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THE BIRKHOFF—EGERVARY—KONIG THEOREM
FOR MATRICES OVER LATTICE ORDERED
ABELJIAN GROUPS

By
H. SCHNEIDER* (Madison)

1. Introduction. A Jattice ordered abelian (additive) group (or abelian /-group)
is an abelian group G which is also a lattice, and where the infimum and the group
operation are related by

Q) inf {a+c¢, b+c} = inf {a, b}+c,

for a, b, c€G, of. CLIFFORD [4], BIRKHOFF [1], [3a, Ch. XIV], [3b, Ch. XIII], Fucus
[8, Ch. V]. If the order of G is full (linear), then G is called a fully ordered abelian
group (abelian o-group) and we write min {a, b} in place of inf {g, b}. If G is an
abelian /-group we shall denote by G™ the additive group of nXn matrices with
elements in G. A matrix 4€¢G™ will be called a generalized doubly stochastic matrix
(g.d.s. matrix) if

2 a;

v

0, i,j=1,..,n,

n

©) 2a;= 2ay, Lk=1,..,n
j=1 ji=1

(i. . all row and column sums are equal). Observe that the 0 matrix in G™ is g.d.s.
We denote by S, the symmetric group on {1, ...,n}. If €S, and ¢¢G, the matrix
P (¢) is defined by

e if j=o(),

) P,(e);; ={0

otherwise.
If ¢=0, we call P,(¢) a generalized permutation (g.p.) matrix. We shall prove:

THEOREM. Let G be a lattice ordered abelian group. Every generalized doubly
Stochastic matrix with elements in G is the sum of generalized permutation matrices.

In the case that G=2Z, the integers, this theorem is due to K6nigG, 1916 [9, Theo-
rem F], see also K&NIG [10, p. 239, Theorem B), MirsKky [15, p. 186, Theorem 11.1.5].
For G=R, the real numbers, the theorem is due to BIRKHOFF 1946 [2], see also MAR-
cus—Minc [13, p. 97, Theorem 1.7], MIRSKY [15, p. 192, Theorem 11. 3.1] and MirsKY
[14], where many other references to Birkhoff’s theorem and its proofs may be
found. It should also be noted that in 1931 EGERVARY [5, Theorem II] proved a result
for integral matrices which is more general than K&nig’s theorem. He observed
that by continuity considerations his theorem may be shown to hold for real matrices.
Thus in this way one obtains a result which contains Birkhoff’s theorem.
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To obtain a result which contains both Birkhoff’s theorem and K&nig’s theorem
it is enough to prove our Theorem in the case that G is an abelian o-group. Though
a proof of this case is essentially the same as the proof of Birkhoff’s theorem given
in Marcus—Minc [13, pp. 97, 98], we have not found the result formulated for
abelian o-groups, or in such a manner to contain both the case G=R and G=2Z.
(BIRKHOFF [3a, p. 266, Ex. 4] remarks that the theorem is valid for matrices with
elements in a fully ordered field, which is close.)

To extend the theorem to abelian /~groups we use an embedding result due to
CLIFFORD [4, Theorem 2] who remarks that this theorem is a combination of Theorems
4 and 11 of LorenzeN [11], which, however, do not deal with /-groups explicitly.
The Clifford—Lorenzen theorem states: Let G be an abelian /-group. Then there
exists a family G(7), €7, of abelian o-groups, and an isomorphism g-(g(7)).er
of G into the direct product (G(7)),er such that for a,5¢G and c=inf {q, b}
we have c(z)=min {a(z), b(r)}. For this theorem, see BIRKHOF¥ [3b, p. 309, Theorem
22] and for a generalization, LoRENZEN [12, Theorem 13]. Following Six [18], and.
RiBenBOM [16] we call a family of G(t), t€7, together with an isomorphism with
the above property, a realization of G. (An example of an abelian /-group which is
not the direct sum or direct product of o-groups is given in Six [17].) With the above
remarks the proof of our theorem is very straightforward.

2. Proofs. If ¢ is a permutation in S,, and A€G™ then we define the diagonal
D, to be the set {ay4¢1), -+, @ue(m}- Part (a) of the proof of the Lemma below requires
the Frobenius—Ko6nig Theorem, see FROBENIUS [7], KONIG [10, p. 240, Theorem E],
Marcus—MinNc [13, p. 97, 1.7.1], MIrsky [15, p. 189, Cor. 11.2.6]: If every diagonal
of A¢€G™ has a zero element, then A contains a zero submatrix of order
pX(n+1—p), forsome p, 1=p<n.

