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For AECnn and t/>c Jl.S (n)= {1, .. . ,n}, let A[Jl.l = (a;;),"i;jEp, and 'A(P.) = (at;), 
i,j E (n)\Jl.. We define a subset W(n) of Cnn by A E W(n) if 

1) Spec A[Jl.l n IR =1= t/>, for t/> c Jl. S (n), 

2) I(A[J-L]) « I(A[v]), if t/> c v S Jl. S (n), 

where I(A[Jl.]) = min(Spec A[Jl.l n IR). For A, BE W(n), define A «, B by 

I(A[J-L]) « I(B[J-L]), for t/> c Jl. S ( n ). 

By definition, A E7(1I) if A E W(n) and 0 «, A. 

For 0 « , A «t B (where A, BE W(n» it is shown that 

3) 0 « det A « det B-det(B-I(A)I) « det B. 

For A E 7(11 ) , A «, A[Jl.l El1 A{J1.), and hence we obtain the Hadamard-Fischer inequality 

4) 0 « det A « det A[Jl.l det A{J1.) 

for the class 7(n) which includes the positive semi-definite, totally nonnegative and M
matrices. Cases of equality in (3) are treated in detail and are related to the cyclic structure 
of A and B. 

t The research of this author was made possible through the cooperation of IBM and 
the Department of Mathematics, State University of New York at Binghamton. 

t The research of this author was supported in part by NSF Grant GP-3798X. 
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INTRODUCTION 

It has been observed [e.g. Taussky (1958), Fan (1960) etc.] that the following 
three classes of matrices share many common properties: (a) the positive 
semi-definite matrices, (b) the M-matrices [for definitions, see Ostrowski 
(1937), Fan (1960), (1966), called class K by Fiedler and Ptak (1962), and 
(c) the totally nonnegative matrices [Gantmacher (1959, Vol. 2, p. 98)], 
Gantmacher and Krein (1937) or (1960, p. 85). For example, the three 
classes share the property given by (0.1) and (0.2) below, which we refer to 
as eigenvalue mono tonicity. 

Lett A E e"" ~nd define A[.u] = (ai), i,j E J-l, cP C J-l £; (n). Then 
0.1) Spec A[.u] n ~ =F cP, for cP C J-l £; (n) = {I, ... , n} 

(Le. each principal submatrix has a real eigenvalue) and 

0.2) I(A[.u]) ~ I(A[vD, if cP C v £; J-l £; (n) 

where 

0.3) I(A[.uD = min(Spec A[.u] n ~). 
In addition, if A is in one of the three classes (a), (b), (c), then 

0.4) leA) ~ O. 
For A positive semi-definite, eigenvalue monotonicity is due to Cauchy 
(1829), cf. Beckenback and Bellman (1961), for M-matrices it is an immediate 
consequence of a theorem of Frobenius (1908, p. 471) cf. Gantmacher (1959, 
Vol. II, p. 67), and for totally nonnegative matrices the result is due to S. 
Friedland (unpublished). 

The second common property we wish to emphasize is the Hadamard
Fischer inequality 

0.5) 0 ~ det A ~ det A[.u] det A(J-l), where A(Jl') = A[ (n )\J-l]. 
This inequality is due to Hadamard (1893) and Fischer (1908) [cf. Beckenbach 
and Bellman (1961, p. 63) or Marcus and Minc (1964, p. 117)] for positive 
semi-definite matrices. For M-matrices, the inequality is an immediate 
consequence of Ostrowski (1937, Theorem 1). For totally nonnegative 
matrices, see Gantmacher (1959, Vol. II, p. 100), Gantmacher and Krein 
(1935, 1937, 1960, p. 108, Theorem 8) or Karlin (1968,p. 88, Lemma 9.2), 
for the special case J-l = {I, ... , k} of the inequality. For general J-l the 
result may be derived by Karlin (1958, Lemma 9.1, p. 88 and lOF, p. 95), 
see also Gantmacher and Krein (1960, Theorem 9, p. Ill) and the remark 
following this theorem. 

In this paper we show that the eigenvalue monotonicity condition (0.1), 
(0.2) together with the nonnegativity condition (0.4) implies the Hadamard-

t For our notations see Section 1. 
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Fischer inequality (0.5). More precisely, we define the subset w(n> of en" 
consisting of all A E enn which satisfy (0, 1) and (0.2). (Such A are called 
co-matrices by us), and then we define the subset 't(n> of co(n> of matrices 
A E w(n> which also satisfy (0.4), (such matrices are called 't-matrices). 
Evidently 't(n> contains the three classes (a), (b), (c) of matrices mentioned at 
the beginning of this introduction. We show that a 't-matrix A satisfies (0.5). 
In fact, the inequality (0.5) is a consequence of a better and more general 
inequality for 't-matrices. For A, BE w(n> we define a transitive, reflexive 
relation A ~,B by 
0.6) I(A[.uD ~ I(B[pD, if ¢ cps; (n). 

This relation has the property that if A, Band B-A are positive semi-definite, 
or if A, Bare M-matrices and aij ~ bii, i,j = 1,2, ... n, then A ~ ,B. If 
A, BE 't(n> and A ~,B, then 
0.7) 0 ~ det A ~ det B-det(B-l(A)) ~ det B, 

cf. our main result, Theorem (3.8). Since, for A E w(n>' A ~,(A[p] EB A(P)), 
the inequality (0.5) follows. The inequalities (0.7) are proved by a simple 
inductive argument using the fundamental expansion 

0.8) det (A + tl) = I til'l det A(p), 
.pSI's (n> 

where Ipi denote the cardinality of p. 
Sections 4 and 5 are devoted to studying in detail the cases of equality in 

(0.7) when A is nonsingular. When the cyclic products of A and B (see (1.1)) 
satisfy an apparently artificial condition (see (4.1.1)) then the equalities in 
(0.8) are characterized in terms of the c-equivalence of matrices (see (1.11) 
and Theorem (4.1) and (5.1)). However this condition is clearly satisfied 
when B = A[pd Ef) ••• Ef) A[Pk], where (PI, ... , Pk) is a partition of (n) 
The concept of c-equivalence was examined by us in Engel and Schneider 
(1973b, 1975). Under the condition that A[pd, ... , A[pd are irreducible, it 
is shown (cf. Theorem (4.5)) that 

o < det A = det A[PI] ... det A[.ud 

if and only if A is (block) triangulable for (PI' ... , Pk) (Definition (4.3). We 
also characterize matrices satisfying 

0< detA = 
det A[.ul] ... det A[.uk] - det«A -leA) I)(Jld) ... det«A -leA) I)[PkD, 

see Theorem (5.4). 
Thus we obtain well-known conditions for equality in Hadamard-Fischer 

for positive definite matrices [e.g. Marcus and Minc (1964)], and we also 
obtain as special cases the equality results for nonsingular M-matrices in 
our paper (1973a). Indeed, it was our observation at the end of (1973a) that 
the determinant expansion (0.8) could be used to prove the Hadamard 
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inequality for both M-matrices and positive semi-definite matrices and could 
also be used to examine the cases for equality, which motivated our definition 
of .. -matrices. 

