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Let K" = (x E Nil : (X11 + ... + X!_ I)'/2 <: x,,} be the n-dimensional ice 
cream cone, and let r(K'I) be the cone of all matrices in IR"" mapping K" into 
itself. We determine the structure of r(K,,) , and in particular characterize the 
extreme matrices in r(K,,). 

INTRODUCTION 

In the vector space ~" of real n-tuples we consider the cone 

A matrix A E An" is a positive operator on Kn if AKn C K" . In this paper, we 
determine the structure of the cone r(K") of positive operators on K". In 
Section 2, we show that AKn = Kn or AK" = -Kn if and only if 
AI].A ce "],,, for some O<"ER, where ]n = diag(-l, ... ,-l, 1). 
Further, if rank A '1= I, then AKn C K" or AK" C -Kn' if and only if, for 
some fL ~ 0, AtlnA - fLl" is a posi tive semidefinite symmetric matrix. 
These are related to the notion of copositivity for K'I . Section 3 contains 
some basic lemmas. Lemmas 3.5 and 3.7 exhibit interesting properties of 
matrices mapping Kfl onto itself. In Section 4 we prove our main result: The 
extreme matrices in the cone r(K") are precisely the matrices A which map 
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K'fI onto Kn together with the matrices of the form uv' , where u and v belong 
to the boundary of Kn. As a corollary. we show that r(K,!) is the closure 
of the convex hull of al1 matrices mapping Kfl onto Kn . 

We have the following conjecture. l Let C be a cone in ~n (see Definition 1.2). 
and let r(C) be the cone of positive operators on C. If A is an extreme matrix 
of r(C). then A maps the set of extreme vectors of C into itself. The converse 
of this conjecture is proved in Loewy and Schneider [5] for a nonsingular A 
and an indecomposable cone C. The converse is in general false for a singular 
matrix A or a decomposable cone C. 

1. PRELIMINARIES 

Let R be the real field, and let Rn be the vector space of all real column 
vectors x = (x] t •• • • xn)!. (\Ve usc xt for the transpose of x and we shall always 
assume that n ~ 2.) By ei we denote the ith standard unit vector in IRA. For 
any x E fR rl r let the vectors x and ~ in fRlI-l be given by 

(I.I ) 

DEFINITION 1.2. A cone C in IR,n is a nonempty subset of IR" such that 

(i) C+ C~C, 

(ii) AC ~ C, for 0 '" A Ell;!, 
(iii) C n (-C) = {OJ, 
(iv) C - C = Rn, 
(v) C is closed. 

We writex ~y if x- yEC. 
If C is a cone, then so is 

C' = {y ERn: y'x :;:. 0, 'Ix E C}, 

and C' is called the cone dual to C. For the sake of precision, we define: 

DEFINITEON 1.3. Let C be a cone in R". If x E C, then x is an extreme 
vector in C if 0 < y ~ x implies that y = ax, for some 0: E IR. 

DEFINITION 1.4. Let S be a nonempty subset of Rn. Then x E hull S if 
and only if there exist Xi E S, 0 ~.:\j E IR, i = I, ... , r, such that 

• 
x = L .:\iXi • 

i _ I 

1 After the completion of this paper R. C. O'Brien has shown in an interesting 
counterexample (prhate communication) that the conjecture is false in general. 
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\\'e denote the set of extreme vectors in C by E(C). It is known that 
E(r) r;: i'C, the boundary of C, and that C C~ hull(E(C)) (d. [6, p. 167]). 
Note that hull S satisfies (i) and (ii) of 1.2, but not necessarily the others. 
Th<.· interior of C is denoted by int C. 

DEFINITION 1.5. A cone C in [R1I IS called decomposable if there exist 
nonzero subeones C1 and C2 such that 

(i) C, + C, = C, and 

(ii) span C, () span C, = {OJ. 

(Here span X is the linear span of a subset .. y of [Rn.) A cone that is not 
decomposable is called indecomposable . 

.votation 1.6. Let C be a eone in ~n, Then 

(i) riC) = (A Elh1"": AC C C), 

(ii) e(c) = (A E 1K1": AC = C), 

(iii) L1(C) = (A E E(r(C)): rank A ~ n. 
It is known that r(C) is a cone in 1K1" (Sehneider and Vidyasagar [8]). For 

A, BEIK1" we write A::;,B if A - BEr(C). 

2. COPOSITIVITY AND THE ICE CREAM CONE 

For x E [Rn, we shall always use the Euclidean norm: 

II x II = (x,' + ... + x,')'/'. 

The n-dimensional ice cream cone Kn is defined by 

Kn = {x E [Rn: (X12 + ... + X~_I)1/2 ~ xn}. 

