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By 
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1. Introduction. A lattice ordered abelian (additive) group (or abelian I-group) 
is an abelian group G which is also a lattice, and where the infimum and the group 
operation are related by 

(1) inf {a+c, b+c} = inf{a, b}+c, 

for a, b, cEG, cf. CLIFFORD [4], BIRKHOFF [1], [3a, Ch. XIV], [3b, Ch. XIII], FUCHS 
[8, Ch. V]. If the order of G is full (linear), then G is called a fully ordered abelian 
group (abelian o-group) and we write min {a, b} in place of inf {a, b}. If G is an 
abelian I-group we shall denote by Gnn the additive group of nXn matrices with 
elements in G. A matrix AEonn will be called a generalized doubly stochastic matrix 
(g.d.s. matrix) if 

(2) aij ~ 0, i, j = 1, ... , n, 

n n 

(3) Zaij= Zajk, i,k=I, ... ,n 
j=l j=l 

(i. e. all row and column sums are equal). Observe that the 0 matrix in Gnn is g.d.s. 
We denote by Sn the symmetric group on {I, ... , n}. If uE Sn and eEG, the matrix 
PaCe) is defined by 

(4) {
e if j = u(i), 

Pa(e)ij = 0, otherwise. 

If e~O, we call PaCe) a generalized permutation (g.p.) matrix. We shall prove: 

THEOREM. Let G be a lattice ordered abelian group. Every generalized doubly 
stochastic matrix with elements in G is the sum of generalized permutation matrices. 

In the case that G=Z, the integers, this theorem is due to KONIG, 1916 [9, Theo
rem F), see also KONIG [10, p. 239, Theorem B], MIRSKY [15, p. 186, Theorem 11.1 .5]. 
For G=R, the real numbers, the theorem is due to BlRKHOFF 1946 [2], see also MAR
CUS-MINC [13, p. 97, Theorem 1.7], MIRSKY [15, p.192, Theorem 11. 3.1] and MIRSKY 
[14], where many other references to Birkhoff's theorem and its proofs may be 
found. It should also be noted that in 1931 EGERVARY [5, Theorem II] proved a result 
for integral matrices which is more general than Konig's theorem. He observed 
that by continuity considerations his theorem may be shown to hold for real matrices. 
Thus in this way one obtains a result which contains Birkhoff's theorem. 
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To obtain a result which contains both Birkhoff's theorem and Konig's theorem 
it is enough to prove our Theorem in the case that G is an abelian o-group. Though 
a proof of this case is essentially the same as the proof of Birkhoff's theorem given 
in MARcus-MINC [13, pp. 97, 98], we have not found the result formulated for 
abelian o-groups, or in such a manner to contain both the case G=R and G=Z. 
(BIRKHOFF [3a, p. 266, Ex. 4] remarks that the theorem is valid for matrices with 
elements in a fully ordered field, which is close.) 

To extend the theorem to abelian I-groups we use an embedding result due to 
CLIFFORD [4, Theorem 2] who remarks that this theorem is a combination of Theorems 
4 and 11 of LORENZEN [11], which, however, do not deal with I-groups explicitly. 
The Clifford-Lorenzen theorem states: Let G be an abelian I-group. Then there 
exists a family G(t), tET, of abelian o-groups, and an isomorphism g-(g(t))<ET 
of G into the direct product (G(t))<ET such that for a, bEG and c==inf {a, b} 
we have c(t)=min {a(t), b(t)}. For this theorem, see BIRKHOFF [3b, p. 309, Theorem 
22] and for a generalization, LORENZEN [12, Theorem 13]. Following SIK [18], and 
RIBENBOIM [16] we call a family of G(t), tET, together with an isomorphism with 
the above property, a realization of G. (An example of an abelian I-group which is 
not the direct sum or direct product of o-groups is given in SIK [17].) With the above 
remarks the proof of our theorem is very straightforward. 

2. Proofs. If (1 is a permutation in Sn, and AEGnn then we define the diagonal 
Dq to be the set {alq(l), ... , anq(n)}. Part (a) of the proof of the Lemma below requires 
the Frobenius-Konig Theorem, see FROBENIUS [7], KONIG [10, p. 240, Theorem E], 
MARCUs-MINC [13, p. 97,1.7.1], MIRSKY [15, p, 189, Cor. 11.2.6]: If every diagonal 
of A E Gnn has a zero element, then A contains a zero submatrix of order 
pX(n+l-p), for some p, l:§p<n. 

