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Characterizations are given of the optimal scaiings of a complex square matrix within its 
diagonal similarity class and its restricted diagonal equivalence class with respect to the 
maximum element norm. The characterizations are in terms of a finite number of products, 
principally circuit and diagonal products. The proofs proceed by reducing the optimal 
scaling problems from the multiplicative matrix level in succession to an additive matrix 
level, a graph theoretic level, and a geometric level involving duality theorems for cones. 
At the geometric level, the diagonal similarity and the restricted diagonal equivalence prob­
lems are unified. 

1. INTRODUCTION 

Let P be a complex square matrix. A scaling of P (by means of diagonal 
transformations) is a matrix N = SPT-I, where S, Tare nonsingular 
diagonal matrices. A scaling N of P is optimal with respect to a given measure 
e.g. norm) an~ over a given class of seatings (e.g. all seatings with S = T) 
if the measure of N is the minimum of measures of matrices in the class. In 
this paper we characterize optimal seatings with respect to the elementwise 
maximum norm. The classes of seatings considered will be the diagonal 
similarity class of P (viz. S = T) and the (restricted) diagonal equivalence 
class of P (viz. det ST- 1 = 1). Our characterizations will be chiefly in terms 
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of circuit and diagonal products of P. Thus the optimal matrices in each 
class are characterized by a finite set of conditions. Some of our results are 
known and may be found in a variety of places in the literature, but some are 
new. In order to provide a unified treatment for the two classes of scalings 
mentioned above, we proceed on four levels: 

(M) There is the level of diagonal similarity and diagonal equivalence of 
matrices, which involves multiplication. 

(A) There is the additive matrix level which is obtained from (M) by 
taking logarithms. 

(G) There is a graph theoretic level, involving circuits and diagonals 
(one-factors) of graphs associated with the pattern graphs of the 
matrices. 

(C) There is a purely geometric level involving cones in n-space. 

The results of each level are immediate and easy consequences of the results 
of the subsequent level. 

In Section 2 we state at level (M) two scaling problems, called by us the 
general and the special problem, for each of the two classes of scalings. We 
then formulate equivalent problems at levels (A), (G) and (C). At level (C), 
the diagonal similarity and diagonal equivalence problems coincide. In 
Section 3, we give solutions of the problems at level (C). The special problem 
is solved using a well-known duality theorem for polyhedral cones. The 
general problem is solved by a theorem related to the duality theorem for 
linear programming. We, however, give a simple proof of this theorem by 
means of the duality theorem for polyhedral cones just mentioned and the 
Gordan-Stiemke theorem. In Section 4 we define two pattern graphs for a 
matrix and we apply the two theorems of Section 3 at level (G). In Section 5 
we state our principal theorems which are at level (M). We prove the 
theorems by showing the equivalence of each of their conditions to a con­
dition found in the corresponding theorem in Section 4. An example is given 
in Section 6. The theorems are not explicitly stated at level (A), but some of 
them are quoted at that level in our paper [25]. In order to identify corres­
ponding theorems and problems at the four levels, each problem and 
theorem is identified by a two or three letter code explained at the beginning 
of Section 2. 

For diagonal similarity, Afriat [1], [2], [3] has given solutions to the 
special scaling problem in a somewhat restricted form at level (A). Inde­
pendently, Fiedler-Ptak [12], [13] proved some results at level (M) which 
contain the special case, see also Engel-Schneider [10], [11]. The general 
case is to be found in [11]. For diagonal equivalence, our characterizations 
appear to be new, but results related to ours were proved by Egervary [9]. 
Also these problems are related to minimal cost network-flow problems, 
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e.g. Ford-Fulkerson [14, Ch. III], see in particular the out-of-kilter algorithm 
found there and in Fulkerson [15]. In the two publications last mentioned, 
the stress is on algorithms for solving the problems, while we are concerned 
with finite characterizations of optimal scalings and the unifications of proofs. 
An algorithm for a scaling problem with respect to a measure which is not 
a norm may be found in Fulkerson-Wolfe [16], and characterizations of 
optimal scalings with respect to this measure appear in Rothblum-Schneider 
[23]. Results on optimal sealings with respect to a measure that involves the 
condition number of a matrix have appeared in Bauer [5]. 

