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Three equivalence relations are considered on the set of n x n matrices with elements in Fo' 

an · abelian group with absorbing zero adjoined. They are the relations of diagonal similarity, 
diagonal equivalence, and restricted diagonal equivalence. These relations are usually consi
dered for matrices with elements in a field, but only multiplication is involved. Thus our 
formulation in terms of an abelian group with 0 is natural. Moreover, if F is chosen to be an 
additive group, diagonal similarity is characterized in terms of flows on the pattern graph of the 
matrices and diagonal equivalence in terms of flows on the bipartite graph of the matrices. For 
restricted diagonal equivalence a pseudo-diagonal of the graph must also be considered. When 
no pseudo-diagonal is present, the divisibility properties of the grO\iP F playa role. We show 
that the three relations are characterized by cyclic, polygonal, and pseudo-diagonal products for 
multiplicative F. Thus, our method of reducing propositions concering the three equivalence 
relations to propositions concerning flows on graphs, provides a unified approach to problems 
previously considered independently, and yields some new or improved results. Our considera
tion of cycles rather than circuits eliminates certain restrictions (e.g., the complete reducibility 
of the matrices) which have previously been imposed. Our results extend theorems in Engel and 
Schneider [5], where however the group F is permitted to be non-commutative. 

o. Introduction 

In Section 1 we give preliminaries, which have been included for the sake of 
clarity because many intuitive graph theoretic concepts have been formalized in a 
variety of ways by different authors. In the main, we have followed Berge [2] or 
Pearl [11]; no attempt is made to trace graph theoretic results to their origins. 
Certain graph theoretic definitions will also be found in Sections 3 and 4. In 
Section 5 we make comments concerning alternative versions of our theorems and 
we relate our results to the published literature. Applications to the scaling 
problem for real or complex matrices will appear in a forthcoming paper. 

• This research was partly supported by the National Science Foundation under grants MCS76-
06958 and MCS 76-06374. Schneider also acknowledges partial support from the Centre de 
Recherches Matbematiques, Universite de Montreal, Quebec, Canada, where he was . located during 
his investigations. 
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1. Preliminaries 

Definition 1.1. A set F 0' furnished with a binary operation *, is an abelian group 
with 0, if 

(i) Fo=FU{o}, where o¢F, 
(ii) F is an abelian group under *, 
(iii) a*o=o*a=o for all aEFo. 
Except where specifically indicated otherwise, the composition * will be taken 

to be mUltiplication (juxtaposition). As usual, we write sm for the set of all 
(column) vectors with entries in the set Sand smn for the set of all (m x n) 
matrices with entries in S. 

The three equivalence relations mentioned in the abstract are the following: 

Definition 1.2. Let F 0 be an abelian group with 0 and let A, B E F~r. 
(i) A is diagonally similar to B if n = r and there exists an invertible diagonal 

matrix X E F~n such that XAX-1 = B. 
(ii) A is diagonally equivalent to B if there exist invertible diagonal matrices 

X E F~n, y E F: such that XA y-l = B. 
(iii) A is restricted diagonally equivalent to B if there exist invertible diagonal ' 

matrices X E F~n, y E F: such that XA y-l = Band det X . det y-l = 1, where 1 is 
the identity of F. 

For the sake of completeness, we observe that a matrix is diagonal if the 
off-diagonal entries are 0, that X = diag (Xl>' .• , Xn) is invertible if Xj EF, for 
i = 1, ... , n, that X-1 = diag (xI\ ... , X;l), and that det X = rr?~ l Xj. 

Notations 1.3. (i) The symbol 0 denotes the absorbing element of an abelian 
group with o. The symbol 0 denotes the additive identity of the additive group Z 
of integers or of zm. When F is an additive group, we also use 0 for its group 
identity. 

(ii) Elements <;>f Z or zm (and occasionally of Qm, where Q is the rational field) 
will be denoted by lower case Greek letters. Matrices in zmn will be denoted by 
upper case Greek letters. Graphs, their elements (arcs), vertex sets, vertices, and 
positive integers used ' for counting purposes will be denoted by upper or lower 
case Roman letters in the range G to V. The remainder of the Roman alphabet .' . 
(A - F, W - Z) will be reserved for elements of Fo and F~ in the lower case and 
for matrices in F~r in the upper case. 

