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An elementary proof is given that a bounded multiplicative group of complex 
(real) n X n nonsingular matrices is similar to a unitary (orthogonal) group. Given a 
norm on a complex n-space, it follows that there exists a nonsingular n X n matrix L 
(the lAewner-John matrix for the norm) such that LHL -1 is Hermitian for every 
norm-Hermitian H. Numerous applications of this result are given. 

1. INTRODUCTION 

A bounded multiplicative group of complex (or real) n X n nonsingular 
matrices is similar to a group of unitary (or orthogonal) matrices. For the 
case of infinite groups, this theorem is due to Auerbach [1]. His proof 
depends on the existence of the centroid of a compact convex set in a real 
space (see also [29, p. 57]). A related proof [10, p. 70, 23, p. 51, 34, p. 220, 
44, p. 70] makes use of the existence and invariance of Haar measure of a 
compact group. The purpose of §3 of this paper is to give an elementary and 
self-contained proof of Auerbach's theorem, which does not involve integra
tion. For the special case of the group of isometries for a given norm on 
n-space, a geometric proof, essentially the same as our algebraic one, has 
been given by Rolewicz [36, p. 251] and Gromov [17]. Their main tool is the 
Loewner ellipsoid corresponding to the unit ball of the norm [4, 5, 11, p. 90, 
22, 37]. This is the unique ellipsoid of minimal volume containing a given 
balanced convex body. 1 However, in order to make our entire presentation 

·The research of the first author was supported by NSF Grant GP-32834. The Research of 
the second author was sponsored in part by NSF Grant GP-37978X, by the United States Army 
under Contract No. DA-31-124-ARO-D-462, and by the Science Research Council of the United 
Kingdom. 

IThis ellipsoid is usually called after Loewner, who did not publish this result (cE. [11, pp. 90 
and 414]). The existence of this ellipsoid for general real n-space was first published by John [22] 
(see also [21]). Thus, we shall refer to a corresponding matrix as the Loewner-John matrix. 
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as elementary as possible, we have given a volume-free version of the 
ellipsoid theorem. 

In §4 we use Auerbach's theorem to show the following result on 
norm-Hermitian matrices (Proposition 4.1): If v is a norm and L is the 
Loewner-John matrix for v, defined in §3, then LHL -1 is Hermitian for 
every v-Hermitian matrix H. If the set of all v-Hermitian matrices is denoted 
by X p, and ~p = {H + iK:H, K E Xp}, a more precise statement is 
(Theorem 4.4) 

where X is the set of Hermitian matrices. Proposition 4.1 leads to the 
following principle: In any theorem on Hermitians with a conclusion that 
is invariant under similarity, we may replace the word "Hermitian" by 
"v-Hermitian" in the hypothesis. In §5 we give numerous applications of this 
principle (e.g. Proposition 5.1) and of the stronger result of Theorem 4.4 (e.g. 
Proposition 5.2). We show that many results on Hermitian and normal 
matrices have analogues for norm-Hermitian and norm-normal matrices. Our 
final applications are to inertia theorems. 

2. DEFINITIONS AND NOTATIONS 

Let K denote either the real field R or the complex field C, let Mn (K) 
denote the algebra of n X n matrices over K, and let I denote the identity 
matrix in Mn (K). If A E Mn (K), then we denote by A * the adjoint (conjugate 
transpose) of A, by detA the determinant of A, by A(A) the spectrum of A, 
and by r(A) the spectral radius of A. The range and the null-space of 
A E Mn (K) will be denoted by 0L (A) and q)t (A), respectively. 

If A E Mn (C), then we define the inertia of A, denoted In A, to be the 
ordered triple ('IT+(A),'IT-(A),8(A)), where 'IT + (A), 'IT-(A), and 8(A) are 
respectively the numbers of eigenvalues (counting multiplicities) of A with 
positive, negative, and zero real parts. A matrix A E Mn (C) is said to be 
stable if 'IT + (A) = n, and semi-stable if 'IT - (A) = o. 