It should be observed that results on the scaling of matrices have appli­
cations to other areas, in economics to demand analysis, e.g. Afriat [2] and 
to input-output change, e.g. Bacharach [4]. Diagonal scalings also arise in 
connection with the solutions of hyperbolic systems of partial differential 
equations, see Gunzberger-Plemmons [19]. 

2. THE PROBLEMS 

The problems addressed will be identified by a two or three letter code: 

(i) The levels, (M), (A), (G), (C), as explained in Section 1. 
(ii) s-special and g-general. 

(iii) a--diagonal similarity and e-(restricted) diagonal equivalence. 

At the geometric level (C), the features a and e are unified, and hence the 
third letter is not used. 

We now state the optimal scaling problems at the multiplicative matrix 
level (M). By Iffi we denote the field of real numbers and by e the field of 
complex numbers. For P E e"", let 

IPI = max !pijl. 
i,j=- 1, ... ,IJ 

We are concerned with finding the minimum value of this norm within a 
diagonal similarity or diagonal equivalence class, cf. [10], [1 L], [24]. Hence 
without loss of generality we suppose that P E Iffi'~, where . 

Iffi,!?' = {B E Iffin,,: B ~ O} 

and all inequalities are elementwise. 
Let 

and let 
D" = {X E Iffin,,: X is nonsingular, diagonal}, 

D,,+ = Iffi"P (j D". 

For P E Iffi'.j'.', we have the following scaling problems: 

(Mga) Find inf{ISPS- 11: S E D'!r}, 

(Mge) Find inf{ISPT- 1 1: S,TED,,+,detST- 1 = I}. 
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The solutions to these problems will follow from the solutions of the special 
problems below. 

Let E E 1R'!t' be defined by elj = 1, i,j = 1, .•. , n. 
For P E 1R'!t', we have 

(Msa) Does there exist S E D,+ such that SPS- 1 :::;; E? 
(Mse) Do there exist S, TE D,+ with det ST- 1 = 1 such that SPT- 1 :::;; E? 

By taking logarithms, we obtain problems at level (A) . Let IR", = IR u {- oo}, 
and let A E lR;n. 
(AUG') Find 

(Aue) Find 

inf{max{x/+a/j-Yj: au =/: -oo}: X, YE Dn, tr X = tr Y} 

where tr B is the trace of B, for BE IRnn. 
In order to deal with nonnegative quantities, we reverse the inequality and 

we obtain: 

(AsG') Does there exist X E Dn such that 

x/+aij-xj ~ 0 if aij =/: -oo? 

(Ase) Do there exist X, Y E Dn with tr X = tr Y, such that 

We now give these additive problems graph theoretic formulations, as we 
did for related algebraic problems in [24]. To make this paper self-contained, 
we state some graph theoretic definitions. For further information on graphs 
see [7] or [22, Ch. 4]. 

(2.1) DEFINITIONS 

(i) A pair (G, V) is a edirected) graph if the arc set G is a subset of Vx V, 
where V is the vertex set. 

(ii) A triple (H, V, V') is a (directed) bipartite graph if (H, V u V') is a 
graph for which V n V' = 0 and H £; Vx V'. 

In this paper V = <n) = {I, ... , n} and V' = <n)' = {n+ 1, ... , 2n}, 
and we employ two conventions throughout: 

First, we order the elements of G and H lexicographically. Thus e.g. 
G = {Ul' •.• , Um}, where m = IG/, the number of elements in G. 