Definition 1.4. (i) A (directed) graph G on the vertex set V is a subset of VxV. 
(ii) A (directed) bipartite graph H on the pair of vertex sets (V, V'), where 

vn V'=~, is a subset of vx V. 
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This definition of bipartite graph excludes graphs which have arcs directed from 
V' to V. Such graphs are not used in this paper. Normally, for our purposes, 
V={1,2, ... ,n}=(n) and V'={n+1,n+2, ... ,n+r}=(r),. For the sake of 
convenience, we assume that a graph a has been ordered lexicographically. Thus 
0= {g17"" g",} where m = 101, the number of elements of a, and if 8q = (~j), 
g. = (k, l) then q < S if and only if either i < k or i = k and j < I. 

Definition 1.5. Let a be a graph on (n) and suppose that 101 = m. Then the 
incidence matrix r = r( a) E zmn is defined thus: r = ('Y qJ where 

'Yqi = 1 if 8q = (i, j) and it: j, 

'Yqi = -1 if 8q = (j, i) and it: j, 

otherwise. 

(Observe that 'Yqi = 0 if 8q = (~ 0.) 

Certain notions which have intuitive meanings for a graph a are most easily 
defined in terms of vectors in zm. 

Definition 1.6. Let a be a graph on (n) with 

r= r(a)EZmn. 

(i) An (integer) flow on a is a vector 'Y E zm such that 'YT = O. 
(ii) Let ~ j E(n), where it: j. A chain from ito j in a is a vector a EZm such 

that (atDi = 1, (atDj = -1 and (atDk = 0, otherwise. The 0 vector in zm is a 
chain from i to ~ for any i E (n). 

(iii) The vertex components of a are the subsets V 17 ••• , Vp of the vertex set 
V = (n) which form the equivalence classes under the relation "there is a chain 
from i to j in a". Thus if (~ j) E a, then i and j belong to the same component Vs' 
We define the arc component (index set) as of a by 

a.={qE(m):8q=(~j) and ~jEV.}. 

Note that 'Yqi t: 0 implies that q E a. and i E V., for some s. Then r is a direct sum 
of matrices r. where 

r. = ( 'Yqi), q E a., i E V., 

and each r. is not decomposable as a direct sum after independent permutation of 
rows and columns. If V itself is a vertex component then a is called connected. 

We simply refer to "components", when we count such components and it does 
not matter whether arc or vertex components are intended. For technical reasons, 
arc components are defined as index sets, but they correspond to the usual 
topological notion. 

We now make the association between graphs and matrices which is crucial for 
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our development. We begin · by defining two graphs commonly associated with 
A EF~n. 

Definitions 1.7. (i) Let A EF~n. The pattern graph G(A) on (n) for A consists of 
the set of pairs (i, j) such that aid o. 

(ii) Let A EF~r. The bipartite pattern graph H(A) on «n), (r)') for A consists of 
the set of pairs (i, j + n) such that aid o. 

Then for the incidence matrices we write r(G(A» = T(A) = r, but r(H(A» = 
~(A)=~. 

1.8. Let H be a fixed bipartite graph on «n), (r)') and let m = IHI, the number of 
arcs in H. Consider the set of all matrices A EF~r with H(A) = H. There is a 
natural bijection from this set onto F m given by A ~ a, where 

aq = aij' if hq = (i, j + n). 

The point of the mapping is this: If F is a multiplicative group, our equivalence 
relations will be characterized by certain products. If A E F~n, we may use G(A) 
to define the same bijection. 

Definition 1.9. Letf3 E zm. Then 

m 

n/3(A) = n a: .. 
q-1 

If f3 is a flow for G(A) or H(A), such a product will be called a flow product. 
Similar terminology will be used for chain products, etc~ 

Thus if F is additive, the product n13 (A) corresponds to the sum f3ta. It is 
precisely for this reason that in some proofs (where explicitly stated) we assume 
that F is an additive grqup. This allows us to use the standard notations of 
Z-modules and matrices. For example, the multiplicative ,XAX- 1 = B corresponds 
to 

b=a+rx, 

where X = diag (Xl' ••• , x;.) and X = (Xl> ••• , xS, cf. the proof of Theorem 2.1. 