In Section 6 of this paper we give some necessary conditions for all minors 
of A to satisfy Hadamard- Fischer, and some necessary conditions for A to 
be in w ( n) ' 

Much work has recently been done on the Hadamard-Fischer inequality, 
particularly for classes of matrices which contain the totally nonnegative 
matrices. We mention in this connection the sign-symmetric and weakly sign 
symmetric matrices introduced by Kotelyanski (1953) [see also Gantmacher 
and Krein (1960, p. 111)] and studied by Carlson (1967) and, under the name 
of GKK matrices, by Fan (1967). In Section 7 we give examples to show how 
.. -matrices are related to these classes. 

Our paper may be viewed as an exploration of the relationship of the 
Hadamard-Fischer inequality to the Perron-Frobenius Theorem, see 
Theorem (3.12) and the comments following it. 

1. NOTATIONS AND DEFII\IITIONS 

1.1) By IR and e we denote the real and complex field respectively. 

1.2) The set of all m x n matrices with elements in IR (resp. q is denoted by 
IRmn (resp. emn

). 

1.3) We use ~ for set inclusion and c for proper set inclusion. 

1.4) If n is a positive integer, then (n) = {I, ... , n} . 

1.5) If A E en, and ¢ ~ fl ~ (n ), then 

A[fl] = (ai), i,j E fl; A[fl] E ell'lll'l, 

A(fl) = (ai), i,j E fl' = (n)\ fl; A(fl) E ell"IIIl'I, 

A(f1lv] = (ai), i E fl , j E v, A(f1lv] E elllllvl, v, fl ~ (n ) . 

(We write A[I], A[12] for A[{I}], A[{I2}], etc.) 

1.6) A closed path on (n) is a sequencet y = (i1, . . . , ik) of integers ip E (11), 
P = '1, ... , k, where k ~ 2, and a cycle is a closed path whose elements are 
distinct. We identify the cycles (i1>" ., ik) and (ip , ••• , ik, i1> ... ip _ 1),' where 
1 ~p ~ k. 
1.7) A full cycle on (n) is a cycle y ,;, (iI' . .. , iic) where k = n. 

1.8) If Y = (iI' ... , ik) is a cycle on (n), then the support y of y is defined 
by y = {i1' .•. , ik}. 
1.9) If A E en and y = (i1' .•. , ik) is a closed path (on (n ») then we put 

IIy(A) = aili2 • • • aik_Iikaikil' 

tIn Engel and Schneider (1973b). we denoted the same closed path by (i1i2, . . . , iii' il)' 
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[Note the last factor of this product.] If y is a cycle, the product is called 
a cyclic product. 

1.10) A cycle y is nonzero for A if IIy(A) # O. 
1.11) Let A, BEen. Then A ~ c B (A is c-equivalent to B) is defined by: 

b) au = bu, i = 1, ... , n, and b) IIy(A) = IIY(B), for all cycles y. 

[cf. Engel and Schneider (I973b). Observe that in the present notation au is 
not a cyclic product for A]. 

1.12) If A E en, then Spec A denotes the spectrum of A. 

2. PRELIMINARY RESULTS ON CYCLES --

In this section we develop some lemmas needed to discuss the cases of 
equality in the Hadamard and Fischer inequalities. 

2.1) LEMMA Let 13, y be two distinct full cycles on {I, ... , n}. Then there 
exist nonfull cycles 0"1' ••• , O"k> where k ~ 3, such that 

2.1.1) IIpily = II",II"2 ... II"k' 

(viz. for all A E cnn, IIP(A) IIy(A) = II",(A)II"iA) ... II"k(A).) 

Proof Let 13 = (iI' ... , in), Y = Ul' .. ·,jn), where il = jl' Then there 
exists a smallest integer p such that ip # jp, and clearly p ~ 2. There also 
exist integers q, r, p < q, r ~ n such that ip = jq and jp = ir • Let 0"1 = 
(il" .. , ip- 1 ,jq, .. ·,jn) and o"z = (j1' .. ·,jp-1' i" . .. , in)· Then 0"1 and o"z are 
cycles and, since 10".1 < n, s = 1,2, the cycles 0"1' O"z are not full. Let 0" = 
(ip, ... , ip- 1,jp, .. . ,jq-l)' This is a closed path, hencet there exists cycle 
0"3' ••• , O"k, such that 

a) II" = II"3 ... II"k' 
b) ii. ~ ii, s = 3, ... , k. 

Since i1 ¢ ii, the cycles 0"., s = 3, ... , k are not full. We now have 

IIpily = II",II"2II" = II", ... II"k' 

2.2) COROLLARY Let A, BEen and suppose that for all nonfull cycles 
0", II,,(A) = II,,(B). Then for any two distinct full cycles 13, y, 

IIp(A) IIy(A) = IIp(B) IIy(B). 

Proof Immediate by Lemma (2.1). 
2.3) C:OROLLARY Let A, BE cnn and suppose that for all nonfull cycles 0", 

II.,.(A) = II,,(B). If there exist at least three distinct full nonzero cycles for 

t See Engel and Schneider (1973b, Lemma 2.4). Conclusion (b) is in fact not stated there, 
but follows by a slightly more precise version of the proof given there. 
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A, then either 
2.3.1) 

or 
2.3.2) 

G. M. ENGEL AND H. SCHNEIDER 

IliA) = Ilq(B), for all full cycles (T, 

IliA) = - IliB), for all full cycles (T. 

Proof If P is a full nonzero cycle for A, let rp = IIp(B)Ilp(A) -1. Suppose 
that p, y, (T are distinct full nonzero cycles for A. By Corollary (2.2), 
IlP(B) i= 0 and so rp i= O. Further, by the same Corollary, rp = ri 1. Thus 
rp = rit = rq = rp- 1 , whence rp = ± 1, and rq = rp. 

2.4) Example If we drop the assumption that there exist three full nonzero 
cycles for A, then Corollary (2.3) no longer holds. As an example let 

A = [~ ~ ~l ' B = [.~ ~ .2~1 
1 1 1 4.5 1. 

2.5) LEMMA Let A, BEen, and suppose that for all nonfull cycles (T, IliA) = 
Ilq(B) and au = bu, i = 1, . .. , n. lffor allfull cycles (T 

{
either I Ilq(:A) I > IIlq(B)I , 

2.5.1) ) 
or Ilq(A = Ilq(B), 

then 

2.5.2) . {
either A ~ c B 
or there exists at most one full nonzero cycle for A . 