Second, we write G for both the graph (G, V) and the arc set G. Similarly 
identify Hand (H, V, V'). 
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(2.2) DEFINITION Let G be a graph. Then the (arc-vertex) incidence matrix 
r of G is the m x n matrix defined thus: r = (Yri) where 

Yri = 1 if gr = (i,j) and i =F j, 
Yri = -1 if gr = (j, i) and i =F j, 
Yri = 0 otherwise. 

Observe that Yri = 0 if gr = (i, i). Many authors call r t the incidence matrix 
ofG. 

(2.3) DEFINITIONS Let <1>* be a set with distinguished element *, and let A 
be an (n x n) matrix with elements in <1>*. 

(i) The *-pattern graph for A is the graph G* (A) such that (i, j) E G* (A) 
if and only if aij =F *. 

(ii) The bipartite *-pattern graph for A is the bipartite graph H* (A) such 
that 

(i,j+n) E H*(A) if and only if aij =F *. 
(iii) Let A, B E <I>~n, G* (B) ~ G* (A). We define a vector b = 1JA (B) E <l>m 

thus: 
br = bij, if gr = (i,j) E G*(A), r = 1, ... , m. 

Observe that 1JA (B) is also the vector given by 

br = bij' if hr = (i,j+n) E H*(A), r = 1, .. " m, 

If B = A, we write 1J(A) for 1JA(A). 
Let A E ~~n, where * = - 00 is the distinguished element, Let r and ~ be 

the incidence matrices of G*(A) and H*(A) respectively and let a = 1J(A). 
Let XE Dn. If xt = (Xl' ... , xJ, observe that Xi-Xj = (rx)" where (i,j) = 
gr E G* (A). If X, Y E Dn, and zt = (Xl> ... , Xm Yl' ... , Yn) then Xi - Yj = (&)" 
where (i,j+n) = hr E H*(A). Also the condition tr X = tr Y corresponds to 
qh = 0 where <P E ~21J is defined by <Pi = 1, i E <n) and <Pi = -1, i E <n)'. 

We now state problems at level (G), which correspond to the problems 
previously stated at level (A) when a = 1J (A), G = G* (A) and H = H* (A)· 

Let G be a graph and let H be a bipartite graph with IGI = IHI = m, 
and incidence matrices r E ~mn, ~ E ~m. 2n respectively. Let a E ~m. 

(Ggo) Find inf max (a+rx)" 
XEImI1 r€(m) 

(Ggs) Find inf max (a+~z)r' 
ZEIRl2n rE(m> 
<p'z=o 

(Gsa) Does there exist X E R n such that (a+ rx) ~ O? 

(Gse) Does there exist z E ~nn with <ptz = 0 such that (a+~z) ~ O? 

Later we shall have occasion to discuss the spaces WO" and W. defined by 

Wo = {VE ~m: vtr = O}, 
W.={VE~m: vt~=A<P, forsome AE~}. 



126 B. D. SAUNDERS AND H. SCHNEIDER 

Observe that 

W;; = {U E [Rm: 3x E [R", U = rX}, 

W; = {U E [Rm: 3z E [R2n, q/z = 0, U = Llz}. 

Hence the general problems involve 

inf max (a+u)r 
UEW.L rE(m) 

for a subspace W of [Rm. Let I: be the simplex 

I: = {XE[Rm: /x = 1}, 

where e = (1, ... , 1) E [Rm. 

Then 
max (a+u)r = max vt(a+u). 
rE0n) VEE 

Thus appropriate versions of our problems at level (C) are given by: 

Let a E [Rm, and let W be a subspace of [Rm. 

(Cg) Find inf max vt(a+u). 
UEW.L VEE 

( Cs) Does there exist u E W.L such that a + u ~ O? 

An equivalent form of (Cs) is given by: 

Is a E W.L + [R~ ? It is well-known that W.L + [R1~ is the dual of a pointed 
cone in [Rm. Thus in the next section we consider cones and their duals. 

3. THE GEOMETRIC RESULTS 

We begin with some definitions. For further information see [6], [17, Ch. 2]. 