A norm v on Kn is said to be standardized [40] if v(e;)=1 (i=I, ... ,n), 
where e; is the unit vector in Kn whose components are equal to zero, except 
for the ith one, which is equal to 'I. A norm v on Kn is said to be absolute 
[20, p. 47], [40] if v(lxl) = v(x) for all x E Kn

, where Ixl denotes the vector 
whose components are the absolute values of the components of x. A norm v 
on Kn is said to be symmetric if it is absolute and if v(Sx) = v(x) for all x E Kn 
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and for all permutation matrices S E Mn (K). 
If v is a norm on Kn, then a matrix A EMn(K) will be said to be a 

v-isometry if v(Ax)=v(x) for all xEKn. 
For a given norm v on en and a given A E Mn (e), we denote by Vv(A) the 

numerical range of A (field of values in [2], Bauer field of values in [30], 
spatial numerical range in [9]), i.e. 

where v D denotes the dual norm of v [20, p. 43]. A matrix A E Mn(e) is said 
to be v-Hermitian if Vv(A)cR, v-positive definite if Vv(A) c(O, + OO}, and 
v-positive semidefinite if Vv(A) C[O, + 00). The set of all v-Hermitian 
matrices will be denoted by Xv' We also denote 

i.e. ~v = Xv + i Xv' Taking into account some well-known properties of the 
numerical range, it can be easily seen that every member of ~v has a unique 
representation of the form H + iK with H,K E Xv' Consequently, if A = H + 
iK(H,K E Xv), then we can define unambiguously A c= H - iK. It is obvious 
that the set ~v is a subspace of Mn (e) and that we have (A + B)C = A C + B C 
and (a:A)C = aA C for all A, BEt and all IX E e. It is also clear that a 
v-Hermitian matrix A is characterized by the relations A E~. and A C = A. A 
matrix A E~. is said to be v-nonnal if HK = KH, where A = H + iK with 
H,K EX •. This is equivalent to the condition A cA =AA c. If X denotes the 
standard Euclidean norm on en (i.e., x(x) = (X*X)1/2 for xEen), then it is 
easy to show that the classes of x-isometries, x-Hermitian matrices, X
positive definite matrices, X-positive semidefinite matrices, and x-normal 
matrices coincide with the classes of unitary, Hermitian (self-adjoint), posi
tive definite, positive semidefinite, and normal matrices, respectively. The 
set of all Hermitian matrices will be denoted by X. 

If Q is a set of complex numbers, then n will denote the set of the 
complex conjugates of the members of Q and co Q will denote the convex 
hull of Q. 

3. ELEMENTARY PROOF OF AUERBACH'S THEOREM 

First we quote a lemma, due essentially to Fan [15] (see also [3, p. 63, 6, 
7, p. 128, 25, p. 115, 27, 31]. It is an application of the inequality between 
the algebraic and geometric mean of two positive numbers. 
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LEMMA 3.1. Let Q and Ql be positive definite matrices in M,,(K). Then 

deti{Q+ Ql) :>(detQdetQl)1/2. 

The equality holds if and only if Q = Ql' 

THEOREM 3.2. Let e be a compact convex set of positive semidefinite 
matrices in M" (K) and suppose that at least one matrix in e is positive 
definite. Then, e contains a unique matrix Q such that 

detQ=sup {detP:P E e}, 

and Q is positive definite. 

Proof The function det: e ~[O, + 00) is continuous, hence it attains its 
supremum at an element Q of the compact set e. Clearly, Q is positive 
definite. In order to prove uniqueness, assume that Ql E e and the detQl 
=detQ. Then Ql is positive definite and by Lemma 3.1, 

det H Q+ Ql) > (detQdetQl)1/2=detQ. 

But t(Q+ Ql)E e, whence 

deti(Q+ Ql)=detQ, 

and so, by the condition for equality in Lemma 3.1, we have Ql = Q. This 
proves the theorem. 

