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A matrix A in the semigroup Nn of non-negative n x n matrices is prime if A is not 
monomial and A = BC, B, C E Nn implies that either B or C is monomial. One necessary 
and another sufficient condition are given for a matrix in Nn to be prime. It is proved that 
every prime in Nn is compieteiy decomposable. 

1. INTRODUCTION 

Let Nn be the semigroup of n x n non-negative matrices. Although non­
negative matrices have been studied from many points of view, relatively 
little work has been done on the semigroup properties of Nn• In an interesting 
recent paper Plemmons [2] classifies the regular elements, and hence the 
regular Ed-classes of Nn• In this note, we attempt the first steps towards a 
theory of factorization in Nn• In Section 2, we define the concept of a prime 
matrix in Nn• In Theorem (2.4) we find a necessary condition, and in Theorem 
(2.6) a sufficient condition of a combinatorial nature, for a matrix to be prime 
in Nn• By Theorem (2.9), all primes can be derived from the fully indecom­
posable primes, and all primes are completely decomposable (Corollary 
(2.10)). In Section 3 we list all primes of orders 2 and 3 and some of order 4 
and in Section 4 we state two open questions and point out a generalization 
to totally ordered division rings. 

IT A E Nn, then aj denotes thejth column of A. By A* we denote the (0, 1) 
matrix defined by a~ = 1 if au > 0 and at = 0 if ail = o. Further we define 
aj to be the jth column of A*. We use the component-wise partial order on 
Nn and on the set of column n-tuples. The transpose of aj will be denoted by 
(a)T. 

t The research of these authors was sponsored in part by the National Science Founda­
tion under Grant GP-379X, the Science Research Council, United Kingdom and the 
United Stales Army under Contract No. DA-31-124-ARO-D-462. . 
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2. FACTORIZATION THEOREMS 

DEFINITION 2.1 Let ME Nn• Then M is called monomial if M has exactly 
one positive element in each row and column. 

We call ME Nn invertible if M is non-singular and M- 1 E Nn• The following 
lemma is very easy, and we omit the proof. 

LEMMA 2.2 Let ME Nn• Then M is invertible if and only if M is monomial. 

DEFINITION 2.3 Let PENn. Then P is called a prime if 
i) P is not monomial, and 
ii) P = BC, where B, C E Nn> implies that either B is monomial or Cis 

monomial. 
If P is neither a prime nor monomial, then P is called factorizable. 

THEOREM 2.4 Let A E Nn• Let 1 ~ i, k ~ n, and i i= k.1f ar ~ at, then A is 
factorizable. 

Proof By reordering the columns of A, we may assume without loss of 
generality that at ~ ai. Hence there exists a positive E such that b1 = a1 -

a2E ~ 0 and bt = a!. Let b i = ai' i = 2, ... , n. Then B = [b 1 , ••• , bnl E Nn. 
We shall prove that B is not monomial. 

Either b2 = 0 or b2 i= O. If b2 = 0, then B is not monomial. If b2 i= 0, then 
there is an r, 1 ~ r ~ n, such that br2 > O. Since at ~ ai = bi, we have 
ar1 > 0 and since b! = at, it follows that br1 > O. Thus in both cases, B 
is not monomial. 

·· Let 

C = [! ?J Et) I n - 2 , 

where I n - 2 is the (n - 2) x (n - 2) identity matrix. Then C is not monomial. 
Since A = BC, it follows that A is factorizable. Q.E.D. 

COROLLARY 2.5 If A is prime, then A* has a 0 and a 1 in every row and 
column; 

The converse of (2.4) is false. 

A counter-example is: 

[
0 1 1 1] [1 1 0 1 1 = 0 
1 1 0 1 0 
1 1 1 0 0 

o 0 0] [0 1 1 1] 011 t 1 00. 
101 t 0 1 0 
110 tOO 1 

A matrix A E Nn is called fully indecomposable if there do not exist per­
mutation matrices M, N such that 

MAN = [Ad 1 ~~~]. 
where Au is square. 
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A matrix A is completely decomposable if there exist permutation matrices 
M, N such that MAN = Ai Ef) ••• Ef) As, where Ai is fully indecomposable, 
i = 1, ... , sand s ~ 1. (Note that a fully indecomposable matrix is com­
pletely decomposable). 

