
On the Geometry of Dual Pairs 

By B. E. Cain, * B. D. Saunders, * and Hans Schneider* 

The set of dual pairs of any norm v equivalent to a Hilbert norm is shown to be 
naturally homeomorphic to the sphere of the Hilbert space. The proof begins 
with a known result showing the representability of every vector as a sum of two 
orthogonal vectors, one coming from a cone and the other from its dual (a 
generalization of representation by orthogonal subspaces). The key theorem, 
showing that every non-zero vector has a positive multiple which is the sum of 
two v-dual vectors, follows from this and in turn provides the required homeo­
morphism. One consequence of this topological equivalence is the arc-con­
nectedness of the numerical range determined by v. 

I. Introduction 

If v is a norm equivalent to the Hilbert norm on a Hilbert space X with inner 
product < " . ), then the numerical range with respect to v of an operator A is the 
image under the continuous mapping (x,y)~<Ax,y) of the set of dual pairs, 

II(v) = {(x,y) E X X X: <x,y)= v(x)v*(y) = I}. 

Here v* is the norm dual to v (definitions follow). The same numerical range 
results when II(v) is replaced by its subset, 

IIo(v) = {(x,y) E X X X: <x,y)= v(x) = v*(y) = I}. 

We develop natural homeomorphisms between IIo(v) and the unit sphere S of 
X, and between II(v) and the cylinder S X R; cf. Theorem 7. These sets are 
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arc-connected when dimRX> 1; consequently, the numerical range is arcwise 
connected. This is a partial solution to the following question: Is the numerical 
range of a bounded linear operator on a normed linear space arcwise connected 
(Bonsall and Duncan [1], p. 129)? 

Our main tool is Theorem 6, which is a direct application of the orthogonal 
decomposition of a Hilbert space with respect to dual (polar) cones. This 
decomposition is a generalization of the classical decomposition with respect to 
closed orthogonal subspaces.1 

Several duality notions playa role in this paper. First we have the dual norms 
(more generally, dual Minkowski functionals) and their associated dual pairs 
used in defining the numerical range. This duality is in correspondence with the 
notion of dual or polar convex bodies. Secondly, as mentioned above, dual 
cones are used. We employ a notion of dual set which encompasses both the 
cone duality and the norm ball duality. 

We are indebted to Chr. Zenger for pointing out a connection between our 
work and the theory of monotone sets (e.g., Brezis [2]). This theory employs 
another duality concept, that of conjugate convex functions (cf. Fenchel [3], 
Moreau [8], Rockafellar [9]), and, as indicated in the sequel, provides alternate 
proofs of some of our results. However, we are able to give particularly direct 
and geometric arguments because we restrict our attention to positive homoge­
neous convex functions (Fenchel et. al. treat a larger class of convex functions). 

The numerical range is most useful when X is a complex space. Then, for 
example, its closure contains the spectrum. However, most of the arguments 
used here are real in spirit. For clarity, then, we use real Hilbert spaces in Sec. 
II, and only bring in the complex numbers in Sec. III, where the numerical 
range is discussed. 

II. Decompositions, homeomorphisms 

Let (X, < ., . » be a real Hilbert space. We denote by 0' the set of functions 
P : X ~[O, 00] which satisfy 

(1) p(Ax + (1- A)Y) « Ap(X) + (1 - A)p(y) for x, y E X, A E (0,1) (convexity), 
(2) p(Ax) = Ap(X) for A>O (positive homogeneity), 
(3) {x: p(x) « A) is closed for all A E [0, 00] (lower semicontinuity). 
(4) p(O) = 0 (hence p =t= 00). 