Proof Suppose P is a. nonzero full cycle for A. If there is another full 
nonzero cycle y for A, then, by Corollary (2.2), IlP(A) IliA) = IlP(B) IliB). 
Since I Ilq(B)1 ~ I IliA) I for all cycles (T, it follows by (2.5.1) that IIp (A) = 
IlP(B) and Ilq(A) = IliB) . Hence, if there are two nonzero full cycles for A, 
then A ~c B. 

3. INEQUALITIES FOR 't-MATRICES 

To prove many of our results we shall use a weB known expansion of the 
determinant of a matrix. If A E en and t E IC then 

3.1) det (A+tI) = L til'l det A(.u), 
,p!:I'!: <n ) 

where IJ.!I is the cardinality of J.! and det A( (n») = 1 by convention. We shall 
call (3.1) the fundamental expansion of det(A +t1). We first consider matrices 
A E en which satisfy 

3.2) spec A[}.t] n ~ i= cP, for all J.!, cP c: J.! £ (n). 

For all such matrices, we define, as in the introduction, 

3.3) I(A[}.t]) = min {Spec A[J.!] n ~}, cP c: J.! £ (n). 
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3.3) LEMMA Let A E cnn satisfy (3.2). Then det A E ~. 

Proof By induction on n. The result is obvious if n = 1. So let n > 1, 
and suppose that det A[Jl] E ~, if IJlI < n. Let I = I(A) and B = A -II. Then, 
since det B = 0 and B satisfies (3.2), it follows from the fundamental expan
sion that 

det A = L ZII'I det B(Jl), 
<iJ''''I'S(n) 

which is real by inductive assumption. 

3.4) LEMMA Let A E cnn satisfy (3.2) and suppose that I(A) ~ 0 (/(A) > 0). 
Then det A ~ 0 (det A > 0). 

Proof By (3.3) and (3.1) the characteristic polynomial det(A-tI) has real 
coefficients. Hence the nonreal eigenvalues occur in conjugate pairs. The 
result follows. 

3.5) DEFINITIONS i) Let A E en. If (3.2) holds and 

3.5.1) If <P c v ~ Jl ~ <n), then I(A[Jl]) ~ I(A[v]), 

then we call A an (J)-matrix. The set of all (J)-matrices in cnn will be denoted 
by (J)(n)' 

We shall refer to the property, (3.5.1) briefly as eigenvalue monotonicity. 

ii) We define a reflexive, transitive relation on (J)(n) thus: If A, BE (J)(n)' then 
A ~,B if 
3.5.2) . I(A(Jl]) ~ I(B)[Jl]), for all Jl, <p ~ Jl ~ <n). 

iii) If A, B E (J)(n)' A ~,B and B ~,A then we write A "", B. Clearly "", is 
an equivalence relation on (J)(n)' 

iv) If A E (J)(n), and I(A) ~ 0 (viz. 0 ~,A) then we call A a T-matrix. We 
denote the set of allT-matrices in cnn by T(n)' 

Remark Let <p C Jl C <n). If A E T(n), then A(Jl] E TI" 

3.6) THEOREM Let A E (J)(n)' Then the following are equivalent 

3.6.1) A E T(n)' 

3.6.2) det A[Jl] ~ 0, for all Jl, <p C Jl ~ <n). 

Proof (3.6.1) => (3.6.2). This follows immediately from Lemma (3.4). 
(3.6.2) => (3.6.1). By induction on n. The result is obvious if n = 1. So suppose 
it is true for A[Jl], where IJlI < n. By the fundamental expansions, for t > 0, 
det(A+ tI) = L til'l det A(Jl) ~ tn > O. Hence A has no negative eigen-

</>SI'S(n) 

values, whence I(A) ~ O. 

3.7 Remarks i) A similar argument shows: Let A E (J)(n)' Then the following 
are equivalent: 

3.7.1) 

3.7.2) 

I(A) > 0, 

det A(Jl] > 0, for all Jl, <p ~ Jl ~ <n). 



162 G. M. ENGEL AND H. SCHNEIDER 

ii) Further, let A E 't"(n)' Then clearly I(A) > 0 if and only if det A > O. 

Our main result is the next theorem. 

3.8) THEOREM Let A, BE 't"(n) and A ::::; t B. 

i) Then 

3.8.1) o ::::; det A ::::; det B-det(B-/(A) I) ::::; det B. 

ii) Let det A > O. Then the following are equivalent: 

3.8.2) det A = det B, 

3.8.3) det A[Il] = det B[Il], for ¢ ~ Il ~ <n), 

3.8.4) A ~ t B. 

iii) Let det A > O. Then the following are equivalent: 

3.8.5) det A = det B-det(B-/(A) I), 

3.8.6) 

3.8.7) 

det A[Il] = det B[Il], for ¢ ~ Il c <n), 

'" A[Il] ~t B[Il], for ¢ ell c <n). 

'" 
Proof i) In view of Lemma (3.4) we need to prove only the middle 

inequality of (3.8.1). We proceed by induction on n. The result holds ifn = 1. 
So let n > 1, and A, BE 't"(n) where A ::::;t B. Put I = I(A). Since B-/l E 't"(n), 

det(A -1I)(Jt) ::::; det(B-II)(Il) for ¢ c Il ~ <n), by our inductive assump
tion. But det(A -II) = 0 and hence it follows from the fundamental expansion 
(3.1) that 

det B = L lllLl det (B-lI)(Il) 
<P~IL~(Il) 

L lllLl det (B-lI)(fL)+det (B-lI) 
<pCIL~(Il) 

~ L 11/'1 det (A-lI)(fL)+det (B-lI) 
<pCIL~ (II) 

L lllLl det (A-lI)(fL)+det (B-lI) 
<p~IL~(n) 

= det A+det (B-lI), 

and (i) is proved. 

ii) (3.8.2) => (3.8.3). By inspection of the proof of (i), since I> 0, we see 
that det A = det B implies that . 

det(A-II)(fL) = det(B-II)(Il), ¢ ~ Il c <n). 

