T Z2 and ~i > 0, i = 
1,2. Hence eTz l ,eO,eTz2,eO and eTz l and eTz 2 have opposite signs. Also, 
G(ZI),e G(Z2) (as Zl and Z2 are linearly independent) and dim C[G(ZI) v G(z2j] = 

dim C(u) = 2. So Lemma 7 assures that G(ZI) " G(Z2) is connected, completing 
our proof that u satisfies (4.11). 

We shall next combine Theorem 5 with eq. (2.6) to obtain an explicit 
characterization of a. We first need some additional definitions. 

For aq = (i,j) let Aq = A.i' The cyclic product of a cycle z E C(G), denoted 
,),(z), is defined by 

,),(z) = fI A~" 
qEGQ 

Of course, the cyclic product of z is simply the product of all Aq for arcs aq with 
Zq = 1, divided by the product of all Aq for arcs q with Zq = - 1. Also, let 

and 

CO(G) = {z E C(G) I eT z = O} 

C 2(G) = {(Zl ,Z2) I Zl ,Z2 E C(G), eT Zl > 0> eT Z2 

where Zl and Z2 conform}. 

It is easy to verify that for (z I ,Z2) E C 2( G) there exist unique real numbers ~h~2 
satisfying 

~Ie T Zl + ~2 T Z2 = 0, 

~lllz III + 11~211z2 = 2, 

~"~2>0. 

The solution . of the above system (for fixed (Zl ,Z2) E C 2(G)) will be denoted 
~1(ZI,Z2), ~2(ZI,Z2). We are now ready for the explicit characterization of a. 
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Theorem 6. Let 0 ~ A E Rnn and let a be given by (2.4). Then a = 1 if GO(G) = 

C 2(G) = e. Otherwise, 

Proof. Taking exponentials, it follows from (2.6) that 

cr = max e wTu
, 

uEU 

where Wq = A q for q = I, ... , m and U is the set of extreme points of P. Our 
conclusion now follows directly from Theorem 5. 

5. Rectangular scaling 

Let 0 ~ B E R~,n, and consider the scaling problem of computing 

/3 - . f C;BijEj' 
= In max CB E I' 

CED:I.EED:2Bij>O,Bkp>O k kp p 
(5.1) 

One can easily see that /3 equals the right-hand side of (2.4), with 

A2(O B)ERn xn o 0 ' 
(5.2) 

where ·n = nl + n2, and .the zero matrices are of the appropriate size. Thus the 
rectangular scaling problem reduces to the previously discussed problem. It 
follows that our results apply; in particular, Theorems 2-6 hold. We next use the 
special structure of A given in (5.2) to further strengthen Theorems 3-6. The 
graph G = G(A) is easily defined in terms of B : 

(i,j) E Go if and only if is; nl <j and B ij - n, > 0, 

and hence G is bipartite. (For further details, see Saunders and Schneider [14, 
15].) It follows easily that every circulation x has eT x = 0 and we immediately 
obtain a strengthened form of Theorems 3-6. To this end, let P be the polytope 
defined by (2.5) for A given by (5 .2). 

Theorem 3'. The polytope P~ {O} if and only if C[G(A)] ~ {O}. 

Theorem 4'. Suppose P~ {O}. Then u is an extreme point of P if and only if 

u E P, Ilull = 2 and dim C(u) = 1. 

Theorem 5'. Suppose P ~ {O}. Then u is an extreme point of P if and only if 

u = aX E P where x is a cycle of G(A) and a = 2Ilxll-'. 
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A polygon TT of B of length ITTI = k (ef .• Saunders and Schneider (14)) is 
defined to be a pair of sequences (i" ... , ikl, i, E (n I) and (j" ... , jd, j, E (n2), each 
of distinct integers such that Bi,j, > 0 and Bi," ,;, > 0 (with h., = i,l, r = I, ... , k. Of 
course, the cycles of G correspond to polygons of B. For a polygon 7T put 

We now obtain 

Theorem 6'. Let O;O! B E R ~In , and let f3 be given by (5.0. Then f3 = 1 if B has no 

polygons. Otherwise. 

I~ I 

f3 = max Y I'(7T) 
~En 

where n is the set of polygons of B. 

Appendix: A minmax theorem for polyhedra 

The purpose of this appendix is to give a proof for Wolfe's [18] minmax 
theorem for polyhedra with a binJinear function (communicated to us privately 
by B.C. Eaves). 

Theorem. Let 0;o! X ~ Wand 0;o! y ~ Rm be polyhedra sets. Q E Woo , 1) = 

infxEx SUP,.EY XTQy and 0 = SUP"EY infxEx xTQ)'. Then, either 1) = 0 or 1) = +ce 

and 0 = - ce. Also, if 1) (or equivalently 0) are finite, then there exists Xo E X and 

Yo E Y such that 

1) = sup x6Qy = X6Qyo = inf XTQyo = O. (A. 1) 
yEY .rEX 

Proof. We prove the theorem for polyhedra X and Y having a representation 

X = {x E W I Ax 2:: a, x 2:: O} (A,2) 

and 

Y = {y E R m I By s: b, y 2:: O}. (A.3) 

where A E R'", BE Rim, a E R' and bE R' and k and t are some positive 
integers. The proof of the general case follows similarly. 

Let X* = {x EX I SUP ,. EY XTQy <oo} and Y * ={y E Y I infxEx xTQy > -oo}. If 
1) < 00 (resp., 0 > - (0), we have X*;o! 0 (resp. , Y *;o! 0) . We shall next assume 
that 1) < 00 and 0 > - 0::. By the duality theory of linear programming, (e.g., Gale 
[9, p. 78]), if xEX*, then 
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(AA) 

and if xEX>X*, then {A EW/A T B;;,:xT Q,A;;,:O}=0. So, (A.2), (A.3) and 
(AA) assure that 

7)=infsupxTQy= inf supxTQy 
xEX ,I'E'" xEX· yEY 

inf 
f/o.l .. l"Tl(_~ !, )~ {Q.Ql) 

A.x ~o 

T T (b) (A ,x ) 0 . 

8 = sup inf XTQy = sup inf XTQy 
~' EY .rEX yEY .. xEX 

= sup min x T(Qy) = sup max aT fJ.. 
;.'E}' • .rTATc=.a yEY. ATJl:sQ~' 

,t2:0 Ji2:0 

sup aT fJ.. = sup (O,a T) (;;). 
I'E Y ,.... 

Af"sQ,' (B .~,)(;':is(~) 
Jl2:0 -Q ... 

y.Jl ~O 

(A.5) 

(A.6) 

Another application of the duality theorem assures that 7) = 8, and that if 7) and 8 
are finite, then there exist Xo E X* (resp., yo E Y *) such that 

sup xJQy = 7) = 8 = inf xTQyo. 
~'EY x€x 

In particular, (A.?) implies that 

xJQyo ~ 7) = 8 ~ x6 Qyo, 

and (A.!) follows by combining (A.?) and (A.S). 

(A .?) 

(A.S) 

Remark. If the fUnction of x and y given by (x,y) ~ x T'Qy is replaced by 
(x,y) ~ X T Qy + X T P + r T y one can still obtain the results. This can be done by 
observing that xT Qy + X Tp + rT y = iT QS' 

i = (X) 5' = ( Y) and Q = ( q , (Permo,)m -') 
eln ) , e'm) (eln)r )n-

where elk) = O ..... If E Rk for an integer k. 

Example. Let xQy = x - y, X = Rand Y = R. It is easy to see that 7) = - 8 = 00. 
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