COROLLARY 3.3. Let p be a norm on K". Then, the set f9 = (P E M" (K): 
P positive semidefinite and x· Px " p2( x) 'f/ x E K"} contains a unique element 
Q such that 

detQ=sup {detP:P E f9}. 

The matrix Q is positive definite. 

Proof It is easy to see, making use of the equivalence of norms on K", 
that for f3 sufficiently small and positive, we have f31 E f9 and that f9 is 
compact. The result follows from Theorem 3.2. 

If p is a norm on K" and Q is the positive definite matrix of Corollary 3.3, 
then the set {x E K": x· Qx " I} is the unique ellipsoid of minimal volume 
containing the unit ball of P, i.e., the Loewner ellipsoid corresponding to the 
unit ball of P. The unique positive definite matrix L such that L 2 = Q, will be 
called the Loewner-Iohn matrix associated with P. 



BOUNDED GROUPS AND NORM-HERMITIAN MATRICES 13 

PROPOSITION 3.4. [36, p. 251, 17]. Let." be a norm on KR and let L be 
the Loewner-John matrix associated with.". Then, for every .,,-isometry A we 
have 

(i) A*L2A=L2; 
(ii) LAL -1 is unitary. 

Proof. Let A be a .,,-isometry. Denote B = A * L 2A. Then B is positive 
definite -and 

for all x E Kn, i.e., B belongs to the set E9 of Corollary 3.3. Since 

from the uniqueness property of L 2 it follows that B = L 2, i.e., A * L 2A = L 2. 

Statement (ii) follows at once from (i). 

PROPOSITION 3.5. Let § be a bounded multiplicative group ojmatrices 
in Mn (K) such that I E § . Then, there exists a norm ." on Kn such that every 
member of § is a .,,-isometry. 

Proof. Let II II be any norm on KR. Since § is bounded and IE § , the 
mapping 

.,,(x)= sup II Gxll (xEKn) 
GE@ 

is a norm on Kn. Let A E § . Then 

"'(Ax)= sup IIGAxll= sup IIHxll="'(x) \fxEKn, 
GE§ GE§ 

i.e., A is a .,,-isometry. 

REMARK. The norm." is the smallest norm larger than II II such that 
every member of § is a .,,-isometry. We could also have used the norm .,,', 
where 



14 EMERIC DEUTSCH AND HANS SCHNEIDER 

The norm v'is the largest norm smaller than 1/ 1/ such that every member of 
§ is a v' -isometry. 

THEOREM 3.6. Let § be a bounded multiplicative group of matrices in 
Mn (K) such that I E § . Then, there exists a positive definite L E Mn (K) such 
that LAL -1 is unitary for every A E § . 

Proof By Proposition 3.5, there exists a norm v on Kn such that every 
member of § is a v-isometry. Now, if L is the Loewner-John matrix 
associated with this v, then by Proposition 3.4, LAL -1 is unitary for every 
AE§. 

In the following propositions we determine the Loewner-John matrix 
associated with certain classes of norms on Kn. 

PROPOSITION 3.7. Let v be a standardized norm on Kn such that v> x. 
Then, the Loewner-fohn matrix associated with v is I. 

Proof We use the notations of Corollary 3.3. The inequality X < v 
implies I E ED. Denoting Q = (qii)' we have 0 < qii = et Qei < v2

( ei) = 1 
(f = 1, . . . ,n). Making use of Hadamard's inequality for a positive definite 
matrix [25, p. 114, 26, p. 199], we obtain 

1 =detI < detQ < qu · .. %n < 1, (3.1) 

whence det Q = qll· .. qnn = 1. Since equality prevails in (3.1), Q is diagonal. 
Clearly, Q = I and so the Loewner-John matrix associated with v is also equal 
to I. 

In order to prove a proposition similar to the previous one, we need part 
of the following lemma. 

LEMMA 3.B. Let v be a standardized norm on Kn. 
(i) If v < x, then v D is standardized. 
(ii) If v > x, then vD is standardized. , 

Proof (i) For ea:ch iE{l, ... ,n}, there exists f;EKn such that vD(f;) 
= fie j = 1. Then 
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Hence X(ft) = vD(f;) = 1 and so f; = e;. Consequently, vD(e;) = vD(f;) = 1, Le., 
v D is standardized. 