(3.1) DEFINITIONS 

(i) A nonempty subset C of [Rm is a (convex) cone if 
(a) X+YEC, for X,YEC, 
(b) AX E C, for il ~ 0, X E C. 

(ii) A cone C in [Rn is pointed if x = 0 whenever both x E C and - x E C. 

(iii) A cone C is a polyhedral cone if there exist xl, .. ,' XS in [Rnl such that 

C = {t Aixi : Ai ~ 0, i = 1, .. " s}. 
i=l 

In this case {xl, .. " x'}is called a set of generators for c. 
(iv) A vector x E C is called an extremal in C if x = y+ z, where y, Z E C 

implies that y = ilx, Z = JlX, where A ~ 0, Jl ~ O. 

Observe, that C = {O} is a pointed polyhedral cone, and 0 is an extremal. 
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(3.2) DEFINITION If C is a cone in IRm, the dual cone CD of C is defined by 

CD = {y E IRm
: /x ~ 0, for all x E C}. 

If W is a subspace of IRm, then WD = Wi, the orthogonal complement of W. 
The fundamental lemma is 

(3.3) LEMMA Let W be a subspace of IRm . Then 

(IR~ n W)D = IR~ + W.l . • 

Lemma (3.3) is obtained by combining Corollary (1.7) and Lemma (3.4) of 
Ben-Israel [6]. Alternatively, Lemma (3.3) is a consequence of Theorem 
2.14, page 59 of Gale [17]. In [6] the proofs depend on a separation theorem 
for convex cones, in [17] they are inductive and use inequalities. As remarked 
in [25], there are many other papers that prove this result and Lemma (3.5) 
with one type of proof or the other. 

(3.4) Cs-THEOREM Let a E IRm and let W be a subspace of IRm. Then the 
following are equivalent. 

(i) There exists u E W.l such that a+u ~ 0, 
(ii) If v is an extremal of W n IR~ then vta ~ 0, 

(iii) If BE IRkm and V, the space spanned by the columns of B t, satisfies 
V n IR'~ = W n IR~, then Ba E BIR~, the cone generated by the columns of B. 

Proof We show that each of the three conditions is equivalent to 
a E W.l + IR'~ or a E (W n IR~)D, which in tum are equivalent by Lemma 
(3.3). Condition (i) is a E W.l+ IR~ . 

Condition (ii): Since the cone C = W n IR'~ is pointed and polyhedral 
[17, p. 59] there is a finite set of extremals which generate C [17, p. 62]. 
But if vta ~ 0 for all extremals of C, then vta ~ 0 for all v E C. It follows 
that (ii) is equivalent to a E (W n IR~ )D. 

Condition (iii): This condition holds if and only if there is a q E IR'~ such 
that Ba = Bq. For this q, a-q E V.l and so (iii) is equivalent to a E V.l + IR~. 
But since V n IR~ = W n IR~, it follows by Lemma (3 .3) that V.l + IR~ = 

Wi + IR~. Hence (iii) is equivalent to a E W.l + IR~. • 
Note that in condition (ii) we need to verify vta ~ 0 only for a finite num­

ber of extremals v. 

(3.5) LEMMA Let W be a subspace of IRm. Then the following are equivalent: 

(i) W n IR~ = {O}, 
(ii) W.l n int IR'~ =I 0. • 

Here int IR'~ is the interior of IR~. 
Lemma (3.5) is called the Gordan-Stiemke Theorem in [25] in view of 

Gordan [18] and Stiemke [26]. A more general result with a proof depending 
on a separation theorem is Nikaido [21, Theorem 3.6]. For a proof of 
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Lemma (3.5) depending on inequalities see the corollary on page 48 of 
Gale [17]. 

We recall that L = {x E [R~: L7'=l Xi = 1}. 

(3.6) Cg-THEOREM Let W be a subspace of [Rm and let a E [Rm. 

