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ABSTRACT 

The rectangular matrix version of the Fuglede-Putnam theorem is used to prove 
that, for rectangular complex matrices A and B, both AB and BA are normal if and 
only if A*AB=BAA* and B*BA=ABB*. We deduce some results relating the rank 
of A and the factors in a polar decomposition of A to the normality of AB and BA. 

1 

Under the assumption that A and B are nonnal n X n complex matrices, 
N. A. Wiegmann [12] proved that AB and BA are nonnal if and only if 
A*AB=BAA* and B*BA=ABB*. In [13], Wiegmann improved this by 
omitting the requirement that B be nonnal. In this note, we show that the 
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assumption on the normality of A can also be removed. Moreover, we shall 
assume that A and B are rectangular matrices of appropriate dimensions. 

Let A be a nonsingular normal matrix, and let A = UH, where U is unitary 
and H is positive definite Hermitian. Clarifying a result of Wiegmann's [13], 
Gibson [4] remarks that AB and BA are normal if and only if BU is normal 
and HBU = BUH. In Theorems 3, 4, and 5, we remove the restriction that A 
be normal, and we use Theorem 2 to investigate to what extent this result 
can be generalized to singular A. 

For the sake of completeness, we give an elementary proof of the 
rectangular matrix version of the Fuglede-Putnam theorem [2; 8; 9; 10, 
p.300;1l], which is essentially to be found in [6, p. 65]. Our principal result 
(Theorem 2) will follow immediately from this theorem. For a related 
application of the Fuglede-Putnam theorem see [5; 6, p. 68]. 

2 

Denote by cmn the set of all m X n complex matrices. 

THEOREM 1 (Fuglede-Putnam). Let PECmm
, Q Ecnn

, TEcmn • If P and 
Q are normal and PT= TQ, then P*T= TQ*. 

Proof Since the matrix PEEl Q is normal, there exists a scalar polynomial 
g such that (P EEl Q)* = g(P EEl Q). This implies that P* = g(P) and Q* = g(Q). 
Hence, P*T= g(P)T= Tg(Q)= TQ*. • 

REMARK 1. Let f be a function defined on the spectra of P E cmm and 
Q Ecnn

, in the sense of Gantmacher [3, p. 96]. Then there exists a poly
nomial g such that f(P)=g(P) and f(Q)=g(Q). Hence, if TEcmn , it 
follows that PT = TQ implies that 

f(P)T= g(P)T= Tg( Q) = Tf( Q). 

Letting f("A)=X for the normal matrices P and Q of Theorem 1, we obtain 
our proof of that theorem. In the proof 9f Theorem 3 we use another 
application of this result. Let f ("A) ="A 1/2"> 0 for "A"> O. If H E cmm and 
K Ecnn are positive semidefinite Hermitian, then H=f(H2) and K=f(K 2). 
Hence, if TEcmn with H2y= TK2, then HT= TK. 

THEOREM 2. Let A Ecmn and B Ecnm
• Then AB and BA are normal if 

and only if A * AB = BAA '" and ABB* = B* BA. 
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Proof Assume that AB and BA are normal. Then (AB)* and (BA)* are 
normal. Hence, since 

A *(AB)* =A *B* A * = (BA)*A *, 

by Theorem 1, A*AB=BAA*. Similarly, from (AB)*B* = B*(BA)* , we 
obtain ABB*=B*BA. Conversely, if A*AB=BAA* and ABB* = B*BA , 
then multiplying the first equation by B* and the second one by A * we see 
that AB and BA are normal. • 

REMARK 2. A result of J. Williamson [14] can be used instead of 
Theorem 1 to obtain a proof of Theorem 2. Assume that AB and BA are 
normal. It follows from Williamson's Theorem 2 that there exist unitary 
matrices U E c mm

, V E cnn and rectangular diagonal matrices F, G E cmn 

such that A = UFV and B* = UGV. Then 

A*AB= V*F*FG*U*= V*G*FF*U*=BAA*, 

ABB*= UFG*GV= UGG*FV=B*BA. 