1.10. We give an e"ample and indicate the intuitive background of some of the 
terms defined. For this purpose we need some further standard graph theoretic 
notions. An (elementary) 'cycle'Y for a graph G is a flow for G whose entries are 
-1,0, or 1 (in brief; a {-I, 0, 1}-vector) and which has minimal support, where 
support is defined as {q E (m): 'Yq 1= O}. An (elementary) circuit is a {O, 1}-cycle. If 
A E F~n, a cycle for G(A) corresponds to a (family of) sequence(s) (i1"'" ik), 

k ~ 2 such thatil> ; .. , ik-i are,pairwise distinct, ik = i1 and either (iq> iq+1) E G(A), . 
I 
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or (iq+ 1o iq) E G(A) for q = 1, ... , k -1. A cycle for H(A) corresponds to a (family 
of) sequence(s) (ii,il' i2, i2, .. '. , ik, ik)' k;;;?; 2, where i 1o ••• , ik- l are pairwise dis
tinct, i10 ... ,ik-l are pairwise distinct, i l = ik, il = ik, and both (i", 'jq) EH(A) and 
(iq +1o iq ) E H(A). Because of ' the location of the corresponding entries in the 
matriX, we will call a cyclic product for H(A) a polygonial product for A, and 

I . generally reserve the term cyclic product for A to mean cyclic product for G(A). 

Example. Let 

where a12, a13, a22, a23 are in F. Then we have: 

r~[~ 
-1 

-rJ 0 
0 
1 -1 , 

3 

d-[~ 
0 0 0 -1 

-!} 0 0 0 0 
1 0 0 -1 
1 0 0 0 -1 

8 

at = (a 12 a 13 a22 a23). 

Let -y = (1, -1,0, i)" -y' = (0, 0, 1,0)" /) = (1, -1, -1, l)t. Then ± -y, ± -y' are the 
cycles for G(A),±/) are the only cycles for H(A), and the corresponding cyclic 
and polygonal products for A are 

2. A theorem on diagonal similarity 

We are ready to state our first theorem. Theorems related to the results of this 
section are mentioned in Comments 5.1 and 5.2. 

Theor,em ,2.1. Let A, B E ~n, where Fo is a abelian group with o. Then the,., 
following are equivalent: 

(i) A is diagonally similar to B, 
(ii) G(A) = G(B) and for all flows -y of G(A), 

lI.y(A) = JIy(B) .. 
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Proof. In this proof, F is taken to be an additive group. 
(i) ~ (ii): By definition, there . exist Xi e F, i = 1, ... , n, such that bij = Xi + aij - Xj' 

for i, j = 1, ... , n. Since 0 is the absorbing .element of Fo, we have bij = 0 if and 
only if aii = 0, and hence G(B) = G(A) .. If the matrices are represented by 
m-vectors as explained in 1.8, then the hypothesis is b = a + rx. Thus if "( is. a flow 
for G(A), 

"(tb = "(t(a + rx) = "(ta, 

since "(tr = o. 
(ii)~(i): Let VI> ... , Vp be the vertex components of G(A), cf. Definition 1.6. 

Thus for ~ j e (n), there exists a chain from i to j in G(A) if and only if i and j 
belong to the same V •. Suppose (without loss of generality) that s e VS. Let i e V. 
and let a be a fixed chain from i to s. We define X; = at(b - a) and we shall show 
that bij = Xi + aij - Xj for i, j = 1, . . . , n. 

If aij = 0, then b1j = 0 and there is nothing to prove, so suppose that aij =f 0 and q 
is such that &q = (i, j). Let {3 be any chain from s to i. Then {3 + a is a flow, whence 
by assumption, ({3 + al'a = ({3 + an. Hence 

(3t(b-a)=at(a-b)= -Xi. 

Let u be the qth unit vector in zm. Then {3 + u is a chain from s to j. Hence, by a 
similar argument, ({3 + u)t(b - a) = - Xj. But ut(b - a) = bq - aq = bij - aij. Thus 
- X; + (bij - aij) = - Xj' and the result follows. 

In order to check the next proposition concerning uniqueness in Theorem 2.1 
we make a definition: 

Definition 2.2. We call a matrix A e F~n pattern connected if the pattern graph 
G(A) is conneCted. 

Thus A is pattern connected if and only if PAP is not a direct sum of two 
matrices, for any permutation P, i.e. either A is irreducible or A is not completely 
reducible. Observe that any A eF~n is the direct sum of p pattern connected 
principal submatrices, where p is the number of components of G(A). 

Proposition 2.3. Let A e F~". If F has at least two distinct elements, then the 
following are equivalent: 

(i) Ais pattern connected, 
(ii) if XAX- 1 = X'A (X,)-l , then X= fXfor some feF. 

Proof. If F is taken to be a·n additive group, we shall show that each of (i) and (ii) 
is equivalent to 

(iii) if u e Fn and r(A) u = 0, then u = fe, for some f e F, where e e Z,. is the 
vector all of whose entries are 1. . 

