Linear and Multilinear Algebra, 1974, Vol. 2, pp. 135-140 © Gordon and Breach Science Publishers Ltd. Printed in Great Britain

Primes in the Semigroup of Non-Negative Matrices

DANIEL J. RICHMAN and HANS SCHNEIDER⁺

Department of Mathematics University of Wisconsin

(Received September 12, 1973)

A matrix A in the semigroup \mathbb{N}_n of non-negative $n \times n$ matrices is prime if A is not monomial and A = BC, B, $C \in \mathbb{N}_n$ implies that either B or C is monomial. One necessary and another sufficient condition are given for a matrix in \mathbb{N}_n to be prime. It is proved that every prime in \mathbb{N}_n is completely decomposable.

J

1. INTRODUCTION

Let \mathbb{N}_n be the semigroup of $n \times n$ non-negative matrices. Although nonnegative matrices have been studied from many points of view, relatively little work has been done on the semigroup properties of \mathbb{N}_n . In an interesting recent paper Plemmons [2] classifies the regular elements, and hence the regular \mathcal{D} -classes of \mathbb{N}_n . In this note, we attempt the first steps towards a theory of factorization in \mathbb{N}_n . In Section 2, we define the concept of a prime matrix in \mathbb{N}_n . In Theorem (2.4) we find a necessary condition, and in Theorem (2.6) a sufficient condition of a combinatorial nature, for a matrix to be prime in \mathbb{N}_n . By Theorem (2.9), all primes can be derived from the fully indecomposable primes, and all primes are completely decomposable (Corollary (2.10)). In Section 3 we list all primes of orders 2 and 3 and some of order 4 and in Section 4 we state two open questions and point out a generalization to totally ordered division rings.

If $A \in \mathbb{N}_n$, then a_j denotes the *j*th column of A. By A^* we denote the (0, 1) matrix defined by $a_{ij}^* = 1$ if $a_{ij} > 0$ and $a_{ij}^* = 0$ if $a_{ij} = 0$. Further we define a_j^* to be the *j*th column of A^* . We use the component-wise partial order on \mathbb{N}_n and on the set of column *n*-tuples. The transpose of a_j will be denoted by $(a_i)^T$.

[†] The research of these authors was sponsored in part by the National Science Foundation under Grant GP-379X, the Science Research Council, United Kingdom and the United States Army under Contract No. DA-31-124-ARO-D-462.

2. FACTORIZATION THEOREMS

DEFINITION 2.1 Let $M \in \mathbb{N}_n$. Then M is called monomial if M has exactly one positive element in each row and column.

We call $M \in \mathbb{N}_n$ invertible if M is non-singular and $M^{-1} \in \mathbb{N}_n$. The following lemma is very easy, and we omit the proof.

LEMMA 2.2 Let $M \in \mathbb{N}_n$. Then M is invertible if and only if M is monomial.

DEFINITION 2.3 Let $P \in \mathbb{N}_n$. Then P is called a prime if

i) P is not monomial, and

ii) P = BC, where $B, C \in \mathbb{N}_n$, implies that either B is monomial or C is monomial.

If P is neither a prime nor monomial, then P is called factorizable.

THEOREM 2.4 Let $A \in \mathbb{N}_n$. Let $1 \leq i, k \leq n$, and $i \neq k$. If $a_i^* \geq a_k^*$, then A is factorizable.

Proof By reordering the columns of A, we may assume without loss of generality that $a_1^* \ge a_2^*$. Hence there exists a positive \in such that $b_1 = a_1 - a_2 \in \ge 0$ and $b_1^* = a_1^*$. Let $b_i = a_i, i = 2, ..., n$. Then $B = [b_1, ..., b_n] \in \mathbb{N}_n$. We shall prove that B is not monomial.

Either $b_2 = 0$ or $b_2 \neq 0$. If $b_2 = 0$, then *B* is not monomial. If $b_2 \neq 0$, then there is an *r*, $1 \leq r \leq n$, such that $b_{r2} > 0$. Since $a_1^* \geq a_2^* = b_2^*$, we have $a_{r1} > 0$ and since $b_1^* = a_1^*$, it follows that $b_{r1} > 0$. Thus in both cases, *B* is not monomial.