Hence 

det B[Jt] = L Ilvl det (B -lI)(v) 
<P~V~IL 

= L Ilvl det(A-II)(v) = detA[Il]. 
<P~V~IL 
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(3.8.3) => (3.8.4). By induction on ( n ) . The result is clearly true forn = 1. 
So suppose that n > 1, and suppose that 

det A[v] = det B[v], for ¢ c v ~ J.1 c ( n) , 
implies that A[J.1] "', B[J.1]. By (3.8.3), det(B-II) = O. Since 0 ~,(B-lI), it 
follows that I(B) = I, whence A "', B. (3.8.4.) => (3.8.2). This is obvious by (i). 

iii) (3.8.5) => (3.8.6). By inspection of the proof of (i), (3 .8.5) implies that 
det(A-lI)(f.1) = det(B-II)CJ.1) for ¢ c J.1 c ( n). Hence, as in the proof of 
(3.8.2) => (3.8.3), we obtain (3.8.6). 
(3.8.6) => (3.8.7). By (ii). 
(3.8.7) => (3.8.5). By (3.8.7), 

(A-lJ)(J.1] "', (B-II)[J.1], for ¢ c J.1 c ( n). 
HenCe by (ii), det(A-II)CJ.1) = det(B-II)CJ.1) for ¢ c J.1 $ ( n) , and the 
result follows from the fundamental expansion, see the proof of (i). 

We now show that the Hadamard-Fischer inequality characterizes 
~-matrices in a certain sense. Let A E en be a matrix with real principal 
minors, and for t E IR put At = A - tl. Observe that for t negative and It I 
sufficiently large, the principal minors of At are nonnegative, while for 
t> min{aii' iE (n)}, some principal minor of At is negative. Hence we 
may make the following definitIons. 

3.9) DEFINITIONS 

i) P(n) = {A E en: all principals minors of A are positive}. 
ii) P(n) = {A E en: all principal minors of A are nonnegative}. 

iii) Let A E enn have real principal minors. Then, for J.1, ¢ c J.1 c ( n) , 
m(A(J.1]) = sup{ t E IR: At[J.1] E P(n)} where At = A - tI. 

We note that if A E P~ and s < 0 

3.10) detA.[J.1] = I (-s)I-1 detA[J.1\v] ~ (-s)11'1 > 0 
,pSvSJ,L 

so that As E P ( n) . 

Also it is ~lear that if A has all principal minors real then 
3.11) ¢ c v ~ J.1 ~ (n) implies that m(A[J.1D ~ m(A[vD. 
3.12) THEOREM Let A E en be a matrix with all principal minors real. 
Then the following are equivalent: 

3.12.1) A E W ( n) 

3.12.2) For all J.1, ¢ c J.1 ~ ( n) and all t E IR such that A t[J.1] = 
A[J.1]-tI[J.1] E P~ and all v, ¢ c v ~ J.1, 

det At[J.1] ~ det At[v] det A t(J.1\v] , 
3.12.3) For all J.1, ¢ c J.1 ~ (n) and all t E IR such that At(J.1] = 
A(f.1] - tI[J.1] E P~ and all i, i E J.1, 

det At(J.1] ~ det Am det At (J.1\ {i}] 
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Proof (3.12.1) => (3.12.2). 
Suppose A E w(n) and let t E IR be such that At E P(n)' It follows from (3.10) 

that I(At) ~ 0, whence At E '1:(n)' Let ¢ c /J. £ <n) and put Bt = AtUt] Ef) 

AtC/J.). Then clearly also Bt E '1:N , and since for ¢ c " £ <n) and "1 = 1C n /J., 
K2 = "n/J.', 

it follows that At::;:; ,Bt. Thus (3.12.2) follows from Theorem (3.8.1). 
(3.12.2) => (3.12.3). Trivial. 
(3.12.3) => (3.12.1). 

Suppose (3.12.3) holds. It is enough to prove that m(A[.u]) is an eigenvalue 
of AUt], ¢ c /J. £ <n), for then by (3.10), m(A[/J.]) is the least real eigenvalue 
of AUt], and (3.11) shows that the eigenvalue monotonicity property holds. 
Our proof that m(AUt]) is an eigenvalue of A[/J.] is by induction on n. Clearly 
the result is true ifn = 1. So suppose the result is true for A[/J.], if I/J.I = n-1. 
Assume that meA) is not an eigenvalue of A. Then, by (3.10), det At > ° for 
t ::;:; meA). Let ¢ c /J. c <n), where I/J.I = n-1. By (3.12.2), det At[/J.] > 0, 
for t ::;:; meA). Since A[/J.] E W Il, we deduce that I(A[/J.]) > meA). But then 
det At[v] > 0, for all v, ¢ eve <n) and t::;:; meA). Thus we can find 
s > meA) such that As E P(n). This contradicts the definition of meA). 

In (3.12.2) and (3.12.3) we can evidently replace P(n) by p(n). 
The last part of our proof of Theorem (3.12) may be compared with 

Frobenius' (1908) proof of the Perron-Frobenius theorem for a matrix Q 
with positive entries [see also Gantmacher and Krein (1960, pp. 97-99) for 
essentially the same proof as Frobenius']. Though we know of no evidence 
that Frobenius was familiar with Hadamard (1893), with unhistorical 
hindsight we may regard Frobenius' proof of the existence of a positive 
eigenvalue of Q thus: first establish Hadamard's inequality for M-matrices 
in the form (3.12.2). Then use this inequality to prove that an M-matrix is 
also. an w-matrix. We have found no counterpart for w-matrices to the 
result that the Perron-Frobenius root of Q is also the spectral radius of Q, 
and this has led to the open problem (7.5.ii). 

4. CONDITIONS FOR EQUALITY IN detA = det B 

4.1) THEOREM Let A, BE '1:(n) and suppose that, for all cycles y, 

{
either I IIy(B) I < III/A)I, 

4.1.1) ) 
or II/B = IIy(A). 

Let A ::;:; t B and let det A > 0. Then the following are equivalent. 
4.1.2) det A = det B, 
4.1.3) A '" t B, 
4.1.4) A '" c B. 
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Proof (4.1.2) <:> (4.1.3). By Theorem (3.8) (ii). 

(4.1.4) => (4.1.2). Obvious, since permutation products may be factorized 
into cyclic product and products of diagonal elements. 

(4.1.3) => (4.1.4). The proof is by induction on n. The result is clearly true 
if n = 1. So suppose that n > 1, and that for <p C J1 C (n), A[J1] "'. B[J1] 
implies A[J1] '" c B[J1]. Let A "'. B. By inductive assumption A[J1] '" c B[.u], 
for <p C J1 C (n). We also know that det A = det B. It follows that 

L II/A) = L II/B), 4.1.5) 
yer yer 

where r is the set of full cycles on (n), since, for any matrix C E ICnn 

det C = (_1)"-1 L II/C) + L (_l)'gnIC II,lC) 
yer ICeSn\r 

where Sn is the symmetric group on (n), and r is also interpreted as a set 
of permutations. First, suppose there exist at most one nonzero full cycle P 
for A. Since I II/B) I ~ III/A)I, it follows that II/B) = 0, for y a full-cycle, 
y =F p, and by (4.1.5), IIiB) = IIP(A). Hence A '" c B. Next, suppose there 
is more than one nonzero full cycle for A. Then A "'" B, by Lemma (2.5) 
since A "'. Bimplies that au = b ii, i = 1, ... , n. 

