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Summary. For each norm v on <en, we define a numerical range Z., which is sym
metric in the sense that Z. =Z"D, where vD is the dual norm. 

We prove that, for aE <enn, Z.(a) contains the classical field of values V(a). In 
the special case that v is the lcnorm, Z.(a) is contained in a set G(a) of Gershgorin 
type defined by C. R. Johnson. 

When a is in the complex linear span of both the Hennitians and the v-Hennitians, 
then Z.(a), V(a) and the convex hull of the usual v-numerical range V.(a) all coincide. 
We prove some results concerning points of V(a) which are extreme points of Z.(a). 

1. Introduction 

In this note we introduce a numerical range Z. for matrices, where v is a norm 
on <en. We call this numerical range symmetric since Z.=Z.D, where 'liD defined 
by yD(y)=sup{ly*xl/v(x): O=l=xE<en} is the dual norm of v. For aE<enn

, we com
pare Z.(a) with numerical ranges already in the literature: 

(1.1) The classical field of values (Hausdorff [8J, Toeplitz [13J) is 

{ 
x* ax } V(a) = ~:O=l=xE~. 

(1.2) The generalization of V(a) introduced by Bauer [1J is 

v.;(a)={y* ax: (x,y) EiI.}, 

where v is a norm on <en and 

For variants of II. see Lumer [10], Bonsall-Duncan [3], Bauer [2J and Deutsch
Zenger [5]. 

(1. 3) The convex hull of the "mixed" Gershgorin circles introduced by C. R. 
Johnson [9 J is 

n 

G(a)=conv U Gj(a), 
j=l 
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where conv stands for convex hull and for f = 1, . . . , n 

n 

Gi(a)={~E<C: I~-aiil ~ 1- L (I aiil +1 aiil)}· 
i=l 
Hi 

Johnson proved that V(a) S;G(a), for all aE<cnn
. We show that V(a) S;Z.(a), 

for all norms v. If v is the ~-norm (or the loo-norm) we show that Z.(a) S;G(a). 
Further if a is Hermitian then, for all norms v, Zv(a) OR. We show by an example 
that there exists aE<r::»n and a norm v such that Zv(a) Cv,;(a)n v,;D(a). ThusZvis 
of numerical interest. In the special case that v is the lrnorm, our bounds for V(a) 
are sharper though less easy to compute in general than johnson's. 

In [16J, Zenger gave an axiomatic treatment of eigenvalue inclusion sets. 
This approach is appropriate here, since Zv, G, and conv v,; share basic properties. 
Thus we begin Section 2 by listing axioms for convex numerical ranges, and then 
we prove the results outlined above·. Section 3 is motivated by the result that for 
each norm v there is a p-transform vp such that the vp-Hermitians are Hermitian, 
see Deutsch-Schneider [6, Proposition (4.1)]. Under the hypothesis that hand k 
are both v-Hermitian and Hermitian, we show in Section 3 that Zv(h+i k)= 
conv v,;(h+i k) = V(h+i k). Our theorem then leads us to investigate in Sec
tion 4 extreme points ex of Zv (a) which also belong to V(a). If ex is such a point, 
andlI. is the set defined in (1.1), then we show that there exist (x,Y)ElIv such 
that 

ex= x* a x/x* x= y* ay/y* y=!(y* a x+ x* ay). 

This results has an application to eigenvectors of norm-Hermitians. 

The chief tool in these investigations is a result due to Cain-Saunders-Schnei
der [4, Theorem 6J from which it follows that for each ZE<r::» there is a positive 
multiple of Z which is of the form x+y, where (x,y) Ell •. 

2. The Symmetric Numerical Range 

(2.1) Definition. A set valued mapping W: <cnn -+.9'(<C) is called a (homogeneous, 
unital, compact) convex numerical range if 

(i) W(a) contains the spectrum of a, for all aE,<cnn
, 

(ii) W(a+b) S;W(a) + W(b), foralla,bE<r::»n, 
(iii) W(Aa)=AW(a), for AE<C, aE<r::»n, 

(iv) W(1) ={1}, 

(v) W(a) is compact for aE<cnn
, 

(vi) W(a) is convex for aE<cnn. 

Remark. Conditions (ii), (iii) and (iv) of (2.1) imply that 

W(O) = {O}, 
and 

W(a+A)=W(a)+A, for AE<C, aE<cnn
. 

Examples of convex numerical ranges are V, G, and conv v,;, as defined in 
(1.1 )-( 1.3). 
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(2.2) Definition. Let 'jI be a norm. For aE<enn, let 

Z.(a) =conv{t(y* ax+x* ay): (x,y) EII.}. 