(ii) We have for each i E {1, ... ,n}, 

1 = ete; < v(e;)vD(e;) = vD(e;) < x(e;) = 1, 

whence vD(e;) = 1, Le., vD is standardized. 

PROPOSITION 3.9. Let v be a norm on Kn. If v> X and v D is standar
dized, then the Loewner-John matrix associated with v is 1. 

Proo-r---smce v D is standardized and vD < X, by Lemma 3.8 (i), v is 
standardized. Now, Proposition 3.7 implies that the Loewner-John matrix 
associated with v is I. 

PROPOSITION 3.10. Let v be an absolute norm on Kn. Then, the Loew
ner-John matrix associated with v is diagonal. 

Proof. Let L be the Loewner-John matrix associated with v and let 
L 2 =(qj;)' Fixing iE{I, ... ,n}, consider the matrix A=diag(a1, ... ,an )· 

E Mn (K), where aj = -1 and ak = 1 for all k =1= i. Then A is a v-isometry and 
so, by Proposition 3.4 (i), L 2A = AL 2. But this implies qi; = 0 if i =1= i. Thus, L 
is diagonal. 

PROPOSITION 3.11. Let v be a symmetric norm on Kn. Then, the Loew
ner-John matrix associated with v is aI, where 

. (V(X) . ) a=mf X(x) :O=l=xEKn . 

Proof. Let L be the Loewner-John matrix associated with v. By Proposi
tion 3.10, L is diagonal. Let L 2 =diag(ql, ... ,qn) and fix i,iE{I, ... ,n}, i=l=i. 
If S is the permutation matrix obtained by interchanging the ith and the ith 
rows of I, then S is a v-isometry and so, by Proposition 3.4 (i), L 2S = SL 2. But 
this implies that qj = q; and, consequently, L = aI for some a E R. The value 
of a follows at once from the definition of L. 

COROLLARY 3.12. The Loewner-John matrix associated with the Holder 
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norm lp(l < P < 00) is aI, where 

( 
I a-
n(2-p)/2p 

ifl < P < 2, ) 

ifp>2. 

Proof Clearly, the Holder norms are symmetric. To obtain the value of 
a, note that from Proposition 3.11 we have a- 1=sup{12(x)/lp(x):O 
=1= x E Kn} (see relation (3.22) of [32]). 

4. MAPPING NORM-HERMITIANS INTO HERMITIANS 

PROPOSITION 4.1. Let v be a norm on en and let L be the Loewner-Iohn 
matrix associated with v. Then 

(i) LAL -1 is Hermitian for every v-Hermitian A EMn(e); 
(ii) LAL -1 is normal for every v-normal A E Mn (e); 
(iii) LAL -1 is positive (semi) definite for every v-positive (semi) definite 

A EMn(e). 

Proof. (i) Let A be v-Hermitian and let a be any real number. Then, 
exp(iaA) is a v-isometry [9] and now, making use of Theorem 3.6, it follows 
that exp(iaLAL- 1

) = Lexp(iaA)L -1 is unitary. Consequently, LAL -1 is 
Hermitian. 

(ii) Let A be v-normal and let A = H + iK, where H, K E:JC. and HK 
= KH. Since LHL -1 and LKL -1 commute and are Hermitian (by part (i)), it 
follows that LAL - 1 is normal. 

(iii) Let A be v-positive (semi) definite. By part (i), LAL -1 is Hermitian 
and since it has positive (nonnegative) eigenvalues, it follows that it is 
positive (semi) definite. 

PROPOSITION 4.2. Let v be a norm on en and let L be the Loewner-Iohn 
matrix associated with v. If A E ~., then LA cL -1=(LAL- 1)*. 