4.2) COROLLARY Let <p C J1 C (n). Let A E "(n) and det A > 0. 

Then the following are equivalent: 

4.2.1) det A = det A[J1] det A{J1), 

4.2.2) A "'. A[J1] Ee A{J1), 
4.2.3) A '" c A[J1] Ee A{J1), 
4.2.4) If y is a nonzero cycle for A, then either y ~ J1 or y ~ J1' = (n )\J1. 

Proof Let B = A[.u] Ee A{J1). We observe that BE "(n> and A~. B, 
compare the proof of Theorem (3.12). The equivalence of the first three 
conditions now follows from Theorem (4.1), since condition (4.1.1) obviously 
holds. 

(4.2.3) => (4.2.4). Let y be a cycle and let IliA) =F 0. If A '" c B, then 
II/B) =F 0, whence either y ~ J1 or y ~ J1'. 

(4.2.4) => (4.2.3). Let y be any cycle on (n). If y ~ J1 or y ' ~ J1' then 
IliA) = IIiB). If Y n J1 =F <p and y n J1' =F <p, then II/B) = 0. But by 
(4.2.4), IIy{A) = 0, whence A '" c B. 

By applying (4.2) to the submatrices of A, we obtain a result on partitions 
on (n). 

4.3) THEOREM Let (J11' ... , J1k) be a partition of (n) (into non-empty subsets), 
Let A E "(n)' Then 

i) det A ~ det A[J1d ' • " det A[J1k]' 
ii) Let det A > 0. 
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Then the following are equivalent: 

4.3.1) 
4.3.2) 
4.3.3) 

det A = det A[Jld ... det A[Jlk] 

A '" ~ A[Jld Ef) ••• Ef) A[Jlk] 

A '" c A[Jld Ef) ••• Ef) A[Jlk]· 

4.3.4) If Y is a nonzero cycle for A, then for some i, 1 ~ i ~ k, Y £; Jli. 

4.4) COROLLARY Let A E't"(n) and let det A > O. Then the following are 
equivalent: 

4.4.1) For all partitions (Jll, ... , Jl0 of (n), (k ~ 2), 

det A < det A [Jll] ... det A[Jlk], 

4.4.2) A is irreducible. 

Proof For all. Jl, cp C Jl C (n), A ,." c A[Jl] Ef) A(Jl) if and only if A is 
irreducible. 

To obtain an explicit form for A in the equality case we need to assume 
that the A(Jl;] are irreducible. We first state formally, 

4.5) DEFINITION Let (Jll' ... , Jlk) be a partition of (n). Then A E ICnn is said 
to be triangulablefor (Jll, ... , Jlk) if there exists a permutation "of (k) such 
that A[Jli I Jlj] =, 0 if"(i) > "U)· 

Let A' E ICkk be the matrix derived from A thus: aij = 1 'if A(Jli I Jlj] #- 0 
and aij = 0 otherwise. Then A is triangulable for (Jll, ... , Jlk) ifand only 
if P- 1A'P is triangular, for some permutation matrix P. 

4.6) THEOREM Let (Jll' ... , Jl0 be a partition of (n). Let A E ICnn and suppose 
that A(Jl;], i = 1, ... , k is irreducible. Let A E 't"( n) and suppose that det A > o. 
Then the following are equivalent: 

4.6.1) det A = det A[Jll] ... det A[Jlk], 

4.6.2) .A is triangulable for (Jll, ... , Jl0. 

Proof (4.6.2) = (4.6.1). Is obvious. 

(4.6.1) = (4.6.2). Suppose A is not triangulable with respect to (Jll, . .. , Jlk) . 
Then the derived matrix A' is not triangulable by a permutation matrix P. 
Hence there exists a cycle y nonzero for A' (Harary, 1969, p. 200 or Engel and 
Schneider, 1973a). Without loss of generality, we suppose y = (1,2, ... , m), 
where m ~ 2. Thus there exist Pi> qi with Pi' qi E Jli' i = 1, ... , msuch that 
apiqi+l #- o. (We use the convention qm+l = ql). Since A[Jl;] is irreducible, 
i = 1, ... , m, there exist distinct ri' ti, . . . , Si E Jli such that aqj"a'jt, ... 
a.iP' #- o. Then 

p = (ql' r1, ••• , Sl' Pl' q2' ... , Sin' Pl1) 
is a nonzero cycle for A, and 11 n Jli #- cp, i = 1, .. . ,m. Hence by Theorem 
(4.3)(ii), det A < det A[Jll] ... A[Jlk]. 
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4.7) COROLLARY Let A E'1"(n). 

i) Then det A :::;; all ... ann. 

ii) If det A > 0, the following are equivalent: 

4.7.1) detA = all ... ann, 
4.7.2) For some permutation matrix P, P - lAP is triangular. 
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A matrix A E enn is said to be completely reducible if it is the direct sum 
of irreducible matrices. The class of all completely reducible matrices is 
denoted by ~ in Engel and Schneider (1973b, Definition 2.14). A matrix 
A E enn said to be combinatorially symmetric if aij :F ° implies that aji :F 0, 
1 :::;; i, j :::;; n. It is easy to see that a combinatorially symmetric matrix is 
completely reducible, and that a Hermitian matrix is combinatorially 
symmetric. Hence known results for Hermitian matrices are immediate 
consequences of the corollaries below. 

4.8) COROLLARY Let A and B be completely reducible. Let A :::;;, B, and let 
det A > 0. If (4.1.1) holds, then the following are equivalent. 

4.8.1) det A = det B. 

4.8.2) For some nonsingular diagonal matrix X, B = X-lAX. 

Proof By the equivalence of (4.1.2) and (4.1.4) and Engel and Schneider 
(1973b, Theorem 4.1). 

4.9) COROLLARY Let (Pl' ... , Pk) be a partition of (n). Let A E enn be 
completely reducible. If A E '1"(n) , and det A > ° then the following are equivalent: 

4.9.1) det A = det A[pd ... det A [Pk] , 
4.9.2) A = A[Pl] EEl ... EEl A[pd. 

Proof Since A is completely reducible, every nonzero nondiagonal element 
lies on a nonzero cycle. The result follows by the equivalence of (4.3.1) 
and (4.3.4). 

A lower bound for det A is given by the next theorem. 

4.lO) THEOREM Let A E'1"(n). 

i) Then 

4.lO.1) det A ~ leA) det A(n). 

ii) If det A > 0, then the following are equivalent: 

4.lO.2) det A = I(A) det A(n), 
4.10.3) A '" c A(n) EEl leA). 

