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A matrix A4 in the semigroup N, of non-negative n X n matrices is prime if 4 is not
monomial and A = BC, B, C € N, implies that either B or C is monomial. One necessary
and another sufficient condition are given for a matrix in N, to be prime. It is proved that
every prime in N, is completely decomposable.

1. INTRODUCTION

Let N, be the semigroup of # x n non-negative matrices. Although non-
negative matrices have been studied from many points of view, relatively
little work has been done on the semigroup properties of N,. In an interesting
recent paper Plemmons [2] classifies the regular elements, and hence the
regular P-classes of N,. In this note, we attempt the first steps towards a
theory of factorization in N,. In Section 2, we define the concept of a prime
matrix in N,,. In Theorem (2.4) we find a necessary condition, and in Theorem
(2.6) a sufficient condition of a combinatorial nature, for a matrix to be prime
in N,. By Theorem (2.9), all primes can be derived from the fully indecom-
posable primes, and all primes are completely decomposable (Corollary
(2.10)). In Section 3 we list all primes of orders 2 and 3 and some of order 4
and in Section 4 we state two open questions and point out a generalization
to totally ordered division rings.

If A € N, then a; denotes the jth column of 4. By 4* we denote the (0, 1)
matrix defined by af; = 1 ifa;; > 0 and af; = 0 if a;; = 0. Further we define
a¥ to be the jth column of 4*, We use the component-wise partial order on
N, and on the set of column n-tuples. The transpose of a; will be denoted by
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2, FACTORIZATION THEOREMS

DerFiNITION 2.1  Let M e N,. Then M is called monomial if M has exactly
one positive element in each row and column.

We call M e N, invertible if M is non-singular and M ! € N,,. The following
lemma is very easy, and we omit the proof.

LemMA 2.2 Let M e N,. Then M is invertible if and only if M is monomial.

DERNITION 2.3 Let Pe N,. Then P is called a prime if

iy P is not monomial, and

ity P = BC, where B, Ce N,, implies that either B is monomial or C is
monomial.
If P is neither a prime nor monomial, then P is called factorizable.

THEOREM 2.4 Let AeN,. Let1 € i,k < m,and i # k. If af > af, then A is
factorizable,

Proof By reordering the columns of 4, we may assume without loss of
generality that a¥ > a%. Hence there exists a positive € such that b, = a; —
a,6 = 0and b% =at. Lleth; =a;,i =2,...,n. Then B =[by,...,b,]eN,.
We shall prove that B is not monomial. E

Either b, = 0 or b, # 0.If b, = 0, then B is not monomial. If 5, # 0, then
there is an », 1 < ¥ < n, such that b, > 0. Since a¥ > af = b%, we have
a., > 0 and since b% = 4%, it follows that b, > 0. Thus in both cases, B

is not monomial.
1
C= [e (1)] D 1-2

Let
where I,_, is the (n — 2) x (n — 2) identity matrix. Then C is not monomial.
Since 4 = BC, it follows that A is factorizable. Q.E.D.
COROLLARY 2.5 If A is prime, then A* has a 0 and a 1 in every row and
column, :

The converse of (2.4) is false.

A counter-example is:

01 11 1 00 0930 1 1 1
1 01 1|=|0 01 1|}J% 1 0 Of.
ll 10 1} [0 10 1] [& 01 0}
1 110 01 1 0lL: 0 01
A matrix 4 e N, is called fully indecomposable if there do not exist per-
mutation matrices M, N such that

MAN = [Aél ﬁ;Z >

where A4, is square.
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A matrix A is completely decomposable if there exist permutation matrices
M, N such that MAN = 4, ® ... @ 4, where 4, is fully indecomposable,
i=1,...,5and s = 1. (Note that a fully indecomposable matrix is com-
pletely decomposable).

We now state a sufficient condition for 4 to be prime in N,

THEOREM 2.6 Letn > | andlet Ae N, If

i) Ais fully indecomposable, and

i) @Taf < 1 foralli,k suchthat1 < i,k <n,andi#k,
then A is prime.