LEMMA. Let G be a lattice ordered abelian group and let A E Gnll be a generalized 
doubly stochastic matrix. If inf Dq=O, for every, (1E Sn, then A =0. 

PROOF. (a) First assume that G is an abelian o-group. Since min Dq=O, for 
every (1E Sn, every diagonal of A has a ° member. Hence, by Frobenius-K6nig, A 
has a ° submatrix of order rX (n+ l-r), for some r, 1 :§r<n. Without loss of 
generality, we may assume that aij~O, i=l, ... , r, j=r, ... , n. Let 

n n 

Z aij = S = Z a;j' i = 1, ... , n. 
j=l j=l 

Then 
r n r ,.-1 r-1 n 

rs = Z Z aij = Z Z aij:§ Z Z aij = (r-l)s, 
;=1 j=l i=l j=l j=l ;=1 

whence s=O. But then aij=O, i,j=I, .... ,n, and so A=O. 

(b) Now suppose that G is an arbitrary abelian I-group. By the Clifford-Loren
zen theorem there exists a realization G - ( G (t) )<E T, where the G (t) are abelian 
a-groups. We put A(t}=(a,/t))EG(t)nn, and for (1E Sn we denote by Dq(t) the 
diagonal {a1q(1)(t), .. '" anq(n)(t)} of A (t). Then, for each tET, 

minDq(t) = (infDq){t) = 0, 

Acta Mathematica Academiae Scientiarum Hungaricae 30, 1977 



I 
I , 

I 
! 
! 

I 
I 
i 

I 
J 
; 

THE BIRKHOFF-EGERVARY-K6NIG THEOREM 93 

whence by Part (a) of this proof A(r)=O, since A(r) is a g.d.s. matrix in G(r)"". 
It follows that A =0. 

PROOF OF THE THEOREM. We use induction on the number k of aES" with 
inf D,,>O. If k=O, then by the Lemma, A=O and the result holds. So suppose 
that k>O, and the result holds for matrices A' with fewer than k diagonals with 
non-zero infimum. Let aES" be such that d=inf D,,>O, and put A'=A-PAd). 
Then A' is g,d.s., and,for every nES", inf D~~inf Dn. Also inf D;=inf D,,-d=O, 
where D~, n E S", denotes the diagonal of A' corresponding to n. Hence A' has 
fewer than k diagonhfs: with positive infimum, and by inductive assumption, A; 
is the sum of g.p. nia,tfices. It follows that A=A' +P,,(d) is also a sum of g.p. 
matrices. The theorem-is proved. 

3. If G=R, then it is well known that every g.d.s. matrix can be expressed 
as the sum of at most (n2-2n+2) g.p. matrices P,,(e,,), with e,,>O, FARAHAT-MIRSKY 
[6], cf. MIRSKY [14], MARcus-MINC [13, pp. 94--100], and (incidentally) this bound 
is best possible. We give an example of an abelian I-group G and a g.d.s. matrix 
AEG"", which has a unique representation A= ~ P,,(e,,) and e,,>O, foraB n! permu-

u ES .. 
tations a. We put G=zm, where m=n!, the direct sum ofn! copies of the integers 
Z, and we index the copies of Z by S". Thus the elements of G are the n! tuples 
(a(r»),ES .. · 

We next define A E G"" 
if j = rei), 

otherwise. 

Then A is a g.d.s. matrix for clearly au ~O, i, j = 1, ... , n and, for each rES" 

" " ~ aij(r) = ~ aji(r) = 1. 
j=l j=l 

If, a, rESn , let A= ~ P,,(e,,). Then 
uES .. 

e,,(r):§ infD,,(r) = inf {ala(l) (r), .. . , a",,(n)(r)} = 0, if a ~ r 

and it follows that 

We now write out our example in full, for the case that n=3 and the permutations 
in S" are arranged in order 

(1,2,3), (1,3,2), (2, 1,3), (2,3, 1), (3, 1,2), (3, 2, 1), 

where (i,j, k) is the permutation a for which a(I)=i, a(2)=j, a(3)=k. Then A is 

[

(1,1,0,0,0,0) (0,0,1, 1,0,0) (0,0,0,0, 1, 1») 
(0,0, 1,0, 1,0) (1,0,0,0,0, 1) (0, 1,0, 1,0,0) 
(0,0,0, 1,0, 1) (0, 1,0,0, 1,0) (1,0, 1,0,0,0) . 
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