Proof i) Let B = A(n) EEl leA). It is easy to show that BE '1"(n> and B :::;;, A. 
Hence by Theorem (3.8) (i), det A ~ leA) det A(n). 

ii) (4.lO.2) => (4.lO.3). Since det A > 0, and I(B) = I(A) it follows that 
I(B) > 0. Assume that det A = det B. Then by Theorem (3.8) (ii), A "', B. 
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Further A and B satisfy (4.1.1). Therefore by Theorem (4.1), A '" c B. 
(4.10.3) => (4.10.2). Obvious; 

4.11) COROLLARY Let A E .(n), and let 1= I(A). 
i) Then det A ~ 1". 
ii) If det(A) > 0, then det A = In if and only if there is a permutation matrix 

P such that p T AP = II + U, where U is strictly upper triangular. 

Proof i) By induction on n, using (4.1O.i). 
ii) Suppose 0< det A = I". Then by induction on n, using (4.1O.ii), we 

obtain that A '" c II. But this implies that p T AP = II + U, where U is strictly 
upper triangular, see Harary (1969, Theorem 16.3). 

The converse direction is trivial. 

5. CONDITIONS FOR EQUALITY IN det A = det B-det(B-l(A)I) 

5.1) THEOREM Let A, BE .(n) and suppose that (4.1.1) holds. If A ~. Band 
det A > ° then the following are equivalent: 

5.1.1) det A = det B-det(B-/(A) l) < det B, 

{
a) A[Il] "'. B[Il], 4> C Il c (n), 

5.1.2) b) 
A "'"'.B, 

{

a) A[Il] '" c B[Il], 4> C Il c (n), 

5.1.3) b) There exists a unique nonzero full cycle [) for A and, further, 
IIb(A) f: IIb(B). 

Proof (5.1.1) ¢> (5.1.2). By Theorem (3.8) (iii), A[Il] "'. B[Il], for 
4> C Il c (n), and by Theorem (3.8) (ii), A "'"'. B. 

(5.1.2) => (5.1.3). By Theorem (4.1), (4.1.3) => (4.1.4), we have A(jL] '" c B(jL], 
for 4> C Il c (n). Further A "'"' c B, since otherwise again by Theorem (4.1), 
det A = det B. Hence there exist at least one full cycle y, such that II/A) f: 
II1(B), and by (4.1.1) it follows that II/A) f: 0. But by Lemma (2.5), since 
A "'"' c B, y is the unique full nonzero cycle for A. (5.1.3) => (5.1.2). By 
(4.1.3) ¢> (4.1.4). 

5.2) COROLLARY Let (Ill> ... , Ilk) be a partition of (n). Let A E .(n)' 

i) Then 
5.2.1) det A ~ det A[1l1] ... det A[,uk] 

- det«A -/(A)I)(jLl] ... det«A -/(A)I)[llkD 

ii) If det A > 0, the following are equivalent: 

5.2.2) det A = det A[lld ... det A(jLk] 
- det«A -/(A)l)[lld) ... det«A -/(A)I)[llkD 
< det A[1l1] ... det A(jLk] 



5.2.3) {a) 
b) 

5.2.4) {a) 
b) 
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A[J.l] '" T (A[J.ld Et) ••. Et) A[J.lk])[J.l], ¢ c J.l c <n) 
A ,.., T (A[J.ld Et) ••• Et) A[J.lk]) 

A[J.l] '" c (A[J.ld Et) ••• Et) A[J.lk])[J.L], ¢ c J.l c <n) 
There exists a unique nonzero full cycle y for A. 

There exists a unique nonzero full cycle y for A, 
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5.2.5) r b) If P is any nonzero cycle for A, P :I y, then,for some i, 1 ~ i ~ k, 
f3 ~ J.li· 

Let (V1' ... , Vk) be a partition of <n ) , and let GEe"". We define a condition 
on (V1' ... , Vk) and G, in order to investigate the form of a matrix A satisfying 
(5.2.2). 

5.3) Condition on (V1' ... , vJ and G. 

5.3.1) The partition (V1' . . . , Vk) of <n ) satisfies: 

There exist Po, .. . , Pk' 1 < Po < P1 < ... < Pk = n such that 

Vt = {Pt-1 + 1, ... , Pt}, t = 1, ... , k. 
5.3.2) The matrix G E en" satisfies: 

a) If j = i+ 1 then gij :I O. Also g"1 :I O. 
b) Ifj :I i+ 1, thengij :I 0 impliesj ~ i and, i,j E Vt for some t, 1 ~ t ~ k. 

If (V1' ... , Vk) and G satisfy (5.3), then clearly G satisfies condition (5.2.5) 
for (V1' . . . , Vk), since (1,2, ... , n) is the unique nonzero full cycle for G. 
Note G is of the form 

Gll G12 0 0 
o G22 G23 0 

G= X X 

X X 

o X Gk- lk 

Gk1 0 0 Gkk . 
where G[J.lt] = Gtt has zeros above the first super diagonal, and GtH1 and 
Gk1 have all elements equal to zero, except for the bottom left hand element. 
We shall show that any matrix A that satisfies the equality (5.2.2) may be 
put into the above form by simultaneous permutation of rows and columns 
and changing the indexing of J.l1' ... , J.lk' provided that the A[J.l;] are irreduc
ible. We denote by P" the permutation matrix associated with the permutation 
non <n). 
5.4) THEOREM Let (J.l1 ... , J.lk) be a partition of <n). Let A E en", and suppose 
that A[J.lt], t = 1, .. . , k is irreducible. If A E 'C( n ) and det A > 0, then the 
following ar~ equivalent: 
5.4.1) det A = 

det A[J.l1] ... det A[J.lk] - det(A -leA) 1)[J.l1] . .. det(A -leA) 1)[J.LJ 
< det A[J.ld . .. det A[J.lk], 
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5.4.2) There exists a permutation n of (n) and a permutation u on -(k) such 
that if Vt = n (!J.a{t»), t = 1, ... , k, then the partition (VI"'" V,) and the 
matrix G = P:; 1 AP" satisfy (5.3). 

Proof We need only prove (5.4.1) => (5.4.2). By (5.2.5) there exists a 
unique nonzero full cycle P for A. Suppose P = (iI, ... , in), where i1 E !J.p' 
in E !J.q P #- q. Let n be the permutation on (n) given by n(is) = s, s = 1, ... , n 
Let G = P:; 1 AP". Then the unique nonzero full cycle for Gis l' = (1, ... , n). 