Proof. Let A = H + iK where H,K E :JC •. Then 

COROLLARY 4.3. Let v be a norm on en, let L be the Loewner-Iohn 
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matrix associated with v, let Q = L 2, and let A E ~ •. Then, 
(i) A c= Q -lA *Q; 

(ii) A(A C) = A(A) ; 
(iii) r(A C) = r(A). 

17 

Given a norm v on Cn and denoting by L the Loewner-John matrix 
associated with v, it seems convenient to introduce the similarity mapping 

defined by 

A =LAL- 1 
'1' , 

Obviously, ( )'1' is an algebra automorphism, i.e. ( )'1' is a bijection and 

(A + B)'1'=A'1' + B'1" (aA)'1'= aA'1" (AB)'1' = A'1'B'1' 

for all A,B E Mn(C) and all a EC. Moreov:er, by Proposition 4.2, 

(A C)'1' = (A'1') * , \fA E ~ •. 

Making use of Proposiition 4.2, we can strengthen Proposition 4.1. 

THEOREM 4.4. Let v be a norm on cn and let L be the Loewner-John 
matrix associated with v. Then, 

(i) A is v-Hermitian if and only if A E~. and LAL -1 is Hermitian; 
(ii) A is v-normal if and only if A E~. and LAL -1 is normal; 
(iii) A is v-positive (semi) definite if and only if A E~. and LAL -1 is 

positive (semi) definite. 

Proof The necessity part of each statement follows from Proposition 4.1. 
Sufficiency: (i) we have (A C)'1' = (A'1') * = A'1" whence A C = A, which, in turn, 
implies that A is v-Hermitian; (ii) we have (A CA)'1' = (A C)'1'A'1' = (A'1') * A'1' 
= A'1' (A'1') * = A'1' (A C)'1' = (AA C)'1" whence A cA = AA c, which implies that A is 
v-normal; (iii) by part (i), A is v-Hermitian and, clearly, it has positive 
(nonnegative) eigenvalues. 

PROPOSITION 4.5~ Let v be a standardized norm on Kn such that either 
v > X or v ..; x. Then 

(i) every v-isometry matrix is unitary; 
(ii) every v-Hermitian matrix is Hermitian; 
(iii) every v-normal matrix is normal; 
(iv) every v-positive (semi) definite matrix is positive (semi) definite. 
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Proof If v # x, then the proposition follows from Propositions 3.7, 3.4, 
and 4.1. Suppose v" X and let A be a v-isometry. Then, it can be easily seen 
that A * is a vD-isometry. By Lemma 3.8, vD is standardized and, since 
v D # X, it follows, from what has been already proved in this proposition, 
that A * is unitary. Hence A is unitary. Parts (ii), (iii), and (iv) can be proved 
in the same manner or, alternatively, they follow from part (i) by arguments 
similar to those given in the proof of Proposition 4.1. 

5. APPLICATIONS 

In the sequel, v is a given norm on en. 

PROPOSITION 5.1. If A, B, and AB are v-Hermitian matrices, then 
AB=BA. 

Proof The given conditions imply that Aq>' Bq>' and Aq>Bq> are Hermitian. 
Therefore, Aq>Bq> = Bq>Aq>' whence AB = BA. 

Remark. Proposition 5.1 is due to M. J. Crabb (private communication), 
who gives a different proof. 

PROPOSITION 5.2. If A, B are v-Hermitian matrices such that AB = BA 
and AB E ~v' then AB is v-Hermitian. 

Proof. The given conditions imply that Aq> and Bq> are Hermitian and 
that they commute. Therefore, Aq>Bq> is Hermitian and then, by Theorem 4.4, 
AB is v-Hermitian. 

PROPOSITION 5.3 [8, (2.11)]. If A l , ... ,Ak are commuting v-Hermitian 
matrices and Al ... Ak E ~v' then AI' .. Ak is v-Hermitian. 

Proof The proof is similar to that of Proposition 5.2. 

PROPOSIT10N 5.4. If A is a v-Hermitian matrix, p is a polynomial over R 
and p(A) E ~v' then p(A) is v-Hermitian. 

Proof The proof is similar to that of Proposition 5.2. 