Proof By (i), 4 is not monomial.

Let A = BC,where B,CeN,. LetZ, = {l,...,n}andletJ = {je Z,: b,
has at most one positive entry}.

We now assert that:

(F) Ifje Z,\J, then there is at most one i € Z,, such that ¢;; > 0. For suppose
that jeZ,\J and that ¢;; > 0, ¢;, > O, where i,keZ, i # k. Then a;, =

n
1—21 bie;; = bjc;;, whence af > b¥. Similarly, af > b%. Hence (a¥)'a} > 2,

¢

which contradicts (ii). Thus (&) is proved.

If E is a set, let |E| denote the number of elements in E.

We shall next show that

0 < |J] < nis impossible.
Let|J| =g,andput I = {ieZ,: ¢;; = OforalljeZ\J}. Suppose that |I| = r.
Letd = z; a;. By (i), d has at least r + 1 positive entries. Since for every
iel, we have a; = ). b;c;; it follows that d has at most g positive entries-
ieJ

Hence r < g. Let I' = Z,\I and J' = Z,\J. By definition of I, for each ie I’
there exists a jeJ’ such that ¢; > 0. Since |I'| =n—r>n—gq =7,
there exists a jeJ' such that ¢;; > 0 and ¢, > 0 for distinct , k in Z,. But
this contradicts (). Hence 0 < |J| < n is impossible.
There are two remaining possibilities:
a) 7| = n.
Then each column of B has at most one positive entry. But by (i), every row
of B is non-zero. Hence B is monomial.
b) |7] = 0.
By (%), each row of C has at most one positive entry. But by (i), every
column of C is non-zero, whence C is monomial. Q.E.D.

Remark 1t is clear that Theorem (2.4), Corollary (2.5) and Theorem (2.6)
have analogues for rows instead of columns.
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THEOREM 2.7 Let A € N, and let A be prime. Then thereexistsanr,1 < r < n,
and a fully indecomposable prime P e N, such that

MAN =P @ D,
where M, N are permutation matrzces in N, and D is a non-singular diagonal
matrix in N, _,.

Proof The proof is by induction on #. If n = 1, the result is trivial, since
there are no primes in N,. So suppose that n > 1, and that the theorem holds
forN, .. Let A beaprime in N,. If 4 is fully indecomposable, there is no more
to prove. So suppose that, for suitable permutation matrices R, S,

- 4]

where A;; is s x 5,0 < 5 < n.
We shall show that 4,, = 0.

Suppose 4,, # 0, say a;; > 0, 1 < i< sand s + 1 <j< n It follows
that 4,, is not monom1a1 for otherw1se we would have af > af, where
1 € k < s, and by Theorem (2.4) A would not be prime.

Let I, denote the s x s identity matrix.

Then ¢
RAS = [’ Az ][All _‘ﬂ

with neither factor monomial, which is again a contradiction.
Hence 4,, =0, and
— All 0
rRAS = [“4t o ]
If either A, or A,, is factorizable, then it is easily seen that RAS is factoriz-

able. Hence since
ras =4 ,  1[¢ m.)

a) A,, is monomial and 4, is prime, or
b) A,; is monomial and A,, is prime.

either

Suppose (a) holds. By inductive hypothesis we permute the rows and columns
of A, to obtain P @ D, where Pis a fully indecomposable prime in N, where
1 € r < s,and D, is a non-singular diagonal matrix in N,_,. We also per-
mute the rows and columns of 4,, to obtain a non-singular diagonal matrix
D, in N, _,. Thus, for suitable permutation matrices A/ and N,

MAN =P & D,

where D = D; ® D, is a non-singular diagonal matrix in N, _,. The proof
in case (b) is similar. Q.E.D.
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THEOREM 2.8 If P is a prime in N, and Q is monomial in N,_,, where
1< r<nthenP® QisaprimeinN,