0) If W n [R~ = {O}, then 

inf max vt(a+u) = - 00. 

(H) If W n [R~ =1= {O}, then 

min max vt(a+u) = max vta. 
UEW-L VEl: VEl:" W 

(We have written min to show that the infimum is achieved in this case). 

Proof (i) If W n [R~ = {O}, then by Lemma (3.5), there exists, u E W-L 
with - u > O. So we can find A. > 0 such that 

max vt(a+A.u) = max (a+A.U)r 
VEl: rE(m) 

is arbitrarily small. The result follows. 
(ii) Suppose W n [R~ =1= {O}. Then W n L =1= 0 and since W n L is a 

bounded polyhedral subset of [R~, maxVEl:" w vta exists and is achieved. Let 

11 == max vta. 
VEI:" w 

Let u E W-L. Then 

max vt(a+u) ~ max vt(a+u) = max vta = 11. 
VEl: VEl:" W VEl:" W 

On the other hand, vt(l1e-a) ~ 0 for all VEL n W. Hence, by Theorem 
(3.4) there is a Uo E W-L such that 1]e-a-uo ~ 0, and so a+uo ~ l1e. Then 
vt(a+uo) ~ 1], for all VEL, and we obtain that maXvEl: vt (a + uo) ~ 1]. The 
result follows. • 

Theorem (3.6) may also be derived from the duality theorem of linear 
programming, e.g. Gale [17, Ch. 3]. For a related result derived in this way, 
see [23]. 

4. APPLICATIONS TO GRAPHS 

We require some additional concepts, cf. [7], [22]. A {O, 1}-vector in ~m 
is a vector v E ~m such that Vr = 0 or Vr = 1, for r E (m). A {O, 1, -1}­
vector is defined similarly. 

(4.1) DEFINITIONS 

(i) Let G be a graph, and let r E [Rmn be its incidence matrix. A cycle for G 
is a {O, 1, -l}-vector in ~n such that vtr = O. A cycle v for G is a (simple) 
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circuit for G if v is a {O, 1 }-vector which is not the sum of two {O, 1 }-cycles 
for G. 

(ii) Let H be a bipartite graph and let Ll E [Rm.2n be its incidence matrix. 
A pseudo-diagonal is a vector v E [Rm such that vtLl = q/ A diagonal (one­
factor)for H is a {O, l}-pseudo-diagonal. 

We shall use the terms cycle space WO"' circuit space VO"' pseudo-diagonal 
space W., and diagonal space V. for the subspaces of [Rm spanned by the 
corresponding objects. It follows from some elementary graph theory that 
WO" = {v E [Rm: vtr = O}, cf. [22, p. 396], which is the space defined near 
the end of Section 2. It is elementary linear algebra that W. = {v E [Rm: 

vtLl = Aq>, A E [R}, which is again the space defined previously. 
We also define CO" = VO" n [R~. It is known, [7, p. 91] that every non­

negative element of WO" is a linear combination with positive coefficient of 
circuits for G. Hence CO" = Wo n [R~, and the extremals of CO" are precisely 
the nonnegative multiples of the circuits for G. We define C. = V. n [R~. 
It is known that every nonnegative element of W., is a linear combination 
with positive coefficients of diagonals for H. (This is essentially the well­
known Birkhoff-Konig Theorem, [8], [20], see [25] for details and further 
references. Hence Ce = W. n [R~, and the extremals of Ce are precisely the 
nonnegative multiples of diagonals for H. Note that it is possible that 
VO" ~ WO" and Ve li We' 

(4.2) Gsa-THEOREM Let G be a graph, let r be its incidence matrix, and let 
a E [Rm. The following are equivalent. 

(i) There exists x E [Rn such that a + rx ~ 0, 
(ii) For all circuits v of G, vta ~ 0, 

(iii) If B E [Rkm and the columns of Bt span the cycle space or the circuit 
space for G, then Ba E B[R~, the cone generated by the columns of B. 