COROLLARY 5.5. If ~v is an algebra, A is a v-Hermitian matrix and p is 
a polynomial over R, then p(A) is v-Hermitian. 
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REMARK. Corollary 5.5 follows also from Theorem 6.3 of [9]. 

PROPOSITION 5.6 [8, (2.16), (2.17)]. Let E and F be p-Herrnitian profec-
tions. The following statements are equivalent: 

(i) EF=E; 
(ii) FE= E; 

(iii) gt(E)~gt(F); 
(iv) 'DL(F)~'DL(E); 
(v) p(Ex) (; p(Fx) VxECn

; 

(vi) F - E is p-positive semidefinite; 
(vii) F- E is a p-Hermitian projection. 

Proof The implications (i)<:::>(iv), (ii)<:::>(iii), (v)~(iv) hold for any projec
tions E and F. The implications (i)<:::>(ii) follow at once from Proposition 5.1. 
The implication (i)~(v) follows from the fact that the operator norm of E is 
equal to 1 if E=I=O. (i)~(vii): Clearly, F- E is p-Hermitian and, taking into 
account the equivalence between (i) and (ii), we obtain (F- E)2= F- E. 
(vii)~(vi): By Sinclair's. theorem [41], V.(F-E)=coA(F-E)~[O,l]. 
(vi)~(i): E<p and F<p are Hermitian projections and F<p - E<p is Hermitian. 
Since A(F<p - E<p) = A(F- E) c [0, + 00), F<p - E<p is positive semidefinite. 
Then [18, p. 148] E<pF<p = E<p' whence EF= E. 

REMARK. The implication (vi)~(i) has been known only in the case 
when the norm p is strictly convex [8, (2.17)]. 

PROPOSITION 5.7. Let E1, ... ,Ek be p-Herrnitian profections. Then 
El + ... + Ek is a p-Herrnitian profection if and only if E;Ej =0 for i =1= f, i,f, 
=l, ... ,k. 

Proof Sufficiency: trivial. Necessity: (E1)<p"" ,(Ek)<p' and (E1)<p + ... + 
(Ek)<p are Hermitian projections and therefore [18, p. 148] (E;)<p(Ej)<p=O for 
i =1= f. Then E;Ej = 0 for i =1= f. 

PROPOSITION 5.8. If A, B,AB E ~P' then (AB)C = WA c. 

Proof. We have [(AB n<p = [(AB )'1']* = (B<p)*(A<p)* = (B C)<p(A C)<p 
= (BCA C)<p' whence (ABY = BCA c. 

PROPOSITION 5.9. If A E ~p and A is a p-isometry, then A cA = I. 
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REMARK. The question whether the converse of the last proposition is 
true, remains open. In other words, if A E ~p and A cA = I, does it follow that 
A is a p-isometry? 

COROLLARY 5.10. If A- is a p-isometry in ~p, then A is p-normal. 

It is well known [19, p. 215] that a complex n X n matrix A is diagonable 
(i.e., similar to a diagonal matrix) if and only if there exist distinct scalars 
A l' ... ,Ak and projections E1, . .. ,Ek such that 

A=A1E1+··· +AkEk, 

(5.1) 

(iof=i; i,i=I, ... ,k). 

Since the decomposition (5.1) is uniquely determined by the matrix A (the 
scalars, for example, are the distinct eigenvalues of A), we will caD (5.1) the 
spectral resolution of A. 

PROPOSITION 5.11. Let A be a p-normal matrix. Then, 
(i) A is diagonable; 

(ii) if the spectral resolution of A is given by 

A =A1E1 + ... +AkEk, 

then 

(5.2) 

Proof. (i) By Proposition 4.1 (ii), A'I' is normal. If the spectral resolution 
of A'I' is given by 

(5.3) 

then 

(5.4) 

where E; is the inverse image of F; under the mapping ( )'1" i.e. (E;)'I' = F; 
(i = 1, ... ,k). It is easy to verify that (5.4) gives the spectral resolution of A, 
consequently, A is diagonable. (ii) From (5.3), taking into account that the 
F;'s are Hermitian, we obtain (A C)'I' = (A'I') * =X1F1 + ... + XkFk, from where 
(5.2) follows at once. 
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COROLLARY 5.12. If A is v-normal, then ~(A-i\I)= ~(AC-,XI) for 
all i\EC. 