First observe that (i) holds if and only if G(A) is connected, and it is known 
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that G(A) is connected if and only if (iii) is satisfied (cf. Pearl [11, p. 390] for a 
proof that can be adapted to our situation). Next, (ii) corresponds to: if a + r(A)x = 
a + r(A)x', then x' = x + fe, where f E F. But this is clearly also equivalent to (iii). 

It is not necessary to check all flow products for A and B, as in Theorem 2.1, to 
prove diagonal similarity. Suppose K is a spanning forest (tree, if G(A) is 
connected). Complete each arc of G(A) which does not belong to K to the unique 
cycle all the other arcs of which are in K. In this way we obtain cycles'Y1' ... , 'Y. 
where s = m - n + p, n is the order of A (or the number of vertices of G(A», m is 
the number of non-zero entries of A (or the number of arcs of G(A», and p is 
the number of components of G(A). Then each flow 'Y of G(A) is linear 
combination with integral coefficients of 'Y1,"" 'Y.. see Berge [2, pp. 26-27], 
Chen [3, p.43] ~nd Pearl [11, pp. 373, 397] for related results. The cycles we have 
constructed have the prop~rty required in the following corollary. 

CoroUary 2.4. Let A, B E F~n. Let 'Y1, ... , 'Y. be flows for G(A) such that every flow 
for G(A) is a linear combination with integral coefficients of 'Y1' ... , 'Y •. If G(A) = 
G(B) and ny, (A) = ny.(B), i = 1, ... , s, then A is diagonally similar to B. 

CoroUary 2.S. Let A E F~n. If F has at least two elements then the following are 
equivalent: 

(i) The only flow for G(A) is 0 (Le. G(A) is a forest), 
(ii) For all B E F~n such that G(B) = G(A), B is diagonally similar to A. 

Proof. (i)~(ii): Direct application of Theorem 2.1. 
(ii)~(i): By Corollary 2.4, it is enough to prove that there is no cycle for G(A). 

So, for the sake of contradiction, suppose that 'Y is a cycle for G(A). If F is chosen 
to be additive, then, as in the proof of Theorem 2.1, 'Yt(b - a) = O. Now let q E (m) 
such that 'Yq 10, and let f E F, where 110. Then we may choose bE Fm such that 
bq - aq = I and br - ar = 0, for all rl q. From 'Yt(b - a) = 0 we obtain that 0 = 
bq - aq = 'YJ. Hence 'Yq 1 ± 1. But 'Y is a cycle, and so we have a contradiction. 

3. A theorem on diagonal equivalence 

Comments 5.3, 5.4, and 5.5 relate to this section. 
We could prove our. next theorem in the same manner as Theorem 2.1. Instead, 
we prefer to derive it from that theorem. For A E F~r, we put 

A + = [: ~] EF~+r."+r. 

where 0 now stands for the (n x n), (r x n), or (rx r) matrix with all entries equal 
to o. Then H(A) = G(A +). Also, if X EF~n, Y EF,," are invertible diagonal 



212 B.D. Saunders, H. Schneider 

matrices and Z = Xffi Y, then XAy- 1 = B if and only if ZA +Z-I = B+. Hence as 
an immediate corollary to Theorem 2.1 we have: 

Theorem 3.1. Let Fo be an abelian group with o. Let A, B EF~r. Then the 
following are equivalent: 

(i) A is diagonally equivalent to B, 
Oi) H(A) = H(B), and for all flows 'Y of H(A), 

II../A) = IIiB). 

In the rest of this section, we omit proofs, since item (2.1) corresponds to item 
(3.i) for i = 2,3,4,5. 

Definition 3.2. Let A E F~r. Then A is called chainable if the bipartite pattern 
graph H(A) is connected. 

See Sinkhorn and Knopp [13] and Engel and Schneider [5] for equivalent 
definitions. 

Proposition 3.3. Let A E F~r. If F has at least two distinct elements, then the 
following are equivalent: 

(i) A is chainable 
(ii) If XA y-l = X'A(y,) - l, then X' = fX and y' = fY, for some fEF. 

It is not necessary to check all flow products for H(A) as in Theorem 3.1, to 
prove diagonal equivalence. By a construction similar to that preceding Corollary 
2.4, we obtain cycles 'Y1> ••• , 'Y. for H(A) such that each flow for H(A) is a linear 
combination with integral coefficients of 'Y1> ••• , 'Y •• In this case s = m -{n + r) +p' 
where m and n are as before and p' is the number of components of H(A). (Note 
that when n = r, p'~ p, where p is the number of components of G(A).) 