Let iffi denote the collection of closed, convex subsets of X containing the 
origin. For pE0', the set Bp={x:p(x)« l} is in iffi, and conversely the 
Minkowski functional PB of a set BE iffi is in 0' : PB(x)=inf{t > 0: x E tB} (by 
convention in f0 = 00). This correspondence is one-to-one and onto. It commutes 
with the taking of duals, i.e., for 

B*={yEX:<X,y)«l forall xEB}, 

and 

p*(y)=inf{t>O:<y,x)«tp(x) forall XEX}, 

IFurther applications of this decomposition may be found in [10] and [II] 
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we have 
LEMMA 1. PB.=(PB)* and Bp.=(Bp)*. 
Proof: 

PB. (y) =inf{ t >O:y E tB*} 

=inf{t >0 : <y ,x ) < t for aU x EB} 

=inf{ t >0: <y,z ) < tPB (z) for aU z E %} 

= (PB)*(Y) · 
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(Note: PB(Z) =0 implies {sz:s >O} c B; so <y,x ) < t 'v'x E % implies <y,z ) < 0 
= tPB(z).) 

The commutativity which holds for the correspondence must also hold for its 
inverse; so Bp.=(Bp)*. • 

Associated with dual functionals is a Schwarz inequality <y,x) < p(x)p*(y), 
which follows immediately from the definition of P* except when O· 00 occurs on 
the right-hand side. In the sequel we apply the Schwarz inequality only when we 
know p(x) and p*(y) are both finite. 

It is readily verified for A, B E c] that A * E c], that A = A **, and that A C B 
implies B* CA *. Similar facts may be established for the elements of 0' by using 
the correspondence (which is order-reversing). 

We single out certain elements of 0' and C]. Quasinorms are those P E 0' for 
which p(x) >0 for aU x".,O; seminorms satisfy p(x) < 00 for all x E %. Norms are 
those P E 0' which are both quasinorms and seminorms. Homogeneous norms are 
norms which satisfy p(tx)=ltlp(x) for all tER, xE%. We call the sets B E0i> 
for which tB C B for all t;;' 0 cones; closed subspaces of %, for example, are 
cones. 

We remark that when K E 0i> is a cone, K* = {y E % : <x,y ) < 0 for all 
xEK}, since <x,y» O implies <tx,y ) > I for large enough t. Also, when pE0' 
is a homogeneous norm, 

* _ { l<x,y)1 } 
P (y) - sup () . 

x""o P X 

Thus the star operations we have defined coincide with the more customary ones 
in these two situations. In particular, when K is a cone, K* is also. 

The following lemma enables us to obtain information about dual functions 
in 0' from information about dual cones. Here % EBR is a Hilbert space under 
the inner product <xEBr, yEBs ) = <x,y ) +rs for x, yE%; r, sER. For B Ec] 

and P=PB' 

K+ (B)={xEBr:r;;'p(x)} 

and 

K-(B)={xEBr:r< -p(x)} 

are cones of % EB R. 
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LEMMA 2. If B E'iB , then K + (B)* = K - (B*). 
Proof: The lower half space K - (JC) = {x EB r: x EX, r < O} contains K - (B*). 

Since OEB, K+({O})~K+(B), so that K+(B)*~K+({O})*=K-(X). Now 
since both K - (B*) and K + (B)* are cones in the lower half space, it suffices to 
show both have the same intersection with XEB{ -I}. Note that {xEBl :xEB} 
generates K+(B), and thus 

~ <x,y) < 1 forall xEB 

~ <xEBl,yEB-l)<O forall xEB 

~ yEB - 1 EK+ (B)*. • 

The sets of dual pairs II(v) and IIo(v) have been defined for norms v. These 
definitions apply equally well for arbitrary p E <!P. We need, however, yet 
another set of pairs, namely M(p)={(x,y)EXXX:<x,y)=p(x)p*(y) and 
p(x)=p*(y)}. Note that IIo(p)=II(p)n M(p). 

LEMMA 3. If P E <!P, then M (p) is homeomorphic (with respect to the topology 
inherited from the product topology on X X X) to its image under the addition 

a 
map, (x,y) -7 x+ y. 

Proof: Clearly a is continuous. If (x,y) and (x',y') are points of M(p), then by 
the Schwarz inequality 

<x - x',y - y') = <x,y) - <x,y') - <x',y) + <x',y') 

> p(x)p*(y) - p(x)p*(y') - p(x')p*(y) + p(x')p*(y') 

= [p(x) - p(x')] [p*(y) - p*(y')] 

= [p(x) - p(x') f 
>0. 