It is easy to see that Z. satisfies (ii), (iii), and (iv) of Definition (2.1). The compact
ness of Z. (a) is a consequence of the compactness of II •. Clearly Z. (a) is convex. 
That Z. satisfies (i) is a consequence of Theorem (2.4) below. 

By taking 15=0 in Theorem 6 of [4J, we immediately obtain the following 
lemma. 

(2.3) Decomposition Lemma. Let'jl be a norm on <en, and let zE<en. Then there 
exist unique (x,Y)EII. and t>o such that tz=x+y. 0 

We shall call (x, y) the II.-decomposition of the direction z. 

(2.4) Theorem. Let 'jI be a norm. Then, for all aE<enn, 

Z.(a) 2 V(a). 

Prool. Suppose first thatII+ is the closed right-half plane and that OE V(a) r;JI+. 
Let z*az=O where zE<en and z*z=1, and suppose that (x, y) is the II.-decom
position of the direction z. Thus, for some t>O, tz=x+y and so 

0=t2 z* az=x* a x+y* ay+x* ay+ y* a x. 

Since Re(x* ax+y* ay) ~O it follows that 0( defined by O(=t(x* ay+y* ax) 
satisfied ReO(;;:;; O. Since 0( EZ. (a), we have Z. (a) nII- =4= cP, where II- is the closed 
left-half plane. Let S be any supporting half-space of Z. (a) in the plane. There 
exists 0, 0;;:;; 0 < 2n, such that eiO S is a translate of II+. If fJ is a point of V(io a) 
with minimal real part, then, for b=io a-fJ, we have OEV(b) <;II+. The previous 
argument shows that Z.(b) contains a point of II- and since eiO S -fJ is a support
ing half-space ofZ.(b), we haveII+<;eioS-fJ. Thus V(b) <;eiOS-fJ. It follows that 
V(a) <;S. Since Z. (a) is the intersection of its supporting half-spaces, the theorem 
follows. 0 

(2.5) Corollary. For any norm 'jI, Z. is a convex numerical range. 0 
Since Z.=Z.D we call Z. the symmetric numerical range. If 'jI is the Euclidean 

norm, then Z.=Z.D = v,;= v,;D= V. Also, if hE<enn is Hermitian, y* hx=x* hy, 
for (x, y) EII., whence Z. (h) <; JR.. 

(2.6) Theorem. Let 'jI be the II or loo-norm on <en and let G be defined as in (1.3). 
Then, for all a E <enn, 

Z. (a) <;G (a). 

Prool. It is enough to prove the result when 'jI is the ll-norm, since then 'jID is 
the loo-norm. So let (x,y) EII •. Suppose 

n 

whereri ~O, Si ~O, i= 1, ... , n, and 0 ;;:;;Oi' cPi < 2n. Then 1: ri=1, and 0 ~Si;;:;; 1, 
i=l 

i==1, "', n. Let N={1, ' " n} and E={iEN: ri>O}. Then 

t (y* ax+ x* ay) = t 1: (Si aii ri e
i (OJ-I/JI) +ri aii Si e-i(OI-,/JI)) 

i,ieN 

8 Namer. Math., Bd. 26 

= 1: ri;i' 
ieE 
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where, for j EE, 
l: .=~ '\' (s. a .. ei (OI-"'I)+a .. s. e-i (01-"'1)) 
"'I <:L... "I 1" 

iEN 

= a . . +.1.
2 

'\' (s. a· . ei (01-4>1) +a . . s . e-i (Of-,pl)) 
11 ~ ~ ~1 11 J , 

iEN\U} 

since, for jEE, we have si=1 and (Ji=¢i' 
Hence 

I~i-aiil ~t L (jaiil+laiii)· 
iEN\{i} 

Since Lri=1,itfollowsthatt(y*ax+x*aY)EG(a). 0 
iEE 

(2.7) Example. Let 

a=[~ ~] 
and let v be the 11 norm. Then 

V(a) C Z. (a) C y. (a) Il Y.D (a) C G (a) 

where all the containments are strict. 

For, V(a) = [0,5], Z.(a) = [-1,6], G(a)=conv(G1(a), G2 (a)), where G1(a) and 
G2 (a) are the circles of radius 2 with center 1 and 4 respectively. By Nirschl
Schneider [11], y'(a) 2G i (a), i=1, 2 and y'(a) is non-convex since the segment 
[1 + 2i, 4+ 2iJ intersects y. (a) in the points {1 + 2i, 4+ 2i} only. We also have 
y'(a) = y'D(a). The last remark is a consequence of the next result whose proof is 
easy. 