Corollary 3.4. Let A, B E F~r. Let 'YI> ••• , 'Y. be flows for H(A) such that every flow 
for H(A) is a linear combination with integral coefficients of 'YI> ••• , 'Y •• If H(A) = 
H(B) and II.y,(A) = II.y,(B), i = 1, ... , s, then A is diagonally equivalent to B. 

Corollary 3.S. Let F be an abelian group with more than one element and let 
A E F~r. Then the following are equivalent: 

(i) The only flow for H(A) is 0, 
(ii) For all B E F~r such that H(B) = H(A), B is diagonally equivalent to A. 

4. Theorems on restricted diagonal equivalence 

Necessary and sufficient conditions for two matrices to be restricted diagonally 
equivalent involve the · divisibility properties of the group F and some graph 
theoretic concepts which will be defined as the need arises. 

. , 
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Notations 4.1. (i) By e we shall denote (as before) the vector in zn or zn+r with 
all entries equal to 1. 

(ii) By cp we shall denote the vector in zn+r with first n entries equal to 1, and 
last r entries equal to - 1. 

Lemma 4.2. Let G be a connected graph on (n), let TJ e zn and let r = r( G). The 
following are equivalent: 

(i) TJ'e = O. 
(ii) There exists an a eZm such that a'r= TJ'. 

Proof. (ii)~(i): Since re=O, a'r=TJ' implies that TJ's=a're=O. 
(i) ~ (ii): Since G is connected, the rank of r is n - 1 and a basis for the right 

null-space of r in Qn is {e}, cf. Pearl [11, pp. 390-391]. Suppose that TJ'e = O. 
Since the orthogonal complement in Qn of the right null-space of r is the left 
hand range of r, there exists an a e Qn such that a'r = TJ'. We may suppose that 
the top left hand (n - 1) x (n -1) submatrix r l of r is non-singular. Then the first 
(n -1) rows of r form a basis for the left hand range, and so there exists 

where a' e Qn-\ Oe Qm-n+l such that (a')'r = TJ', and so also, a'r = TJ'. It follows 
that (a')trl ~ (TJ')' where -

and TJ' e zn-l, TJ" e zm-n+l. But all minors of r l are 1,0 or - 1 (cf. Chen [3, p. 
80]), whence rll e zn-l.n-l. It follows that a' = r l l TJ' e zn-l and so a e zm. 

Definitions 4.3. Let H be a bipartite graph on (V, V'). 
(i) If K is a vertex component of H then the excess of K is the absolute value 

of IKnvl-IKnV'I . 
. _ (ii) The graph H is vertex-balanced if the excess of all of its vertex components 

is O. Otherwise H is vertex-unbalanced. 

Let A e F~r. The graph H(A) is vertex-balanced if and only if the chainable 
direct summands of A are square. Hence, if H(A) is vertex-balanced, then A is 
square. 

Definitions 4.4. Let H be a bipartite graph on «n), (r)'). 
(i) A pseudo-diagonal of H is a vector B eZm such that B'Ll = cp' (here 

Ll = r(H). 
(ii) A diagonal (or one-factor) of H is a {O, 1}-pseudo-diagonal. 

Note that if n f r, then H will have no pseudo-diagonals. An example of a 
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graph that has a pseudo-diagonal but no diagonal is furnished by H(A) where 

[
1 1 1] A= 1 0 0 , 

100 (

1 0 0 -1 
1 0 0 0 

.1= 1 0 0 0 
o 1 0 -1 
o 0 1 -1 

and the pseudo-diagonal is (-1, 1, 1, 1, 1). 

o 
-1 
o 
o 
o 

-!) 
Intuitively, the diagonals of H(A) have the usual meaning in terms of location 

in the matrix A, viz., they correspond to permutation matrices. A pseudo
diagonal corresponds to a matrix in znn with all row and column sums equal to 1. 

Lemma 4.5. Let H be a bipartite graph on «n), (r)'). Then the following are , 
equivalent: 

(i) H is vertex~balanced, 
(ii) H has a pseudo-diagonal. 