We now state a sufficient condition for A to be prime in N n• 

THEOREM 2.6 Let n > I and let A E Nn.lf 

i) A is fully indecomposable, and 

ii) (a!l a~ ~ 1 for all i, k such that 1 ~ i, k ~ n, and i =1= k, 

then A is prime. 

Proof By (i), A is not monomial. 

Let A = Be, where B, e E Nn• Let lLn = {l, ... , n} and let 1 = {jE lLn: bJ 

has at most one positive entry}. 

We now assert that: 

(=1=) lfj E lLn\J, then there is at most one i E lLn such that cji > O. For suppose 

that j E lLn\J and that Cji > 0, Cjk > 0, where i, k E lLno i =1= k. Then ai = 
n 

L b,C'i ~ bjCji' whence a! ~ bj. Similarly, at ~ bj. Hence (anTat ~ 2, 
1= 1 

which contradicts (ii). Thus (=1=) is proved. 

If E is a set, let lEI denote the number of elements in E. 
We shall next show that 

o < III < n is impossible. 

Let III = q, and put 1= {i E lLn: Cji = 0 for allj E lLnV}. Suppose that III = r. 
Let d = ? ai. By (i), d has at least r + 1 positive entries. Since for every 

.t( 
i E I, we have ai = L bjCji it follows that d has at most q positive entries. 

iEJ 

Hence r < q. Let I' = lLnV and l' = lLn\l. By definition of I, for each i E I' 
there exists a j EJ' such that Cji > O. Since II'I = n - r> n - q = 11'1, 
there exists a j E J' such that Cji > 0 and cjk > 0 for distinct i, k in lLn• But 
this contradicts (=1=). Hence 0 < III < n is impossible. 
There are two remaining possibilities: 

a) 111= n. 
Then each column of B has at most one positive entry. But by (i), every row 
of B is non-zero. Hence B is monomial. ' 

b) III = O. 
By (=1=), each row of e has at most one positive entry. But by 0), every 
column of e is non-zero, whence e is monomial. Q.E.D. 

Remark It is clear that Theorem (2.4), Corollary (2.5) and Theorem (2.6) 
have analogues for rows instead of columns. 



138 D. J. RICHMAN AND H. SCHNEIDER 

THEOREM 2.7 Let A E Nn and let A be prime. Then there exists an r, 1 ~ r ~ n, 
and a fully indecomposable prime PEN, such that 

MAN = PEE> D, 
where M, N are permutation matrices in Nn and D is a non-singular diagonal 
matrix in Nn -,. . 

Proof The proof is by induction on n. If n = 1, the result is trivial, since 
there are no primes in N1• So suppose that n > 1, and that the theorem holds 
for N/I-1' Let A be a prime in Nn• If A is fully indecomposable, there is no more 
to prove. So suppose that, for suitable permutation matrices R, S, 

RAS = [AOll A 12J 
A22 ' 

where All is s x s,O < s < n. 

We shall show that A12 = O. 
Suppose A12 i= 0, say au > 0, 1 ~ i ~ sand s + 1 ~ j ~ n. It follows 

that All is not monomial, for otherwise we would have aj ~ at, where 
1 ~ k ~ s, and by Theorem (2.4) A would not be prime. 

Let Is denote the s x s identity matrix. 
Then 

RAS = [Is A 12J [All OJ, o A22 0 I n - s 

with neither factor monomial, which is again a contradiction. 

Hence A 12 = 0, and 

RAS = [Ad 1 A~J. 
If either All or A22 is factorizable, then it is easily seen that RAS is factoriz­
able. Hence since 

RAS = [A 11 0 J [Is 0 J o In - s 0 A 22 ' 
either 
a) A22 is monomial and All is prime, or 
b) All is monomial and A22 is prime. 

Suppose (a) holds. By inductive hypothesis we permute the rows and columns 
of All to obtainP ED D1, where Pis a fully indecomposable prime in N, where 
1 ~ r ~ s, and D1 is a non-singular diagonal matrix in Ns -,. We also per­
mute the rows and columns of A22 to obtain a non-singular diagonal matrix 
D2 in N,,-s' Thus, for suitable permutation matrices M and N, 

MAN =PED D, 
where D = D1 EE> D2 is a non-singular diagonal matrix in I\l n _,. The proof 
in case (b) is similar. Q.E.D. 
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THEOREM 2.8 If P is a prime in Nr and Q is monomial in Nn-r> where 
1 ~ r ~ n, then P Ef) Q is a prime in Nn• 