Proof Apply the Cs-Theorem (3.4) with W = WO" and V = WO" or 
V= VO"' • 

(4.3) GSe-THEOREM Let H be a bipartite graph, let Ll E [Rm.2n be its incidence 
matrix, and let a E [Rm. The following are equivalent. 

(i) There exists z E [R2n with q>tz = ° such that a+Llz ~ 0. 

(ii) For all diagonals v of H, vta ~ 0. 
(iii) If BE [Rkm and the columns of Bt span the pseudo-diagonal space or the 

diagonal space for H, then Ba E B[R~. 

Proof Apply Cs-Theorem (3.4) with W = We and V = W. or V = Ve' • 

(4.4) Gga-THEOREM Let G be a graph, let r E [Rmn be its incidence matrix. 
Let a E [Rm. 
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(i) If there are 110 circuits for G, then 

inf max (a+rx)r = - 00 . 
xe ~n re ( m ) 

(ii) If there are circuits for G then 

min max (a+rx)r = max {vtalvte: v is a circuit for G}. 
xe ~m re(m ) 

Proof Apply Cg-Theorem (3.6) with W = WO"' noting that vlvte E L (l WO"' 
if v is a circuit for G. • 

(4.5) Gge-THEoREM Let H be a bipartite graph, and let A E ~m.2n be its 
incidence matrix. Let a E ~m. 

(i) If there are no diagonals for H, then 

inf max (a+Az)r = -00. 
Z E ~211 r e(m) 
'I"z=O 

(ii) If there are diagonals for H, then 

min max (a+Az)r = ~ max {vta: v is a diagonal for H}. 
ze~2n re ( m ) 11 
'I" z =O 

Proof Apply the Cg-Theorem (3.6) with W = We> noting that vln E 

S (l We, if V is a diagonal for H. • 

Many equivalent conditions to the hypotheses in (i) and (ii) of Theorems 
(4.4) and (4.5) are known, e.g. [25]. 

5. MULTIPLICATIVE SCALING THEOREMS FOR MATRICES 

In this section we state our main results, which are at level (M). We apply 
Definition (2.3) with <1>* = ~* and * = o. Let P E ~'!{' and let V E ~,!?' where 
Go(V) £ GoCP) (or, equivalently, Ho(V) £ Ho(P)). We define 

IIv(P) = IIpli*oprji. (5.1) 

Alternatively, suppose v E ~m. Then we may put 

IIv(P) = n p~r, (5.2) 
re( m) 

where p = 1](P) and 1] is as defined in C2.3-iii). Clearly (5.1) and (5.2) coincide 
if Go (V) £ Go(P) and v = 1]p(V). If v is a circuit for Go(P), then 

for distinct integers (ii' .. . , ik ), k ?J: 1, ir E <n) , r = 1, ... , k. If v is a diagonal 
for Ho (P), then 

IIv(P) = P10"(1) ••• Pno-(II). 

where (j is a permutation of (1, ... , n). 
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Proofs of the four theorems in this section are obtained by reducing each 
condition to a condition at level (A) and then to a condition at level (G), 
which has the same number in the corresponding theorem, e.g. (i) in the 
Msu-Theorem corresponds to (i) in the Gsu-Theorem. For this purpose we 
introduce the following notation: if S E D'lt, then 5 E IRn is given by 
51 = logsi' i = 1, .. . ,n. If PEIR'!?', then PElRm is defined by fir = 10gPli' 
for g, = (i,j) E Go (P). The reduction will be carried out in detail in the case 
of the Msu-Theorem. 

(5.2) Msu-THEOREM Let P E IR'!?'. Then the following are equivalent: 

(i) There exists S E Dn+ such that SPS - i ~ E. 
(ii) For all circuits v of Go(P), IIv(P) ~ 1. 