Let

$$C = \begin{bmatrix} 1 & 0 \\ \varepsilon & 1 \end{bmatrix} \oplus I_{n-2},$$

where I_{n-2} is the $(n-2) \times (n-2)$ identity matrix. Then C is not monomial. Since A = BC, it follows that A is factorizable. Q.E.D.

COROLLARY 2.5 If A is prime, then A^* has a 0 and a 1 in every row and column,

The converse of (2.4) is false.

A counter-example is:

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 1 & 1 \\ \frac{1}{2} & 1 & 0 & 0 \\ \frac{1}{2} & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 0 & 1 \end{bmatrix}.$$

A matrix $A \in \mathbb{N}_n$ is called *fully indecomposable* if there do *not* exist permutation matrices M, N such that

$$MAN = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix},$$

where A_{11} is square.

136

A matrix A is completely decomposable if there exist permutation matrices M, N such that $MAN = A_1 \oplus \ldots \oplus A_s$, where A_i is fully indecomposable, $i = 1, \ldots, s$ and $s \ge 1$. (Note that a fully indecomposable matrix is completely decomposable).

We now state a sufficient condition for A to be prime in \mathbb{N}_n .

THEOREM 2.6 Let n > 1 and let $A \in \mathbb{N}_n$. If

i) A is fully indecomposable, and

ii) $(a_i^*)^T a_k^* \leq 1$ for all *i*, *k* such that $1 \leq i, k \leq n$, and $i \neq k$, then *A* is prime.

Proof By (i), A is not monomial.

Let A = BC, where $B, C \in \mathbb{N}_n$. Let $\mathbb{Z}_n = \{1, \ldots, n\}$ and let $J = \{j \in \mathbb{Z}_n : b_j \}$ has at most one positive entry.

We now assert that:

(\neq) If $j \in \mathbb{Z}_n \setminus J$, then there is at most one $i \in \mathbb{Z}_n$ such that $c_{ji} > 0$. For suppose that $j \in \mathbb{Z}_n \setminus J$ and that $c_{ji} > 0$, $c_{jk} > 0$, where $i, k \in \mathbb{Z}_n$, $i \neq k$. Then $a_i = \sum_{l=1}^n b_l c_{li} \ge b_j c_{ji}$, whence $a_i^* \ge b_j^*$. Similarly, $a_k^* \ge b_j^*$. Hence $(a_i^*)^T a_k^* \ge 2$, which contradicts (ii). Thus (\neq) is proved.

If E is a set, let |E| denote the number of elements in E.

We shall next show that

0 < |J| < n is impossible.

Let |J| = q, and put $I = \{i \in \mathbb{Z}_n : c_{ji} = 0 \text{ for all } j \in \mathbb{Z}_n \setminus J\}$. Suppose that |I| = r. Let $d = \sum_{i \in J} a_i$. By (i), d has at least r + 1 positive entries. Since for every $i \in I$, we have $a_i = \sum_{i \in J} b_j c_{ji}$ it follows that d has at most q positive entries. Hence r < q. Let $I' = \mathbb{Z}_n \setminus I$ and $J' = \mathbb{Z}_n \setminus J$. By definition of I, for each $i \in I'$ there exists a $j \in J'$ such that $c_{ji} > 0$. Since |I'| = n - r > n - q = |J'|, there exists a $j \in J'$ such that $c_{ji} > 0$ and $c_{jk} > 0$ for distinct i, k in \mathbb{Z}_n . But this contradicts (\neq) . Hence 0 < |J| < n is impossible.

There are two remaining possibilities:

$$|J| = n.$$

Then each column of B has at most one positive entry. But by (i), every row of B is non-zero. Hence B is monomial.

b)
$$|J| = 0$$

By (\neq) , each row of C has at most one positive entry. But by (i), every column of C is non-zero, whence C is monomial. Q.E.D.

Remark It is clear that Theorem (2.4), Corollary (2.5) and Theorem (2.6) have analogues for rows instead of columns.