Let VI = n(fJ.1)' LetPl = {maxi:iEvd. Then PI < n. We shall prove that 
VI = {I, .. . ,pd. For suppose this is false. Then there exists i, 1 < i < Pi' 
such that i If. VI' Since G[vd is irreducible, there is a nonzero cycle P = 

(1, m1' ... , Tn I,PloPI + 1, ... , n} for G, where m 1, ... , mr belong to VI' But 
Pis not-full since ilf.,B, and hence p violates (5.2.5)(b). Thus VI = {I, .. . ,pd. 
Suppose PI + 1 E n(!J.t). Define u(1) = 1, u(2) = t, and put V2 = n(fJ.t). As 
above, it can be shown that V2 = {PI + 1, ... , P2} for some P2; PI < P2 ~ n. 
Continuing thus we obtain a permutation u of {I, .. " k} and integers 
Po, PI'" ., Pk, 1 = Po < PI < P2 < Pk = n such that Vt =n(fJ.a(t») = 
{PH + 1, .. . ,Pt}, t = 1, ... , k. Hence (5.3.1) is satisfied, and gij #- 0 for 
j = i+ 1 or j = nand i = 1. 

We shall now show that (5.3.2)(b) is also satisfied. Suppose j > i+ 1. If 
gij #- 0, then p = (1, ... , i,j, ... , n) is a nonzero cycle for G, and y n VI #- <p, 
Y n Vk #- <p. This contradicts (5.2.5). It follows thatgij = 0 wheneverj > i+ 1. 
Now supposej ~ i, andj E Vj' i E V" s #- t. If gij #- 0, then P = U,j+ 1, ... , i) 
is a nonzero cycle for G, with either 1 E,B or n If. ,B and,B n Vs #- <p, P n Vt #- <p. 
This again contradicts (5.2.5) and so gij = O. 

A matrix C is a full cycle matrix if there is a full cycle (hI' ... , hn) such 
that cij #- 0 if and only if i = hp, j = hp+1' 1 ~ p ~ n, or i = hm j = hI' 
The following result is related to a result for M-matrices stated in Engel
Schneider (1973a, Theorem 1 (IV)). 

5.5) COROLLARY Let A E T(n) and suppose det A > O. If I = /(A) then the 
following are equivalent. 

5.5.1) 

5.5.2) 

n n n 
det A = IT aii- IT (aii-/) == IT aii' 

i=l i=l i=l 
A = D+C 

where D = diag (all' a22' ... , ann) and C is afull cycle matrix. 

6. CONDITIONS ON co-MATRICES 

6.1)DEFINITION A cycle l' on (n)iscalleda-minimalcycleforAifITiA) #- 0 
and, for every cycle p, with ,B c y, iliA) = o. 
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6.2) LEMMA Let A E cn", and suppose that for all p., ¢ c p. c (n) and v, 
¢ eve p., B = A[p.] satisfies 

6.2.1) 0 ~ det B ~ det B[v] det B(v). 

6.2.2) Then, for every cycle y minimal for A, ( _1)lyl-1 IT/A) < o. 
Proof Let y by a minimal cycle for A. Since (6.2.1) holds for A [y], 

IT au ~ det A[Y]. But det A[y] = IT au + ( -1)lyl-1 ITy(A). 
iey iey 

We define r" to be the set of cycles y with y = ji. 

6.3) LEMMA Let A E en, then the following are equivalent 

6.3.1) det A[p.] E~, for ¢ c p. ~ (n) , 

{

a) au E ~, i = 1, ... , n, 
6.3.2) b) For all p., ¢ c p. ~ (n), LIT/A) E R 

yer" 

Proof (6.3.1) => (6.3.2). By induction on n. The result is clearly true if 
n = 1. So let n > 1, and suppose LIT/A) E ~, for ¢ c p. c (n ) . Since 

yer" 
[see Engel (1973) or Maybee-Quirk (1969)] 

6.3.3) det A = au det A(1) + L ( _1)1,,1- 1 det A(p.)( L ITiA)), 
{l}c::"S (n) yer" 

it follows that L ITlA) E ~. 
yer(n) 

(6.3.2) => (6.3.1). By induction on n. The result is true for n = 1, and the 
inductive step follows immediately from (6.3.3). 

Let A E w(,,). Since A + tI E 't"(n) for sufficiently large t, by (6.2), 
(-1)lyl-1IT/A) < 0 

for each minimal cycle y, and by (6.3), LIT/A) E ~, for each 
yer" 

p., ¢ c p. ~ (n). 

If A E cn", the above conditions do not imply that A E w ( n) . Examples are 
given in (7.2) and (7.3). However, if we replace (6.3.2) by a st~onger condition 
we obtain: 

6.4) THEOREM Let A E cnn
• If 

{

a) au E ~, 

6.4.1) b) (-1)11'1+1 L ITiA) ~ 0, forall p.,p. ~ (n), 1p.1 > 1, 
yer" 

then A E W(n). 

Proof The proof is by induction. The result is true if n = 1. So let n > 1 
and suppose that A[fl] E WI" if ¢ c p. c (n). We note 

12 
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det (A + tI) = (all + t) det (A + tI)(1) 

+ L ( _1)IIlI-l det (A + tI))(Il)·( L rqA)) 
{l)C:Il~(n> yerjL 

By Lemma (6.3), det A E IR, and so, for large t > 0, det(A + tI) > 0. Let 
s = -1(A(1)). Then by inductive assumption, det(A +sI)(!l) ~ 0, for 
{I} ellS;; <n). Hence det(A + sI) ~ 0. It follows that there is an t, 
t ~ -1(A(1)) such that det(A + tI) = 0. 

The condition (6.4.1) is not necessary for AE w(n>, see (7.4). 

Remark Suppose that B E IRnn is nonnegative (viz. bij ~ 0, i,j = 1, ... , n). 
Then A = -B obviously satisfies (6.4.1). Thus Theorem (6.4) implies a weak 
form of the Perron-Frobenius theorem: The matrIx B has a real eigenvalue 
m = -leA), and m ~ ° since leA) ~ min{aii:i E <n)}. Further, 111eorems 
(3.6) and (6.4) combined furnish a proof that A E '"(n> if A is an M-matrix 
as originally defined by Ostrowski (1937), viz. aij ~ 0, i i= j, i,j = 1, ... , n, 
and det A[Il] ~ 0, for all 11, ¢ c J.l S;; <n). -

Our last two theorems will characterize matrices which are c-equivalent 
to matrices with nonpositive off-diagonal elements. 

6.5) LEMMA Let BEen and suppose that IIy(B) E IR, for all cycles y. Then 
the following are equivalent: 

6.5.1) IIy(B) ~ 0, for all cycles y, 

6.5.2) L Ily(B) ~ 0, for all 11, ¢ ellS;; <n), 1111 > l. 
yerjL 

Proof (6.5.1) => (6.5.2). Trivial. 
(6.5.2) => (6.5.1). The result is vacuously satisfied if n = l. 