LEMMA. Let G be a lattice ordered abelian group and let A€G™ be a generalized
doubly stochastic matrix. If inf D,=0, for every, 6€S,, then A=0.

Proor. (a) First assume that G is an abelian o-group. Since min D,=0, for
every o€S,, every diagonal of 4 has a 0 member. Hence, by Frobenius—K6nig, A
has a O submatrix of order rX(n+1—r), for some r, 1=r<n. Without loss of
generality, we may assume that ¢;;=0, i=1,...,r, j=r,...,n. Let

n
Zaij:s: Zaij’ i=1,...,n.
j=1 ji=1
Then
r n r r—1 r—=1 =n
rs= 2 Da;= a;= 3 2 a;=(r—1)s,
i=1j=1 i=1j=1 j=1 i=1

whence s=0. But then g,;=0, i,j=1,...,n, and so 4=0.

(b) Now suppose that G is an arbitrary abelian /-group. By the Clifford—Loren-
zen theorem there exists a realization G—(G()).cr, Where the G(r) are abelian
o-groups. We put A(7)=(a,;(x))€G()™, and for ¢¢S, we denote by D,(z) the
diagonal {a;,(1)(%); -+) Groty(¥)} of A(z). Then, for each €T,

min D, (7) = (inf D,)(z) = 0,
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whence by Part (a) of this proof A4(z)=0, since A(r) is a g.d.s. matrix in G(T)™.
It follows that A4 =0.

Proor OoF THE THEOREM. We use induction on the number k of o€, with
inf D,>0. If k=0, then by the Lemma, A=0 and the result holds. So suppose
that k=0, and the result holds for matrices 4" with fewer than k diagonals with
non-zero infimum. Let ¢¢.S, be such that d=inf D, >0, and put 4"=4—P,(d).
Then 4’ is g.d.s., and, for every n€S,, inf D,=inf D,. Also inf D/ =inf D,—d=0,
where D, n¢S,, denotes the diagonal of 4’ corresponding to n. Hence 4" has
fewer than k& diagonafs with positive infimum, and by inductive assumption, 4’
is the sum of g.p. mattices. It follows that A=4"+P,(d) is also a sum of g.p.
matrices. The theorem is proved.

3. If G=R, then it is well known that every g.d.s. matrix can be expressed
as the sum of at most (n2—2r+2) g.p. matrices P, (g,), with &,>0, FARAHAT—MIRSKY
[6], cf. MmsKY [14], Marcus—MINC [13, pp. 94—100], and (incidentally) this bound
is best possible. We give an example of an abelian /-group G and a g.d.s. matrix
A€ G™, which has a unique representation 4= > P,(¢,) and ¢,>0, forall »! permu-

g€S,
tations o. We put G=27Z", where m=n!, the direct sum of n! copies of the integers
Z, and we index the copies of Z by S,. Thus the elements of G are the n! tuples

(a(T))zESn .
We next define 4€G™ by

1, if j=z(),
(1) = 0, otherwise.

Then 4 is a g.d.s. matrix for clearly a;;=0, i,j=1, ...,n and, for each €S,

gn; aij(T) = 2"; a_,'i(T) =1.

If, 0,7€S,, let A= 3 P,(e,). Then

gesS,
£,(t) = inf D, (1) = inf {@1,1y(7), ..., Qroy(®} =0, if o1

and it follows that
g(0) =1, e()=0, if o1

We now write out our example in full, for the case that n=3 and the permutations
in S, are arranged in order

(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3, 1,2, 3, 2, 1),
where (i, j, k) is the permutation ¢ for which ¢(1)=i, 6(2)=J, 6(3)=k. Then 4 is
1,1,0,0,0,00 (0,0,1,1,0,0) (0,0,0,0,1,1)
(O’ O’ 1’0’ 1’0) (l’O’O’O,O’ 1) (O’ 1’0’ I’O’O)
©,0,0,1,0,1) (0,1,0,0,1,0) (1,0,1,0,0,0)).
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