THEOREM 2.7 Let $A \in \mathbb{N}_n$ and let A be prime. Then there exists an $r, 1 \leq r \leq n$, and a fully indecomposable prime $P \in \mathbb{N}_r$, such that

$$MAN = P \oplus D,$$

where M, N are permutation matrices in \mathbb{N}_n and D is a non-singular diagonal matrix in \mathbb{N}_{n-r} .

Proof The proof is by induction on *n*. If n = 1, the result is trivial, since there are no primes in \mathbb{N}_1 . So suppose that n > 1, and that the theorem holds for \mathbb{N}_{n-1} . Let A be a prime in \mathbb{N}_n . If A is fully indecomposable, there is no more to prove. So suppose that, for suitable permutation matrices R, S,

$$RAS = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix},$$

where A_{11} is $s \times s$, 0 < s < n.

We shall show that $A_{12} = 0$.

Suppose $A_{12} \neq 0$, say $a_{ij} > 0$, $1 \leq i \leq s$ and $s + 1 \leq j \leq n$. It follows that A_{11} is not monomial, for otherwise we would have $a_j^* \geq a_k^*$, where $1 \leq k \leq s$, and by Theorem (2.4) A would not be prime.

Let I_s denote the $s \times s$ identity matrix.

Then

$$RAS = \begin{bmatrix} I_s & A_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} A_{11} & 0 \\ 0 & I_{n-s} \end{bmatrix},$$

with neither factor monomial, which is again a contradiction.

Hence $A_{12} = 0$, and

$$RAS = \begin{bmatrix} A_{11} & 0 \\ 0 & A_{22} \end{bmatrix}.$$

If either A_{11} or A_{22} is factorizable, then it is easily seen that RAS is factorizable. Hence since

$$RAS = \begin{bmatrix} A_{11} & 0 \\ 0 & I_{n-s} \end{bmatrix} \begin{bmatrix} I_s & 0 \\ 0 & A_{22} \end{bmatrix},$$

either

a) A_{22} is monomial and A_{11} is prime, or

b) A_{11} is monomial and A_{22} is prime.

Suppose (a) holds. By inductive hypothesis we permute the rows and columns of A_{11} to obtain $P \oplus D_1$, where P is a fully indecomposable prime in \mathbb{N}_r , where $1 \leq r \leq s$, and D_1 is a non-singular diagonal matrix in \mathbb{N}_{s-r} . We also permute the rows and columns of A_{22} to obtain a non-singular diagonal matrix D_2 in \mathbb{N}_{n-s} . Thus, for suitable permutation matrices M and N,

$$MAN = P \oplus D,$$

where $D = D_1 \oplus D_2$ is a non-singular diagonal matrix in \mathbb{N}_{n-r} . The proof in case (b) is similar. Q.E.D.

THEOREM 2.8 If P is a prime in \mathbb{N}_r , and Q is monomial in \mathbb{N}_{n-r} , where $1 \leq r \leq n$, then $P \oplus Q$ is a prime in \mathbb{N}_n .

Proof Let $A = P \oplus Q$ and let A = BC. Partition

$$B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$
 and $C = [C_1 \ C_2]$

where B_1 is $r \times n$ and C_1 is $n \times r$. Replacing B by BN and C by $N^{-1}C$, where N is a permutation matrix, we may suppose that any zero columns of B_1 are at the right. Thus

$$B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} \text{ and } C = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix},$$

where C_{11} is $s \times r$, B_{11} is $r \times s$, $B_{12} = 0$ and no column of B_{11} is 0. Clearly s > 0, since A has no zero row. We have

$$\begin{bmatrix} P & 0 \\ 0 & Q \end{bmatrix} = A = BC = \begin{bmatrix} B_{11}C_{11} & B_{11}C_{12} \\ B_{21}C_{11} + B_{22}C_{21} & B_{21}C_{12} + B_{22}C_{22} \end{bmatrix}$$

whence $0 = B_{11}C_{12}$.

Since no column of B_{11} is 0, it follows that $C_{12} = 0$. Hence $\delta < n$, since A has no zero column. Thus 0 < s < n.

We now have $P = B_{11}C_{11}$ and $Q = B_{22}C_{22}$. We next show that r = s.