Suppose that n ~ 2 and that the implication holds for B[Il], ¢ c 11 c <n). 
If Ily(B) = 0, for all full cycles y, then there is nothing to prove. So suppose 
there exists a nonzero full cycle for B. Since Ily(B) E IR, for y E r(II>' it follows 
from (6.5.2) that there is a full cycle p such that IlP(B) > 0. Let y be any 
full cycle, y i= p. They by Lemma (2.1) and our inductive hypothesis, 
IIp(B) IliB) ~ 0. Hence Ily(B) ~ 0. 

In Lemma (6.5) we cannot drop the hypothesis that IliB) E IR. For example 
let A E 1C33 be a Hermitian matrix such that a12 = a23 = a31 = e" i/6. 

6.6) THEOREM Let A E ICnn and suppose that Ily(A) E IRfor all cycles y. Then 
condition (6.4.1) is equivalent to: 

6.6.1) There exists an ME IRnn such that m ij ~ 0, i i= j, i,j = 1, ... , n, and 
M "'c A. 

Proof (6.6.1) => (6.4.1). Put B = -A in Lemma (6.5). 

(6.4.1) => (6.6.1). Define ME 1R"" by 
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mii = au, i = 1, ... , nand mij = -Iaijl, i i= j, i,j = 1, ... , n. 

Then, by Lemma (6.5), IIi - A) ~ 0 for all cycles y. Since also II1( - M) ~ 0, 
we deduce (6.6.1). 

6.7) COROLLARY Let A E IRnn and suppose there is an M-matrix N such that 
det A[Il] = det N[JL], for all Il, cjJ ell£; (n). Then A is c-equivalent to an 
M-matrix. 

Proof By Theorem (6.6), there is an ME IRnn with mij ~ 0, i i= j, 
i,j = 1, ... , n such that M ~ cA. But, since det M[Il] = det N[JL], for 
cjJ ell£; (n), it follows that M is an M-matrix. 

In fact, the matrix M can be chosen as mu = a.it mij = -Iaijl, i i= j. 
A simple example (due to W. Hurewicz) of a matrix A E 1R44 such that 
det A[Il] ~ 0, cjJ ell£; (n), but A is not c-equivalent to an M-matrix is 
given in Samuelson (1944). Another example is the matrix A2 E 1R33 in (7.2) or 

A = [~ ~ ~l 
1 00. 

6.8) THEOREM Let A E cnn. Thefollowing are equivalent: 

6.6.1) There exists ME IRnn such that mij ~ 0, i i= j, i,j = 1, ... , n, and 
A ~cM, 

6.8.1) If BEen satisfies bij = aij or bij = 0, 1 ~ i,j ~ n, then BE w(n)' 

Proof (6.6.1) => (6.8.1). Clearly bii E IR, i = 1, ... , n. Clearly 
(-I)I1'I+1IIy(A) = (-1)111+ 1IIy(M) ~ O. 

Hence also 
( -1)111 + 1 IIlB) ~ O. 

Thus BE w(n), by Theorem (6.4). 

(6.8.1) => (6.6.1). Let y = (Pl, .. . ,Pk) be a nonzero cycle for A. Define B 
by bij = aij if for some q, 1 ~ q < k, i = Pq and j = Pq+l' or i = Pk and 
j = Pl and bij = 0, otherwise. Thus y is a minimal cycle for B, and since 
BE w(n), it follows by Lemma (6.2) that 

(-1)111-1 lIlA) = (-1)I YI-1IIy(B) < O. 

Hence for all cycles y, (_1)111-1 IIy(A) ~ O. Thus A ~ eM, where m ii = 
ail E IR and mij = -Iaul ~ 0, for i i= j, 1 ~ i,j ~ n. 

7. EXAMPLES AND OPEN QUESTIONS 

7.1) There is an Al E cnn such that Al E'r(n), -Al E w(n) but Al is not weakly 
sign-symmetric in the sense of Kotelyanski (1953) and Carlson (1967). Hence, 
by Carlson (1967, Theorem 1), the matrix Al does not satisfy the generalized 
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Hadamard inequalities discussed by Carlson (1967) [see formula (2)] . These 
generalized inequalities were proved for positive definite matrices by Krull 
(1958). For totally nonnegative matrices see Gantmacher-Krein (1960, p. 
111), and for M-matrices by Fan (1960), formula (12), see also Fan (1968). 
Let 

[
2 1 IJ 

Al = 1 2 0 
1 1 2 . 

Then 
Spec Al[23] = {2}, 

Spec A l [12] = Spec Al[13] = {1,3}, 

SpecAl = {1,t(5± .j5)}. 
Observe that 

9 = det Al[12] det Al[13] < det Al det A l [1] = 10, 

and that det Al[12113] det Al[13112] < O. The matrix Al is also an example 
of a matrix in 't'<n) which is not c-equivalent to a Hermitian, totally nonnegative 
or M-matrix. 

7.2) There is an A2 E 1833 such that A2 is positive sign-symmetric, [Carlson 
(1974)], but A if: (O<n) ' For, let 

A2 = [~ ~ ~l 
215 

Observe that Spec A2 [.u] n ~ =f. 4>, for 4> c fJ. ~ <3), but 

and 
Spec A2[12] = {5±.j2}, 

SpecA2 = {8, t (7±.j3i)}. 

Hence I(A2) > I(A2[1'2]). 
Another example is the matrix A in Carlson (1974). 

7.3) The ma~rix A2 in (7.2) is also an example of a matrix which satisfies 
the conditions (6.2.2), (6.3.1) and (6.3.2), but which is not in (O<n) ' Another 
example (which is not weakly sign symmetric is) 

A3 = [~ ~ ~l = A 2 -3I. 
212 

7.4) There is an A4 E (O<n ) which does not satisfy condition (6.4.1) : 

A4 = [~ ~ ~l 
1 1 2. 
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Then L IIlA4) > O. Clearly, A4 is Hermitian. 
Iyl = (3) 

7.5) Open Questions 
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i) We do not know how to characterize A E w(n) in terms of the cyclic 
products IIlA). 

ii) We do not know if every A E .(n) is nonnegative semistable, viz. has 
Re A ~ 0 for A E Spec A, cf. Johnson (1974) for a related question. 
For n ~ 3 the result is a consequence of Carlson (1974, Theorem 3). 

iii) If A E .(n) and D = diag(d1, ••. , dn), where d; ~ 0, i = 1, ... , n, is 
(A + D) E .(n) ? 

iv) Let A E w(n) and suppose that det(A[p.jD > 0 where Jl; = {I, ... , i}. 
Is A E .(n) [cf. Theorem (3.6)]? 
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