Proof. (i)~(ii): For any TJ Ezn+r we define 'TJ(') to be the vector indexed by V. 
with TJ~') = TJ;, i E V., where V. is a vertex component of H. For a E zm, a(s) will be 
a vector indexed by the arc component H., where a~') = ll:q> q E Ho. Fuither .1 (s) is 
a sub matrix of the incidence matrix .1 of H with columns indexed by V., and rows 
by Hs. Suppose H is vertex-balanced: If e E zm and tp E zn+r are defined as above, 
then we have (tp(s»te(·) = O. Hence by Lemma 4.2 applied to Hs there exists a 
vector (3(') indexed by Hs such that ({3(s»t,1s = (tp(s»t. Since (after row and column 
permutation) .1 is a direct sum of .1(1), ... , ,1(p) it follows that {3t,1 = tpt, where 
{3 E zm is defined by (3; = (3~s) for i E H., s = 1, ... , p. 

(ii)~ (i). Let I) be a pseudo-diagonal of G. Then I)t,1 = tpt and so for each s, 
(I) (o»t,1 (.) = tp(s). Thus by Lemma 4.2, (tp(.»te(·) = O. It follows that tp(o) has as many 

l's as -l's, or, in other words, lVo n(n)1 = IV. n(r),l. 

Theorem 4.6. Let Fo be an abelian group with o. Let A, B EF~n. If H(A) is a 
vertex-balanced graph and I) is a pseudo-diagonal of H(A), then the following are 
equivalent: 

(i) A is restricted diagonally equivalent to B, 
(ii) A is diagonally equivalent to Band 

115(A) = 115(B). 

Proof. It is enough to show that XA y-l = B implies that det xy-1 = 
115 (A)1l5(B)-1. In the rest of this proof, F will be an additive group. If x = 
(Xl' ••• ,xS, Y = (Yt> ... , yS and u = (~, then the diagonal equivalence relation 
becomes b - a =,1u, det.xy-l corresponds to tptu, and lla(A)1l5(B)-1 corres
ponds to I)t(b-a). Since I)t,1 = tpt, we obtain 

I)t(b - a) = I)t,1u = tptu. 
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Definition 4.7. L~t F be an abelian (multiplicative) gro-up. 
(i) If k is a positive integer and a E F, then a is di'rr:isible by k if there exists 

b EF such that .hk = a. 
(ii) Let k be a positive integer. The group F is divisif.le by k if, for every a E F, 

a is divisible by k, 
(iii) The group F ~s, divisjble if, for every positive integer k, F is divisible by k. 

Theorem 4.8. Let Fo be an abelian group with o. Let A. B EF~'. Let H(A) have .a 
component with excess k, k;;. 1 and suppose that F is didsible by k. Then the 
following are equivalent. 

(i) A is restricted diagonally equivalent to B, 
(ii) A is diagonally equivalent to B. 

Proof. (i) ~ (ii) is trivial. 
(ii)~ (i) . Suppose Vs is a vertex component with excess k. We assume that F is 

an additive group and use the notation of Lemma 4.5. By hypothesis, there is a 
u E Fn +, such that b - a == .1u. We want to find a u' E F'+r such that b - a = .1 tu' 
and cptu' == O. Note that .1 (s) e(s) = O. Let .,.., E Fn +

r be defined by T/i = sfs ) if i E V., 

and ""'i = 0 otherwise. Then .1.,.., = 0 and cpt.,.., = k', where !k'! = k. Then for u' = 

u - fT/, where f E F satisfies k' f = CP:u, we have b - a = .1u' and cptu' = cptu - k'f = o. 

Corollary 4.9. Let A, B E F~r. If H(A) is vertex-unbalanced and F is divisible, then 
(i) and (ii) of Theorem 4.8 are equivalent. 

Observe that the multiplicative group of non-zero complex numbers and the 
multiplicative group of positive real numbers are divisible. 

Corollary 4.10. Let A, B E F~r. If Fo == R, the reals under multiplication, and H(A) 
has a component with odd excess, then (i) and (ii) of Theorem 4.8 are equivalent. 

Corollary 4.11. Let A , B E F~r. If H(A) has a component with excess 1, then (i) 
and (ii) of Theorem 4.8 are equivalent . . 

We nOw show that, conversely, the equivalence of (i) and (ii) of Theorem 4.8 
implies the divisibility properties of F. For k = 1,2, ... , let A (k) be the matrix in 
F~k+2)(k+2) defined by 

aWl = 1 if i = 1, j=f 1 or i1= 1, j = 1, 

a(~) = 0 otherwise. 
I) 

Thus, for example, 
1 1 
o 0 

o 0 

o 0 ~] 
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Observe that there are no polygonal products for A (k) (i.e. H(A (k») has no cycles), 
and thus, for BE F"k+Z)(k+Z) with H(B) = H(A (k»), Corollary 3.5 implies that B is 
diagonally equivalent to A (k). For f E F, we define a matrix B(k)(f) E 

F(k+Z)(k+Z) which has the same entries as A (k) except that the entry in position 

(1,2) is f. 