REMARK 3. The result that Theorem 1 implies Theorem 2 may be put 
into a more general context. Let %( be an algebra over the complex numbers 
with an involution * (see [1]). An element P E %( is called normal if pp* 
= p* P. We define %( to be a Fuglede-Putnam algebra if, for all normal 
P, Q E %( and T E %( , the relation PT = TQ implies P* T = TQ*. Let %( be a 
Fuglede-Putnam algebra and let A,B E%(. We have shown that AB and BA 
are normal if and only if A * AB = BAA * and ABB* = B* BA. An example of a 
Fuglede-Putnam algebra is the algebra of all bounded operators on a Hilbert 
space, with involution the usual adjoint. Other examples may be found in [7]. 

3 

It is well known that every A E cnn has a polar decomposition as A = UH 
where H Ecnn is positive semidefinite Hermitian and U ECnn is unitary. If 
A is singular, U is not unique. We have the follOwing theorem. 

THEOREM 3. Let A = UH, where H E cnn is positive semidefinite Her
mitian and U E cnn is unitary, and let B E cnn

• 

(a) If BU is rumnal and HBU = BUH, then AB and BA are normal. 
(b) If AB and BA are rumnal, then HBU = BUH. 



56 EMERIC DEUTSCH ET AL. 

Proof. Suppose that BU is nonnal and HBU = BUH. Then 

BAA * = BUH( UH)* = BUH2U* = H 2BUU* = H2B= (UH)* UHB = A* AB. 

(1) 

Since BU is normal and HBU = BUH, from Theorem 1, we also have 
H (BU)* =:= (BU)* H. Hence, 

ABB*= UHBU(BU)*= UBU(BU)*H= U(BU)*BUH 

= UU*B*BUH=B*BA. (2) 

Therefore, by Theorem 2, AB and BA are normal. This proves (a). To prove 
(b), let AB and BA be nonnal and note that there exists a positive 
semidefinite Hennitian K Ecnn such that A = KU. Using Theorem 2, we 
obtain 

H2B=A*AB=BAA*=BK2. 

Hence, since Hand K are positive semidefinite Hennitian, HB = BK (see 
Remark 1). Then HBU = BKU = BUH. • 

THEOREM 4. Let A = UH, where H E cnn is positive semidefinite Her
mitian and U E cnn is unitary. The following are equivalent: 

(a) rank(A) ~ n -1; 
(b) if B Ecnn such that AB and BA are normal, then BU is normal. 

Proof. Let rank(A) ~ n-1, and let B Ecnn be such that AB and BA are 
normal. From Theorem 2 and part (b) of Theorem 3, we see that 

(BU)*BUH= U*B*BA= U*ABB*=HBU(BU)*=BU(BU)*H. (3) 

Hence, if rank(H)=rank(A)=n, then BU is normal. Suppose that rank(A) 
= n - 1. Then there exist a unitary V E cnn and a positive definite Hermitian 
matrix L of order n - 1 such that 

(4) 
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Let 

VBUV*= [ Gll 

GZ1 
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where G22 E C. Since L is nonsingular, from part (b) of Theorem 3 we see 
that G1Z = 0 and GZ1 = O. Then Eq. (3) implies that Gll is normal. Moreover, 
since G22 EC, we see that BU is normal. Hence (a)=?(b). 

Let rank(A) = k < n - 1. There exist L E Ckk and unitary V E cnn such that 
VHV* has the form (4). Since m = n - k > 2, there exists R E cmm such that 
R is not normal. Let 

Then 

BUH=HBU, BU(BU)*H= (BU)* BUH. 

These equations imply A * AB = BAA * and B* BA = ABB* by an argument 
similar to that at the beginning of the proof of Theorem 3 [see (1) and (2)]. 
Hence, by Theorem 2, AB and BA are normal. However, BU is not normal. 
Therefore, (b)=?(a). • 

Clearly, Theorems 3 and 4 imply the following theorem. 

THEOREM 5. Let A = UH, where H E cnn is positive semidefinite Her
mitian and U E cnn is unitary. The following are equivalent: 

(a) rank(A) > n -1; 
(b) if B ECnn

, then AB and BA are normal if and only if BU is normal 
and HBU = BUH. 
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