If s < r, we have $P = B'_{11}C'_{11}$, where $B'_{11} = [B_{11} \ 0] \in \mathbb{N}_r$, and $C'_{11} = \begin{bmatrix} C_{11} \\ 0 \end{bmatrix} \in \mathbb{N}_r$. But this factorization contradicts that P is prime. Similarly, if s > r, we obtain n - r < n - s, a contradiction to $Q = B_{22}C_{22}$ and that Q is monomial. Hence r = s. But

$$A = BC = \begin{bmatrix} B_{11}C_{11} & 0\\ B_{21}C_{11} + B_{22}C_{21} & B_{22}C_{22} \end{bmatrix},$$

and so $B_{21}C_{11} = 0$ and $B_{22}C_{21} = 0$. Since $P = B_{11}C_{11}$ is a factorization in \mathbb{N}_r , it follows that C_{11} is either prime or monomial. Thus C_{11} has no zero row. Hence it follows from $B_{21}C_{11} = 0$ that $B_{21} = 0$. Similarly, we deduce from $B_{22}C_{21} = 0$ and the fact that B_{22} is monomial that $C_{21} = 0$. Hence $B = B_{11} \oplus B_{22}$ and $C = C_{11} \oplus C_{22}$. Since B_{22}, C_{22} are monomial and one of B_{11}, C_{11} is monomial, it follows that either B or C is monomial. Q.E.D. THEOREM 2.9 Let $A \in \mathbb{N}_n$. Then A is prime if and only if there exists an r, $1 \leq r \leq n$, and a fully indecomposable prime $P \in \mathbb{N}_r$, such that

$$MAN = P \oplus D,$$

where M, N are permutation matrices in \mathbb{N}_n and D is a non-singular diagonal matrix in \mathbb{N}_{n-r} .

Proof Immediate by Theorems (2.7) and (2.8). Q.E.D.

Remark Since there are no primes in \mathbb{N}_1 and \mathbb{N}_2 (see Section 3), we can improve the inequality in Theorem (2.7) and Theorem (2.9) to $3 \leq r \leq n$.

COROLLARY 2.10 Every prime in \mathbb{N}_n is completely decomposable.

3. PRIMES OF ORDER 2, 3, 4

We use Theorems (2.4), (2.6), (2.9) to classify all primes of orders 2 and 3, and to list some primes of order 4.

n = 2. There are no primes in \mathbb{N}_2 . This follows from Theorem (2.4).

n = 3. The matrix $A \in \mathbb{N}_3$ is a prime if and only if

$$MA^*N = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

for suitable permutation matrices M and N.

This follows from Theorems (2.4) and (2.6).

n = 4. Let $A \in \mathbb{N}_4$. If for suitable permutation matrices M, N, MA*N is one of the following three matrices:

$$P_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, P_2 = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}, P_3 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

then A is prime. This follows from Theorems (2.6) and (2.8).

Note that P_1 is singular, P_1 and P_2 are fully indecomposable, and P_3 is completely decomposable. A matrix $A \in \mathbb{N}_n$ has a non-negative rank factorization if there exist $B, C \in \mathbb{N}_n$ such that A = BC and rank $A = \operatorname{rank} B = \operatorname{rank} C$ (see Berman-Plemmons [1], Plemmons [2]). It is clear that a singular prime has no non-negative rank factorization. Indeed, our matrix P_1 is used as an example in [1], due to J. S. Montague, of a matrix with no non-negative rank factorization.

We do not know whether there is a prime of order 4 with a different (0, 1) pattern.

4. OPEN QUESTIONS AND GENERALIZATION

(5.1) Does every prime in \mathbb{N}_n satisfy Condition (ii) of Theorem (2.6)?

(5.2) If $A \in \mathbb{N}_n$, is A prime if and only if A^* is prime?

If n = 2 or n = 3, the answer is affirmative for both questions.

Remark Let \mathbb{F} be a totally ordered division ring. Our results and their proofs remain valid if \mathbb{N}_n is the semigroup of all $n \times n$ matrices with non-negative entries from \mathbb{F} .

References

- A. Berman and R. J. Plemmons, Inverses of non-negative matrices, *Lin. Multilin. Alg.* (to appear).
- [2] R. J. Plemmons, Regular non-negative matrices, Proc. American Math. Soc. 39 (1973), 26-32.

140