COROLLARY 5.13. Let A E ~v' Then A is v-normal if arid only if A C is a 
polynomial in A. 

REMARK. Proposition 5.11 and Corollaries 5.12 and 5.13 can be derived 
easily without making use of the Loewner-John matrix associated with the 
norm v (used implicitly through the mapping ( )'1'). Indeed, if A = H + iK 
(H, K E Xv) is v-normal, then Hand K are commuting diagonable matrices. 
Hence, there exists a nonsingular S such that both C = S -IHS and D 
=S-IKS are diagonal matrices [19, p. 207, 28, p. 318]. Thus, A=S(C+iD) 
S - 1 and A C = S (C - iD) S -1, which is easily seen to be equivalent to 
Proposition 5.11. 

PROPOSITION 5.14. Let A be a diagonable matrix in ~v' If the spectral 
resolutions of A and A C are given by 

and 

respectively, then A is v-normal. 

Proof. The assumptions imply at once that A cA = AA c. 

PROPOSITION 5.15. Let A E ~v' Then A cA = I if and only if A is v
normal and every eigenvalue of A has absolute value equal to one. 

Proof. Sufficiency is an immediate consequence of Proposition 5.11. 
Necessity: we have AA C = A cA, which implies that A is v-normal. The matrix 
A<p is unitary since (A<p) * A<p = (A C)<pA<p = A CA)<p = I. From the Similarity of A 
and A<p it follows that every eigenvalue of A has absolute value equal to 1. 

PROPOSITION 5.16. If A is a v-normal matrix and every eigenvalue of A 
is real, then A is v-Hermitian. 

Proof. This is an immediate consequence of Proposition 5.11. 
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REMARK. Proposition 5.16 follows also from the fact that for a p-normal 
matrix the numerical range is equal to the convex hull of the eigenvalues 
[38]. 

PROPOSITION 5.17. If A, B, and AB are p-nonnal matrices and BA E ~., 
then BA is p-normal. 

Proof The given conditions imply that A<p' B<p' and A<pB<p are normal. 
Therefore, by a theorem of Wiegmann [45, Theorem 1], (BA)<p is normal and 

_ ~en, by Theorem 4.4, BA is p-normal. 

PROPOSITION 5.1B. If A, Bare p-nonnal matrices, D EMn(C), and 
AD = DB, then A cD=DBc. 

Proof The given conditions imply that A<p' B<p are normal and that 
A<pD<p = D<pB<p' Therefore, by the Fuglede-Putnam theorem [16], [35] (for an 
elementary proof of the finite-dimensional case, see [43]), (A<p) * D<p 
= D<p(B<p)*' or (A C)<pD<p = D<p(BC)<p' whence A cD = DB c. 

PROPOSITION 5.19. If A, Bare p-nonnal matrices such that AB = BA and 
AB E ~., then AB is p-nonnal. 

Proof. Making use of Proposition 5.1B we obtain A CB = BA C and BCA 
=ABc. Now, applying Proposition 5.B, we have (AB)CAB=BcAcAB 
= BCAAcB=ABcBAc=ABBcAc=AB(AB)C, which implies at once that AB 
is p-normal. 

PROPOSITION 5.20. If A, Bare p-nonnal matrices such that AB = BA and 
A + B E ~., then A + B is p-nonnal. 

Proof The proof of this proposition is similar to that of the previous one. 

COROLLARY 5.21. If A is a p-normal matrix, p is a polynomial over C 
and p(A) E~., then p(A) is p-normal. 

PROPOSITION 5.22. Let A, B, AB, BA E ~ •. Then, both AB and BA are 
p-nonnal if and only if A cAB = BAA C and BCBA = ABBc. 