Lemma 4.12. Let F 0 be an abelian group with 0 and let k be a positive integer. Let 
f E F. If the matrices A (k) and B(k)(f) are restricted diagonally equivalent, then f is 
divisible by k. 

Proof. In this proof F will be an additive group. By assumption there exists 
x, y E Fk+Z such that b - a = du and cptu = 0, where u = (~), and a, b are the 
vectors in FZk

+Z corresponding to A (k), B(k)(f), respectively. The equations for 
b-a=du are 

f=Xl-YZ' 

° = Xl - Yi' j = 3, ... , k + 2, 

0= Xi - Yl> i = 2, ... , k + 2. 

On adding these (2k + 2) equations we obtain 

slllce 

k+Z 
f = k(Xl - Yl) + L (oX; - y;) = k(x l - Yl), 

i=l 

k+Z 
0= cptu = L (Xi - y;) . 

i=l 

Theorem 4.13. Let Fo be an abelian group with o. Then the following are 
equivalent: 

(i) F is a divisible group, 
(ii) For all n and all A E F~n such that H(A) is vertex-unbalanced, the following 

implication holds: If B E F~n is diagonally equivalent to A, then B is restricted 
diagonally equivalent to A. 

Proof. (i)~(ii): By'Corollary 4.9. 
(ii)~ (i): Since H(A (k») is vertex-unbalanced for k = 1,2, . .. and B(k)(f) is 

diagonally equivalent to A (k) for all f E F, this follows immediately by Lemma 
4.12. 

If is easy to prove an analogous theorem in which, in (ii) F~n is replaced by F,~", 
or other classes of matrices. 
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5. Comments 

5.1. If the. matrix A is completely reducible (Le. for some permutation matrix p, 
PAPt i& the direct sum of irreducible matrices, c.f. Pearl [11, p. 292]) then every 
arc of G(A) lies on a circuit. In this case, a proof similar to the one we have for 
Theorem 2.1, shows that in that theorem, "flow" may be replaced by "circuit". 
The result, with the proof we have indicated, was published by Fiedler and Ptak 
[6]; see also Engel and Schneider [4, Corollary 4.4]; and for non-commutative F 
see Engel and Schneider [5]. The result was published independently without 
proof by Bassett et al. [1.]. As far as we know, the simple observation has not 
previously been made in print that if cycles are considered in place of circuits, the 
restriction to completely reducible matrices may be eliminated. 

5.1. We define the flow space (over Q) for a graph G to be the subspace of Qm 
generated by all (integer) flows for G. Our remarks preceding Corollary 2.4 
indicate the well-known result that the dimension of the flow space is s = 
m-n+p. 

The cycles of Corollary 2.4 form a basis for the flow space. However, the 
examples below shows that some condition beyond this is necessary in Corollary 
2.4. The condition in that corollary is ensured by the following: The (s x m) 
matrix whose rows areyL ... , y~ has an (s xs) submatrix with determinant equal 
to ± 1. We also note that if A is completely reducible, it is possible to adapt the 
proof of Berge [2, Theorem 9, p. 29] to show that s circuits may always be found 
with the above property. Similar remarks may be made about Corollary 3.4. 

Example: Let F = {l, b} with b2 = 1 and consider the matrices A, B E F!6, where 

0 1 1 0 0 0 0 1 b 0 0 0 

0 0 1 0 0 0 0 0 1 0 0 0 

A= 0 0 0 1 1 0 

0 0 0 0 1 0 
B= 0 0 0 1 b 0 

0 0 0 0 1 0 

1 0 0 0 0 1 b 0 0 0 0 1 
1 0 0 0 0 0 1 0 0 0 0 0 

Then G(A) = G(B) is given by 

The circuits corresponding to. the. outer hexagon and the three quadrilaterals (e.g. 
with vertices 1, 3, 5, 6) form a basis for the flow space over Q, but the circuit 
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corresponding to the inner triangle is not an integral linear combination of the 
basis elements. Further, for each basis element· 'Y, IIy(A) = 1 = IIy(B), but if 8 IS 
the circuit corresponding to the inner triangle, II/J(A) = 1 =1= b = II/J(B). Hence, by 
Theorem 2.1, A is not diagonally similar to R On the other hand, a basis with the 
required ·integrality property, is furnished by the circuits corresponding to the 
inner triangle and . the :three quadrilaterals. 