(2.8) Lemma. Let v be a norm on <en such that v(x)~v(x), for all xE<en. If 
aE<enn is symmetric (viz. a=al

) then y'(a) = Y.D(a) . 0 

3. Comparison Between Numerical Ranges 

(3.1) Definition. Let v be a norm on <en. Then 

and 
H(v)={hE<enn

: y'(h) ~1R} , 

J(v) ={h+i k: h, kEH(v)}. 

If v is the 12-norm, then H(v) consists of the set of Hermitian matrices and we 
shall denote this set by H. For general v, Vidav [14] (d. Bonsall-Duncan [3, p. 51]) 
proved that if hEH(v) then y'(h) = conv (spech). This equality motivates the more 
general assumption of our next lemma. . 

(3.2) Lemma. Let Vl{, Jt;; be convex numerical ranges. Let h, kE<enn and suppose 
that for all rt., ,8 E JR. 

Jil{(rt.h+,8k) = Jt;;(rt.h+,8 k) ~ 1R. 

Vl{(1] h+C k) = Jt;;(1] h+C k) . 

Proof. Let a=1] h+C k where 1], CE<e and put 1]=rt.+i y, C=,8+i CJ, where 
rt.,,8, y, CJE JR.. For k= 1, 2, ~(a) ~ ~(rt. h+,8 k) +ilf:;; (y h+ CJ k), whence Re If:;; (a) ~ 
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"H{(ex: h+[Jk). But also ~(ex:h+[Jk) S;~(a)-i"H{(yh+<5k), whence Re"H{(a)~ 
"H{ (ex:h+[Jk). It follows that Re T1i (a) = Re Wz (a) . . 

But the same argument shows that for each £J, 0 -;;;,. £J < 2II, Re U{ (e'o a) = 

Re ~ (e'o a). Since U{ (a) and ~ (a) are convex subsets of the plane, we deduce 
that U{ (a) = ~(a). 0 

If 11 is a norm on <e", and PE<C"" is non-singular, we define the norm lip by 
11 (x) = 11 (P x), for all x E <e". If p is the Loewner-John matrix for 11 as defined in 
:beutsch-Schneider [6J, then H(lIp) S;H, see [6, Proposition 4.1]. This motivates 
the hypothesis of our next theorem. We first state a simple lemma. 

(3.3) Lemma. Let 11 be a norm on <e" and let h,kEH(lI)nH. If (x,y)EII.then 
y* (h+ik) X= x* (h+ik) y. 

Proof. y* (h+i k) x=y* h x+i y* k x=x* h* y+i x* k* y=x* hy+i x*ky= 
x* (h+i k) y. 0 

(3.4) Theorem. Let 11 be a norm on <e" and suppose h, kEH(lI) nH. Then 

Z.(h+i k)=convV.(h+i k)= V(h+i k). 

Proof. Let a=h+i k. By Lemma (3-3), y*ax=!(y*ax+x*ay), for all 
(x,Y)EII •. Hence Z.(a)=convV.(a). To prove the second equality, observe that 

V. (ex: h+[J k) = cony spec (ex: h+[J k) = V(ex: h+[J k), 

by Vidav's Lemma [14J. Hence by Lemma (3.2), cony V.(h+ik)= V(h+ik). 0 

Remark. A considerably better result holds: Zv(h+ik)=V.(h+ik), under the 
hypothesis of Theorem (3.4). For, using Theorem (3.4), B. D. Saunders [12J 
shows that for h, kEH(lI), V.(h+ik) is itself convex. 

Since V.,,(p-1aP) = V. (a) (d. [11, Lemma 2J it follows by [6, Proposition 4.1J 
that: 

(3.5) Corollary. Let 11 be a norm on <e" and let p be the Loewner-John matrix 
for 11. If aEJ(lI), then 

Zv,,(p-1ap) =convv.(a) = V(p-laP). 

Proof. By Theorem (3.4), 

Zv" (p-1ap) = V(p-1ap) = cony v." (p-1aP) = cony V. (a). 0 

4. Extreme Points 

We next prove a theorem concerning extreme points of Z. (a) which also belong 
to V(a). 

(4.1) Theorem. Let 11 be a norm, let aE<e .... , and let zbe such that z* Z= 1 and z*az 
is an extreme point of Zv (a). If (x, y) is the IIv-decomposition of the direction z, 
then 

x* ax y* ay 1 
z*az=-- =--=- (y*ax+x*ay). 

x* x y* Y 2 

8· 
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Proof. Let (/. = z*az and put b=a-(/.. For some t>O, we have tz=x+y 
and so 

where 

and 
(/.3=-}(Y* b x+x* by). 