(iii) Let Vi, ... , vk be a basis for the circuit space (or cycle space) of Go (P). 
There exists a matrix Q E IR,!?, with Go(Q) = Go(P) such that Q ~ E and 
IIv(P) = IIv(Q), if v E {vi, .. . , vk

}. 

Proof (i) In the notation introduced before the statement of the theorem 
SPS- 1 ~ E, where S E D,,+, is equivalent to 

5i+h-5i~0 if (i,j)EGo(P) . 

But as explained in Section 2, this is equivalent to 

p+n ~ 0, 
where r is the incidence matrix for Go (P). Hence (i) is identical to (i) of the 
Gsu-Theorem (4.2) provided that G = Go (P), a = - p, and x = - S. 

(ii) Let v be a circuit for Go(P). Then IIv(P) ~ 1 if and only if 

L Pii ~ O. 
( i,n E Go(P) 

But this, in tum, is equivalent to V'p ~ 0, and hence (ii) becomes condition 
(ii) in the Gsu-Theorem (4.2) with G = Go(P) and a = - p. 

(iii) Let v E {vi, . .. , vk
}, and let Q E lR"n, with Go(Q) = Go(P). Then 

P ~ E is equivalent to 0 ~ -ij E IRm
, and IIv(P) = IIv(Q) is equivalent to 

V'p = vtij. Thus (iii) becomes (iii) of (Gsu)-Theorem (4.2) with a = - p, 
G = Go(P) and Bt the matrix whose columns are Vi, .. . , vk

• • 

The equivalence of conditions (i) and (ii) of Theorem (5.2) for the case 
that Go(P) is the full (directed) graph with vertex set (n ) , is found in Mriat 
[1, 2, 3] at level (A). Fiedler-Ptak [12, 13] and Engel-Schneider [10, 11] 
also proved this equivalence. The equivalence of condition (5.2-iii) to the 
others may be new. We now make four remarks on Theorem (5.2). 
(5.3) Remark In Theorem (5.2-iii), Vi, .. . , vk need not be linearly inde­
pendent. It suffices that Vi, ... , vk span a space which contains the circuit 
space for Go(P) and which is contained in the cycle space for Go (P). Further, 
the condition Go(Q) = Go(P) on Q may be relaxed, for (iii) =>(i)remains 
valid provided that Go(P) S; Go(Q) . 

..... ' 
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(5.4) Remark Condition (5.2-ii) is equivalent to: (ii). For all sequences of 
distinct integers (i1, ... , iJ in (n) and ik+ 1 = i1, 

II hir+l ~ 1. 
re(k) 

These products correspond to all circuits of the complete directed graph on 
the vertex set (n). But it is not possible in (5.2-iii) to use products corres­
ponding to a basis for the circuit space of this graph, as the following 
example shows. 

Example Let n = 2. Then the products P22' Pu P22' P12 P21 correspond 
to a basis for the circuit or cycle space of the complete graph. Let 

P = [~~J Q = G ~l 
Then q22 = P22, qllq22 = PUP22' q12q21 = P12P21' yet P does not satisfy 
(5.2-ii), since Pu > 1. 
(5.5) Remark If vi, ... , vk is a basis for the circuit sp,ace of Go(P), then 
(5.2-iii) may be satisfied, yet P may not be diagonally similar to Q, cf. [24] 
for definition. For suppose that 

P = [~ P~2 ~::l' 
o 0 0 

where P12' P13 and P23 are nonzero. In this case, the circuit space of Go(P) 
is {O}. Hence any Q E 1R33 such that Go(Q) = Go(P) satisfies (5.2-iii). But 
for diagonal similarity with P we require q12q13qi} = P12P13P"il, cf. [24]. 