Proof Sufficiency follows easily by verifying that (AB)CAB = AB(AB)C 
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and (BArBA = BA (BA)c. The proof of necessity is similar to that of Proposi
tion 5.18, except that one makes use of a proposition in [14J. 

PROPOSITION 5.23. If A and B are v-normal matrices such that AB = 0, 
then BA=O. 

Proof The matrices Aep and Bep are normal and AepBep = 0. Then BepAep = ° 
(see, for example, [14]), whence BA =0. 

PROPOSITION 5.24. Let A and B be v-normal matrices such that 
AB E ~v. Then, AB is v-normal if and only if A cAB = BA CA and AWB 
= BCBA. 

Proof Sufficiency follows easily by verifying that (AB )CAB = AB (AB)c. 
The proof of necessity is similar to that of Proposition 5.18, except that one 
makes use of a result of Wiegmann [45, Theorem 2J (see also [14]). 

PROPOSITION 5.25. If A E ~v, then 
(i) (A CA)ep = (Aep) * Aep; 

(ii) A cA is similar to a positive semidefinite matrix; 
(iii) A(A CA) c [0, + 00). 

Proof We have (A CA)ep = (A C)epAep = (Aep)* Aep' from where we obtain at 
once (ii) and (iii). 

PROPOSITION 5.26. If both A and A cA are in ~v, then A cA is v-positive 
semidefinite. 

Proof This is an immediate consequence of Proposition 5.25 (i) and 
Theorem 4.4 (iii). 

COROLLARY 5.27 ([9, LEMMA 6.7]). If ~v is an algebra, then A cA is 
v-positive semidefinite for every A E ~v • 

PROPOSITION 5.28. If A E ~v and A cA = 0, then A = 0. 

Proof The proof is similar to that of Proposition 5.1. 

We next turn to some inertia theorems. (For definitions, see §2). 
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PROPOSITION 5.29. Let H be v-Hermitian and let A E~. be nonsingular. 
Then 

(i) A(ACHA)cR; 
(ii) In(ACHA)=InH. 

Proof The matrices Hcp and (A CHA)cp are Hermitian. Consequently, 
A(A CHA) C R and by Sylvester's theorem [39, p. 338], In(A CHA) 
= In [(Acp) * HcpAcp] = In (Hcp) = InH. 

PROPOSITION 5.30. Let H be v-Hermitian and let A E ~ •. If AH + HA Cis 
stable, then InA = InH. 

Proof Let K = (AH + HA C)cp. Then K = AcpHcp + Hcp (Acp) * , whence K is 
positive definite. The result follows from the Ostrowski-Schneider Main 
Inertia Theorem [33, Theorem 1]. 

The proofs of the following propositions are similar. 

PROPOSITION 5.31. Let A E~ •. If A + A C is stable and H is v-Hermitian, 
then In(AH)=InA. 

Proof. By Ostrowski-Schneider [33, Corollary 3]. 

PROPOSITION 5.32. Let A E ~ •. If H is v-positive definite and AH + HA C 
is semi-stable, then: 

(i) A is semi-stable; 
(ii) if A is a pure imaginary eigenvalue of A, then all elementary 

divisors belonging to A are linear. 

Proof By Carlson-Schneider [13, Corollary IIU]. 

Finally, we give an application of an interesting generalization of the 
Stein-Pfeffer theorem [42] due to Carlson-Loewy [12] and Loewy [24]. For 
A EA(A), let m],.(A) be the number of elementary divisors belonging to the 
eigenvalue A, i.e., m],.(A) = dim 'VC(A-AJ). Put 

m +(A) = max {m],.(A):AEA(A) and ReA>O}, 

m-(A)=max{m],.(A):AEA(A) and ReA<O}. 

PROPOSITION 5.33. Let A E ~., and suppose that A + X -:/= 0 for all 
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A E A(A). If H is v-positive definite and K = AH + HA c, then 

.,,+(K);;;' m +(A), 
and 

Proof By Loewy [24, Theorem 1]. 
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