Proof let A =P @ Q and let A = BC. Partition
B
B= [B;] and C =I[C, C,]

where B, is r X n and C, is n x r. Replacing B by BN and C by N~!C,
where N is a permutation matrix, we may suppose that any zero columns of
B, are at the right. Thus
_[By; By, _[c¢, ¢C
B=[p 2] and c=[g g2,
where C,,iss x r, B, isr x 5, B;, = 0 and no column of B, is 0. Clearly
s > 0, since 4 has no zero row. We have

P 0 B,,.C B, C
=A = = 11Cu 11C12
I:O 0 BC I:Bz1C11 + By,Cy1 By Cyp + Bzzczz]
whence 0 = B,,C,,. Ky

Since no column of B,, is 0, it follows that C;, = 0. Hence é < n, since
A has no zero column. Thus 0 < 5 < a.

We now have P = B;,C,; and Q = B,,C,,.

We next show that r = s. ;

If s <r, we have P = B{,C],, where Bj, =[B,;0]eN, and C{, =
I:g “] € N,. But this factorization contradicts that P is prime. Similarly, if

§ > r, we obtain n — r < n — s, a contradiction to Q = B,,C,, and that
Q is monomial. Hence.r = s. But

— —_ Bl lcll 0
4=5C= I:lecu + By,Cyy Bzzczz]’
and so B,;C,, = 0and B,,C,; = 0. Since P = B, is a factorization in
N, it follows that C,, is either prime or monomial. Thus C; has no zero
row. Hence it follows from B,,C,; = 0 that B,, = 0. Similarly, we deduce
from B,,C,; = 0 and the fact that B,, is monomial that C,; = 0. Hence
B =B, ® B,; and C = C,; ® C,,. Since B,,, C,, are monomial and one
of B,;, C,, is monomial, it follows that either B or Cis monomial. Q.E.D.
THEOREM 2.9 Let Ae N,. Then A is prime if and only if there exists an r,
| € r < n, and a fully indecomposable prime P € N,, such that
MAN =P @ D,

where M, N are permutation matrices in N, and D is a non-singular diagonal
matrix in N, _,.

Proof Immediate by Theorems (2.7) and (2.8). Q.E.D.

Remark Since there are no primes in N; and N, (see Section 3), we can
improve the inequality in Theorem (2.7) and Theorem (2.9)to 3 < r < n.

COROLLARY 2.10  Every prime in N, is completely decomposable.
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3. PRIMES OF ORDER 2, 3, 4

We use Theorems (2.4), (2.6), (2.9) to classify all primes of orders 2 and 3,
and to list some primes of order 4.
n = 2. There are no primes in N,. This follows from Theorem (2.4).
n = 3. The matrix 4 € N, is a prime if and only if
0 1 1
MA*N = [1 0 1}
110
for suitable permutation matrices M and N.

This follows from Theorems (2.4) and (2.6).

n = 4. Let 4 €N, If for suitable permutation matrices M, N, MA*N is
one of the following three matrices:

1 100 01 11 0110
P, =101 1 Of,P,=|1 1 0 Ol,P;=|1 0 1 Of,
{0011} [1010] [1100]
1 001 1 0 01 0 0 01
then A is prime. This follows from Theorems (2.6) and (2.8).

Note that P; is singular, P; and P, are fully indecomposable, and P; is
completely decomposable. A matrix 4 € N, has a non-negative rank factoriza-
tion if there exist B, C € N, suchthat 4 = BCandrank 4 = rank B = rank C
(see Berman-Plemmons [1], Plemmons [2]). It is clear that a singular prime
has no non-negative rank factorization. Indeed, our matrix P, is used as an
example in [1], due to J. S. Montague, of a matrix with no non-negative
rank factorization.

We do not know whether there is a prime of order 4 with a different
(0, 1) pattern.

4. OPEN QUESTIONS AND GENERALIZATION

(5.1) Does every prime in N, satisfy Condition (ii) of Theorem (2.6)?
(5.2) If A eN,, is A prime if and only if A* is prime?
If n = 2 or n = 3, the answer is affirmative for both questions.

Remark Let F be a totally ordered division ring. Our results and their
proofs remain valid if N, is the semigroup of all #» x »n matrices with non-
negative entries from [F.
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