Thus for z=x+y and z'=x'+y', 

liz -z'112= Ilx- x'112+ Ily- y'11 2 +2<x- x',y - y') 

> Ilx- x'112+ Ily - y'112. 

Then a is 1-1, since z = z' forces x = x' and y = y'. Further, a-I is continuous, 
because z near z' forces x near x' andy near y'. • 

The first part of the above proof shows that M (p) is a monotone set in the 
sense of Minty [6]. The second part gives a direct proof that the lemma holds for 
monotone sets; d. Minty [5], Theorem 3. 

When K is a cone, (x,y)EM(PK) if and only if xEK,yEK* and <x,y)=O. 
This observation together with Lemma 3 proves all but the existence assertion of 
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the following orthogonal decomposition lemma. This lemma was proven by 
Moreau [7] and independently rediscovered by Schneider and Vidyasagar [12]. 

LEMMA 4. IJ K is a cone in %, then Jor each z E % there is a unique pair x, 
y E % such that 

(i) z=x+y, 
(ii) xEK,yEK*, and 
(iii) <x,y ) =O. 

Moreover, x is the nearest point oj K to z, and y is the nearest point oj K* to z. 
Also x and yare continuous Junctions oj z . 

Now that we have some information about dual cones, we can use Lemma 1 
to obtain information about dual pairs. 

THEOREM 5. IJ pEq}l, then M(p) is homeomorphic to % via the addition map, 
a 

(x,y)~ x+ y. 
ProoJ: In view of Lemma 3, it suffices to show that every point z of % may 

be written as z=x+y, where (x,y)EM(p). This is achieved by applying Lemma 
4 to zEBO in %EBR with respect to the cone K+(B), where B=Bp. Since by 
Lemma 2, K+(B)* = K-(B*), the decomposition is zEBO= xEBr+ yEB - r, where 
<x,y ) =r2 and p(x) < r, p*(y) < r. But, by the Schwarz inequality, r2= <x,y ) < 
p(x)p*(y) < r2, which forces p(x)=r=p*(y). Thus (x,y)EM(p) as required .• 

Theorem 5 may be obtained by applying Proposition 4.a of Moreau [8] to the 
function ip2. Another approach is via a theorem of Rockafellar [9]. He proves 
that a set M in % X % is the graph of the sub gradient of a l.s.c. proper convex 
function if and only if M is a maximal cyclically monotone set. Then Minty [5] 
has shown that maximal monotone sets (which include all maximal cyclically 
monotone sets in the Hilbert-space :;etting) are homeomorphic to % under the 
addition map a. M(p) is the graph of the subgradient of 4p2, so that Theorem 5 
follows. 

We have included Theorem 5 mainly to point up the relationship of our work 
to the monotone-function theory. Theorem 5 is not used in the sequel, but could 
be used to prove Theorem 7(a) and hence Theorem 9. On the other hand, 
Theorems 6 and 7(b) do not appear to follow from monotone-function theory. 
Indeed, l1(p) is not a monotone set, though it is a monotone set in the sense of 
Zenger [13]. 

When p is a norm, xEBr is on the algebraic boundary of K+(Bp) just in case 
r = p(x). This observation facilitates a more complete exploitation of Lemma 4. 

THEOREM 6. IJ P E q}l and p or p* is a norm, then Jor z E % and 8 E R the 
Jollowing statements are equivalent: 

(1) - p*(z) < 8 < p(z). 
(2) There exists a pair (x,y) E % X % such that 

(i) z=x+y, 
(ii) <x,y)=p(x)p*(y), 
(iii) 8=p(x)-p*(y). 

When (1) holds, the pair (x,y) oj (2) is unique. Furthermore, x, y, p(x), and 
p*(y) are continuous Junctions oj z and 8. 