Then, fori= 1, 2, 3, we have by Theorem (2.4) that (/..EZ.(b). Let s=x* x+ y* y+2. 
3 3 

If r1 =s-l x*x, ri!=s-ly*y, r3=2s-1, then O=2:r.(/.. and 2:r.=1, r.>O for 
.=1 .=1 

i=1, 2, 3. Since 0 is an extreme point of Z.(b) it follows that (/.1=(/.2=(/.3=0. The 
result follows. 0 

(4.2) Corollary. Let v be a norm on <en, and suppose that h, kEH(v) n H. Let 
a=h+ik. If (/. is an extreme point of convv,;(a) then there exist (x, y)Ell. such 
that 

x* ax y'" ay 
(/.=y*ax=~= y*y . 

Proof. By Theorem (3.4), (/. is an extreme point of Z.(a) and (/.EV(a). Let 
ZE<en such that z*z=1 and z*az=(/.. Since y*ax=x*ay, by Lemma (3.3), the 
result follows from Theorem (4.1). 0 

(4.3) Corollary. Let v be a norm on <en and let hEH(v) nH. Let A=min(spech) 
(or A=max(spech)) and suppose hZ=AZ, where 0 =l=zE<en. If (x, y) is the ll.
decomposition of the direction z, then hX=AX and hy=Ay. 

Proof. By Corollary (4.2), x* h x/x* X== y* h y/y* y = A, it is easy to show 
that if x* h x/x* x = A then h x == A x ([7, p. 142J). Similarly we may prove 
that h y= A y. 0 

Corollary (4.3) is related to a result proved under more general hypotheses 
concerning the existence of pairs (x, y) Ell. which are pairs of eigenvectors of a 
matrix, see Zenger [15, 1.8J. 

References 

1. Bauer, F. L. : On the field of values subordinate to a norm. Numer. Math. 4, 
103-113 (1962) 

2. Bauer, F . L. : Fields of value and Gershgorin discs . Numer. Math. 12, 91-95 
(1968) 

3. Bonsall, F. F., Duncan, J. : Numerical ranges of operators on normed spaces and 
of elements of normed algebras. Lond. Math. Soc. Lecture Note Series, 2, Cam
bridge : U. Press 1971 

4. Cain, B . E ., Saunders, B. D., Schneider, H.: On the geometry of dual pairs. 
Studies App. Math. (to appear) 

5. Deutsch, E., Zenger, C.: On Bauer's generalized Gershgorin discs . Numer. Math. 
24, 63-70 (1975) 

6. Deutsch, E., Schneider, H.: Bounded groups and norm-hermitian matrices. 
Linear Algebra and Appl. 9, 9-27 (1975) 

7. Franklin, J. N.: Matrix Theory. Prentice-Hall 1968 
8. Hausdorff, F.: Der Wertvorrat einer Bilinearform. Math. Zeitschrift 3, 314-316 

(1919) 



A Symmetric Numerical Range for Matrices 105 

9. Johnson, C. R.: A Gershgorin inclusion set for the field of values of a finite 
matrix. Proc. Amer. Math. Soc. 41, 57-60 (1973) 

10. Lumer, G. : Semi-inner product spaces. Trans . Amer. Math. Soc. 10,29-43 (1961) 
11. Nirschl, N., Schneider, H. : The Bauer field of values of a matrix. Numer. Math. 

6,355-365 (1964) 
12. Saunders, B. D.: A condition for the convexity of the norm-numerical range of a 

matrix. Linear Algebra and Appl. (to appear) 
13. Toeplitz, 0.: Das algebraische Analogon zu einem Satze von Fejer. Math. Zeit

schrift 2, 187-197 (1918) 
14. Vidav, I.: Eine metrische Kennzeichnung der selbst-adjungierlen Operatoren. 

Math. Zeit. 66, 185-193 (1956) 
15. Zenger, C.: On convexity properties of the Bauer field of values of a matrix. 

Numer. Math. 12,96-105 (1968) 
16. Zenger, C. : Minimal subadditive inclusion domains for the eigenvalues of matrices . 

Linear Algebra and Appl. (to appear) 

B. David Saunders 
Mathematical Sciences Department 
Rensselaer Polytechnic lnst. 
Troy, NY 12181 
U.S.A. 

Hans Schneider 
Mathematics Department 
University of Wisconsin 
Madison, WI 53706 
U.S.A. 