(5.6) Remark Let P, p' E IR~, where Go(P) = GO(P I
). Theorem (5.2) easily 

generalizes to yield necessary and sufficient conditions for the existence of 
S E D,,+ such that SPS- 1 ~ P'. For let P" E IR~ be defined by pi} = pij/pij , 

for (i,j) E Go(P) and pi; = 0, otherwise. Then SPS- 1 ~ P' is clearly 
equivalent to Sp"S-1 ~ E. Thus condition (5.2-ii) is replaced by IIv(P) ~ 
IIv(P') for all circuits v of Go (P). See [13, Theorem 3.5] for a result with an 
additional hypothesis on P, but where P, P' E en is permitted. If v1, ... , vk 

are chosen as in Theorem (5.2), condition (5.2-iii) is replaced by: There 
exists Q E IR~, with Go(Q) = Go(P) such that IIv(P) = IIv(Q 0 P') for 
v E {V1' ... , vk}, where Q 0 P' is the Hadamard (elementwise) product of Q 
and P'. 

(5.7) MSe-THEOREM Let P E 1R/!p. Then the following are equivalent: 

(i) There exist S, T E D,,+ with det ST- 1 = 1 such that SPT- 1 ~ E. 

(ii) For all diagonals v ofHo(P), IIv(P) ~ l. 
(iii) Let vi, ... , vk be a basis for the diagonal space (or the pseudo-diagonal 

space) of Ho(P). Then there exists a matrix Q E IR~ with Ho(P) = Ho(Q) 
such that Q ~ E and IIv(Q) = IIv(P), !f v E {v 1, .'" vk

}. 
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Proof Similar to that of Theorem (5.2). 

Comments corresponding to (5.3)-(5.6) apply to Theorem (5.7). 

(5.8) Mgff-THEOREM Let P E IR~. 

i) If there are no circuits for Go (P), then 

inf{ISPS-11: SED~}=O. 

ii) If there are circuits for Go (P), then 
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• 

min{ISPS-11: S E D'!t-} = max{IIv(P)l/vte: v is a circuit for Go (P)}. 

Proof Reversing the steps in Section 2 we see that, for S E D'!t-. 

loglSPS-ll = max (a+rx)" 
re(m) 

where r is the incidence matrix of Go (P), a = p and x = s. Also 
log IT,,(p)l/vte = vIa/vIe. The theorem now follows from the Ggff-Theorem 
(~~. . 

Theorem (5.8) is essentially Theorem 7.2 and Remark 7.3 of [11]. 

(5.9) Mge-THEOREM Let P E IR~ • 
. i) If there are no diagonals for Ho (P), then 

inf{ISPT-11: S, TE D~, det ST- 1 = I} = O. 

ii) If there are diagonals for Ho (P), then 

inf{ISPT- 11: S, TE D~, det ST- 1 
=; I} 

= max{ITv(p)l/n: v is a diagonal for Ho(P)}. 

Proof Similar to Mgff-Theorem (5.8). 

6. EXAMPLE 

Let 

Then Ho (P) is 

1~5 

Z~6 

3~7 

4~8 

• 
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There are four diagonals for Ho (P) and the corresponding products are 
t, t, -1, 1. Hence, by condition (5.7-ii), there exist S, T E D',+ with det ST- 1 = 
1 such that SPT- 1 ::s; E. It is possible to reach this conclusion by checking 
just three products, if we use condition (5.7-iii). For, a basis for the diagonal 
space of Ho (A) is given by the columns of B, where 

o 0 
-1 -1 

o 0 

1 
1 
o 

100 
000 
1 -1 -1 

Here the first row of Bt corresponds to the identity matrix and the others 
to polygon matrices, cf. [24]. For fir = log2 P;i' if hr = (i, j) E Ho (P) we 
have 

- j/ = [1 2 -1 -1 2 0 - 2] 
and hence 

( - BflY = [0 - 1 - 1] = (-my 
where 

- Ft = [0 1 0 0 0 1 0 0] ~ O. 

Hence condition (5.6-iii) holds, with 

Q=[~t~~l o 0 1 t 
o 0 1 1 

By Theorem 5.7, 

min{ISPT-11: S,TED',+,detST- 1 = I} = 1. 
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