Proof Let A = P Ef) Q and let A = Be. Partition 

B = [~~J and C = [C1 C2] 

where Bl is r x n and C1 is n x r. Replacing B by BN and C by N-1C, 
where N is a permutation matrix, we may suppose that any zero columns of 
Bl are at the right. Thus 

B = [Bll B12J and C = [Cll C12J, 
B21 B22 C21 C22 

where Cll is s x r, Bu is r x s, B12 = 0 and no column of Bll is O. Clearly 
s> 0, since A has no zero row. We have 

[p OJ - A - BC - [BllCll BUC12 J o Q - - - B21 Cll + B22C21 B21 C12 + B22C22 
whence 0 = Bu C12• oS 

Since no column of Bll is 0, it follows that C 12 = O. Hence. < n, since 
A has no zero column. Thus 0 < s < n. 

We now have P = Bu Cll and Q = B22C22. 
We next show that r = s. 
If s < r, we have P = BilCfl, where Bil = [Bu 0] E Nr and Cit = 

[gllJ E Nr • But this factorization contradicts that P is prime. Similarly, if 

s > r, we obtain n - r < n - s, a contradiction to Q = B22C22 and that 
Q is monomial. Hence r = s. But 

A - BC - [BllCll 0 J - - B21 Cll + B22C21 B22C22 ' 

and so B21 Cll = 0 and B22C21 = O. Since P = B11 Cu is a factorization in 
Nr it follows that Cu is either prime or monomial. Thus Cll has no zero 
row. Hence it follows from B21 CU = 0 that B21 = O. Similarly, we deduce 
from B22C21 = 0 and the fact that B22 is monomial that C21 = O. Hence 
B = Bu Ef) B22 and C = Cu Ef) C22. Since B22 , C22 are monomial and one 
of Bu , Cll is monomial, it follows that either B or C is monomial. Q.E.D. 
THEOREM 2.9 Let A E Nn• Then A is prime if and only if there exists an r, 
I ~ r ~ n, and a fully indecomposable prime PEN" such that 

MAN =PEf) D, 

where M, N are permutation matrices in Nn and D is a non-singular diagonal 
matrix in Nn- r • 

Proof Immediate by Theorems (2.7) and (2.8). Q.E.D. 
Remark Since there are no primes in N 1 and N 2 (see Section 3), we can 

improve the inequality in Theorem (2.7) and Theorem (2.9) to 3 ~ r ~ n. 

COROLLARY 2.10 Every prime in Nn is completely decomposable. 
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3. PRIMES OF ORDER 2, 3, 4 

We use Theorems (2.4), (2.6), (2.9) to classify all primes of orders 2 and 3, 
and to list some primes of order 4. 

n = 2. There are no primes in N 2 . This follows from Theorem (2.4). 
n = 3. The matrix A E N3 is a prime if and only if 

MA*N = [? 6 iJ 
1 I 0 

for suitable permutation matrices M and N. 
This follows from Theorems (2.4) and (2.6). 
n = 4. Let A E N4 • If for suitable permutation matrices M, N, MA *N is 

one of the following three matrices: 

PI = [6 i ? g], P 2 = [? i 6 6], P 3 = [? big] , 
001 I I 0 I 0 I 100 
100 I 100 I 000 1 

then A is prime. This follows from Theorems (2.6) and (2.8). 
Note that PI is singular, PI and P2 are fully indecomposable, and P3 is 

completely decomposable. A matrix A E Nil has a non-negative rankJactoriza­
tion ifthere exist B, C E Nn such that A = BC and rank A = rank B = rank C 
(see Berman-Plemmons [I], Plemmons [2]). It is clear that a singular prime 
has no non-negative rank factorization. Indeed, our matrix PI is used as an 
example in [I], due to J. S. Montague, of a matrix with no non-negative 
rank factorization. 

We do not know whether there is a prime of order 4 with a different 
(0, I) pattern. 

4. OPEN QUESTIONS AND GENERALIZATION 

(5.1) Does every prime in Nn satisfy Condition (ii) of Theorem (2.6)? 
(5.2) If A E Nn, is A prime if and only if A* is prime? 
If n = 2 or n = 3, the answer is affirmative for both questions. 

Remark Let IF be a totally ordered division ring. Our results and their 
proofs remain valid if Nn is the semigroup of all n x n matrices with non­
negative entries from IF. 
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