ProoJ: Without loss of generality, suppose p is a norm. To show (1) implies 
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(2), we apply Lemma 4 to the cone K= K+(Bp), obtaining zEElc5 = xEElr+ yEEl - s 
with r> p(x), s > p*(y), and <x,y) = rs. Since c5 < p(z), z EEl c5 is not in the interior 
of K, whence xEElr, the nearest point of K, is on the boundary, i.e., r=p(x). If 
- p*(z) = c5, then z EEl c5 E K*, x = 0, and (2) follows. If - p*(z) < c5, then z EEl c5 g 
K*, x0;60, hence p(x)0;60. Then rs=<x,y) < p(x)p*(y) < rs implies p*(y)=s, so 
that (2) follows. 

To prove the converse, consider a pair (x,y) satisfying (2). Observe that 
xEElp(x)+yEEl-p*(y)=zEElc5 is the decomposition of zEElc5 with respect to K. If 
x 0;60 and y 0;60, then z EElc5 is in neither K nor K*, so that - p*(z) < c5 < p(z). But 
if x=O, c5= -p*(z) and ify=O, c5=p(z). This proves that (2) implies (1). 

The uniqueness of x andy and continuity of x,y, p(x), and p*(y) follow from 
the corresponding properties of the Lemma 4 decomposition. • 

We turn our attention now to the sets of dual pairs, II(p) and IIo(p). 
THEOREM 7. Let p E 0' . 

(a) If p or p* is a norm, then IIo(p) is homeomorphic to the unit sphere S of X. 
(b) If p and p* are both norms, then II(p) is homeomorphic to the cylinder 

SXR. 
Proof: First note that the norms in 0' are always continuous functions. For if 

p E 0' is a norm, then X = Un {x: p(x) < n} expresses X as a union of closed 
sets, since p is l.s.c. By the Baire category theorem, these sets have interior; in 
fact, AS r.:;;, B p for some A> 0. Then p(x) < A -III x II for x E X, which implies p is 
continuous. We now assume without loss of generality that p is a norm. 

Let C be the subset of the cylinder S EEl R in X EEl R given by C = {z EEl c5 E X EEl 
R: Ilzll=l, -p*(z)<c5<p(z)}. We shall show that C is homeomorphic to II(p). 
Let z EEl c5 E C. Then we may apply Theorem 6 to get a unique pair x, y E X such 
that z=x+y, p(x)-p*(y)=c5, and <x,y)=p(x)p*(y). Similarly each point of 
the ray t(zEElc5), t > 0, is decomposed by the pair (tx,ty). Since <tx,ty)= 
t 2p(x)p*(y), it is clear that to=[p(x)p*(Y)rl/2 is the only value of t for which 
(tx,ty)EII(p). Let </> be the map which takes zEElc5 E C to (tox, toY) EII(p). The 
continuity of </> follows from that of x,y, p(x), and p*(y) in z and c5. [To see that 
to< 00 note that p* is a quasinorm. Thus p(x)p*(y) =0 would imply that x or y is 
0, and hence that c5= -p*(z) or p(z).] 

Let 1/1 : II(p)~ S EEl R be given by 

1/I(x,y)= IIX~YII {[x+yJEEl[p(x)-p*(y)]}. 

Then 1/1 is continuous. [Note that p is continuous and p*(y)= ljp(x) when 
(x,y) EII(p).]. 

For (x,y)EII(p) let z=x+y and c5=p(x)-p*(y). Then Theorem 6 shows 
that -p*(z)<c5<p(z), and its proof explains that since x 0;6 00;6 y, we have 
- p*(z) < c5 < p(z). Thus the range of 1/1 lies in C. 

Now it is simple to verify that </> and 1/1 are inverses of each other and hence 
homeomorphisms. We have proved that C is homeomorphic to II(p). 

To prove (a), we observe that the restriction of </> to S EEl ° is inverse to the 
restriction of 1/1 to IIo(p). 

Next we prove (b). If p and p* are both norms, and hence both finite, 
continuous functions of z, then C is homeomorphic to the cylinder X X R via the 



On the Geometry of Dual Pairs 

map 

zEB8~ 
(z, P(z~ -8) 
(Z'P*(Z~+8) 

This completes the proof. • 
Remarks: 

for O<8<p(z) 

for -p*(z)<8<O. 