5.3. Theorem 3.1 stated in terms of polygomil products is known and goes back 
to Lallement and Petrich [8, 9], .ct. also Engel and Schneider [5]. At first sight, the 
theorem as contained in those references might appear to lack the condition 
R(A) = R(B); but this is not so,for polygonal product is there defined to include 
e.g. all a l} all ail. What we have added is the observation that polygonal 
products are cyclic products for R(A) and hence that Theorems 2.1 and 3.1 are of 
the same type and, indeed, that Theorem 3.1 is an application of Theorem 2.1. 
Also we believe that our proof is consequently a little simpler, particularly if the 
well-known machinery of graph theory contained in Section 1 is taken for 
granted. 

5.4. Corollary 3.5 formulated in terms of the polygonal products mentioned in 
1.10 above, was announced by G.M. Engel in a · talk in December 1974 at 
Gatlinburg VI, Munich. 

5.5. Suppose R(A) has a pseudo-diagonal 8. Then it is easy to see that 8 together 
with the flow space for R(A), cf. 5.2, generate the same space over Q that is 
generated by all pseudo-diagonals for R(A). If follows that this space has 
dimension m - 2n + p' + 1 where m and p' are defined as in Corollary 3.4. It is 
also easy to see that one may find pseudo-diagonals 81> ... , 80 t = m - 2n + p' + 1, 
such that every integral flow or pseudo-diagonal of R(A) is a linear combination 
of 81", • ,81 with integral coefficients. Thus it is enough to verify that II/J,(A) = 
II/J,(B), i = 1, ... , t, to prove the restricted diagonal equivalence of A and B. 

5.6. We define a matrix A to be totally supported if for sllitable permutation 
matrices P, Q, the matrix PAQ is the direct sum of fully indecomposable matrices 
(cf. Marcus and Minc [10, p. 123] for definition). Suppose that A is totally 
supported. It then follows from the Frobenius-Konig theorem, Marcus and Minc 
[10, p. 97], Konig [7, p. 240], that each arc of R(A) lies on a diagonal of R(A). 
Also it is known that if 8 E zm, where 8 is non-negative and 81L1(A) = kcp, k E Z, 
k ~ 0, then 8 is a combination of diagonals of R(A) with positive integral 
coefficients. (This result is essentially Konig [7, p. 239, Theorem XIV, B]: A 
non-negative integral matrix with all row and column sums equal is a linear 
combination of permutation matrices with positive integral coefficients.) One may 
use this result to prove that, when A is totally supported, each pseudo-diagonal is 
a linear comhination with integral coefficients of diagonals. Hence in this case, 
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"pseudo-diagonal" may be replaced by "diagonal" in the result stated at the end 
of 5.5. We take this opportunity to observe that Konig's Theorem XIV, B (quoted 
above) can be proved in a manner completely analogous to a result in Berge [2, p. 
91]. If A is square, then each non-negative flow in G(A) is a linear combination 
of circuits with positive integral coefficients. Moreover, this approach shows that 
we require at most (m - 2n + p' + 1) diagonals and (m - n + p) circuits respectively. 
It is also interesting that it was known to Polya [12] already in 1916 that (in our 
terminology) if A has no entries equal to 0, the diagonals of H(A) span a space 
over Q of dimension n2 

- 2n + 2(m = n2
, p' = 1). With a little hind-sight, one can 

easily find circuit, diagonal, and polygonal products in his paper. 

5.7. We give two examples to show that some mention of G(A) (or H(A» is 

essential to our theorems, and that they cannot be formulated in terms of the 
complete graph Gn on (n). 

First, in F~2, if 

A = (~ ~) and B = (00 b~2) 
where bl2 E F, then all the cyclic products of A and B are equal. Here cyclic 
product is defined intuitively, viz. all, a 22 , a 12 a 2 1 are the cyclic products of A. 
But A and B are not diagonally similar (or equivalent). We observe, however, 
that if a matrix A is irreducible then indeed the condition 11/A) = 11-y(B) for all 
(intuitive) cycles or even circuits of Gn guarantees diagonal similarity (cf. Engel 
and Schneider [4]). 

Second, even if G(A) = G(B), it is not enough to check a cycle basis for the 
complete graph. Let 

(

0 1 

A= 0 , 0 

1 0 
(
0 2 0) 

B= 0 0 1 
100 

be in Q33. Here it would not be' adequate to compare cyclic products only for 
cycles in a basis for the flow space of Gn if the basis did not contain the unique 
cycle in G(A) = G(B), for certainly A and B are not diagonally similar. 
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