77 

(1) When p and p* are both norms and hence both equivalent to the Hilbert 
norm, the homeomorphism l/;: IIo(p)~S and its inverse cp are uniformly continu-

ous. The map (x,y)~llx + yll-l VI + [p(x) - p*(y) J2 (x + y)EB[p(x)- p*(y)] is a 
uniformly continuous homeomorphism from II(p) onto the hyperboloid {zEB 
8: Ilz112- 8 2= 1} with a uniformly continuous inverse. 

(2) The dual of a seminorm is a quasinorm. When X is finite-dimensional, 
the dual of a quasinorm is also a seminorm (and hence the hypotheses of the two 
statements in Theorem 7 are equivalent). When X is infinite-dimensional, this 
need not be true. In fact, the dual of a norm may fail to be a seminorm. For 
example, let ~ be the space of real sequences x = (xn ) for which the function 
vp(x)=(~lxnIP)I/P is finite. Since Iqc;;,~ for q<p, the functions vp restricted to the 
Hilbert space 12 are norms when 2 <po But for such p, v; = Vq where pq = p + q. 
Then q < 2, and Vq is a quasinorm, but not a semi norm on 12• 

(3) The image of IIo(p) under the addition map is the boundary of a convex 
set in many cases. In R2 this holds, for example, for the Holder norms vp. 
However, Fig. 1 indicates a case where it fails. 

B 
P* 

(1/3, 2/3) 

Figure I 

(1,2) 

(10/3, 2/3) 

(3,0 
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III. Complex spaces, numerical range 

If (X, < " . ») is a complex Hilbert space, then (X, Re< " . ») is a real Hilbert 
space to which the preceeding discussion applies. In particular, for a norm v on 
X, IIo(v) now has the form 

IIo(v, R) = {(x,y) E X X X: Re<x,y) = v(x) = v*(y) = I}. 

However, we wish to consider the numerical range of the continuous function 
A :X~X, which is the set {<Ax,y):(x,y)EIIo(v,C)}, where 

IIo(v, C) = {(x,y) E X X X: <x,y) = v(x) = v*(y) = I}. 

LEMMA 8. If v is a norm on a complex Hilbert space X, and v is homogeneous 
(i.e., v(ax) = lalv(x) for all a EC, x E X), then IIo(v, R) = IIo(v, C). 

Proof: Since Rel=l, IIo(v,C)~IIo(v,R). If (x,y)EIIo(v,R), then Re<x,y) = 
v(x)v*(y) = 1. If Im<x,y)~O, then there is a lI.with IlI.l=l such that 1 < Rell.· 
<x,y)';;; I <lI.x,y) I .;;; v (lI.x)v*(y) = IlI.l v(x)v*(y) = 1. Thus we must have Im<x,y) = 
o and (x,y) E IIo(v, C). • 

THEOREM 9. If v is a homogeneous norm equivalent to the given norm of a 
complex Hilbert space X, then for each continuous function A: X~ X the 
numerical range Vp(A) is arcwise connected. 

Proof: O(x,y)=<Ax,y) is continuous on XxX. If <I>:S~IIo(v,R) IS the 
homeomorphism of Theorem 7, then 

~ 0 
S~ IIo(v, R) = IIo(v, C) ~ Vp (A) 

is continuous. Since S is arcwise connected, Vp(A) is path-connected and hence 
arcwise connected (cf. Hocking and Young [4]). • 

COROLLARY 10. For any norm v on cn and any continuous function A : cn~ 
Cn, Vp(A) is arc wise connected. 

Proof: Theorem 9 applies since all norms on Cn are equivalent to the 
Euclidean norm. • 

Note: After this work was completed the authors learned that C. M. McGregor 
("Some results in the theory of numerical ranges," Thesis, University of 
Aberdeen, 1971) has proved for finite dimensional spaces that 7To( p.,) and S are 
homeomorphic and that V p is arcwise connected. He remarks that his method 
works in some infinite dimensional spaces. 
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