Equivalently, x E K. if and only if II •• II ~ v'2 x,. It is well known that K. 
is a cone. Further, Kn is self-dual, viz. K,/ = Kn . Since the norm II . II is 
strictly convex (Le., if !' x II = Ii y II = I, then II x + )' II = 2 if and only if 
x ~ y), it follows that oK, = E(K,) and that the cone K, is indecomposable 
for n ::;, 3 (Barker and Schneider [I], Loewy and Schneider [5]). 

Let En be the set of symmetric matrices in Ol:nn. If HI , H2 E En : we shall 
write 

H, > H" 

to mean that HI - H2 is positive semidefinite (p.s.d.) and 

H,>H" 

to mean that H, - H, is positive definite (p.d.). 
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Let l. = diag( - I. - · 1 ... .. -I. I)E1: • . We have 

DHINITION 2. 1. Let C be a cone in R". and let ft-l E E". Then M is 
called coporitive fo, C if x'Mx ;;, 0 for all x E C. 

LEMMA 2.2. Let Kn be the ice cream cone in IRI!, and let M E En. Then flt1 
ireoporitive fo, Kn if and only If there ir a /L E R. /L ;;, O. rueh that M > /L l •. 

P,oof. Let /L ;;' 0 and let M > /Lln . Then ."lnx ;;' 0 implies that 

Conversely, suppose that M is copositive for Kn. Let x~Jnx ~ O. Then 
x E Kn U ( - Kn). whence x'M., ;;, O. 

Case I. Let n ~ 3. We first consider the special case when 

and x 7" 0 imply that x'Mx > O. (2.2.1) 

Then. by a result due to Greub-Milnor [4. p. 256) it follows that there exists 
a nonsingular Tin IR"" such that T'lnT and TtMT are diagonal matrices. 
Dy Sylvester's law of inertia (cf. [3. Vol. I. p. 297) we may suppose that 
Tlln T = ln . Let 

T'MT = D = diag(d1 • d, ..... dn). 

It follows from (2.2.1) that 

and x 7" 0 imply that x'Dx > O. (2.2.2} 

Let x = xiei + en I where 1 ~ i < n and I Xi I ~ I. Then 

Hence 

Thus dn > 0 and dn + d, > O. Hence 

D = dnln + diag(dn + d1 •...• d" + d,,_ • • 0) > dnln . 
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We now turn to the general case. Let pt,) = M + (1Ir)I. for r ~ 1.2 ..... 
Then ;ctJ"x > 0, ,\, :-j: 0 imply that x1p(r)x > O. Hence there exists a p.r ~ 0 
and a p.s.d. Hlr) E In such that P(~I = p.rJn + Hlr). Then 

Hence p.J . IL! ,"', are bounded and we may select a subsequence that con­
verges to a nonnegative 1'. Since the limit of the same subsequence of 
pm. pt2) ..... is M. it follows that M > p. j •. 

Case 2. Let n = 2. In this case the Greub-Milnor theorem cannot be 
applied. Let 

be copositive and let x' = (x, • I). where I x, I ,;;; I. We have 

f(x ,) = x'M:c = mllx,' + 2m,,x, + m .. ;;, O. 

Let 

ftc) = min{f(x,): -I ,;;; X, ,;;; I}. 

Case 2a. I c I < 1. In this case we must have mJJ > 0 and I mal < mlJ . 
Thus c = -m12/mll and ftc) = m~; det M ;;, O. Hence M > 0 = p.j, • 
where p. = O. -

Case 2b. I c I = I. In this case either mu ~ 0 or 0 ~ mn ~ I m12 l. 
Then ftc) = mil - 2 I m" I + m .. ;;, O. Choose p. = !(m .. - mil)' Then 

and 

M J _ [mil + p. 
- I' 2 - m12 

m" ] = [!(mJJ + m22) 
m22 - I' mJ2 

m" ]>0 
!(mll + m.,) - . 

The next theorem essentially characterizes them at rices which map Kn into 
Kn or K" into - Kn. 

THEOREM 2.3. Let A E lR"n. If A E F(K.) U ( - F(K.)). then 

for some p. ;;, O. (2.3.1) 

Conversely. if rank A * I and there is a p. ;;, 0 such that (2.3.1) holds. then 

A E F(K.) u (-F(K.». 
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Proof. L<:t A E r(K.) U (-r(K.». Then x'i .... ;: 0 implies that 

x'A'i.A., = (Ax)' i.(Ax) ;;. 0, 

whence A'i.A is copositive for K •. Thus (2.3.1) holds, by Lemma 2.2. 
Conversely, suppose (2.3.1) holds and that rank A :> I. Let .• E K •. 

Then (Ax)' JflAx ~ JLxtJnx :? 0, whence AXE Kfl U ~-KII' \Ve must 
show that either Ax E K.n for all .'t E K,. or Ax E - Kfl fur all x E Kfl, So 
suppose these exist xl, x2 E Kn such thut .vt -= AXI E K n , y2 ;....: Ax2 E -Kfl 
and yl,y2 =F O. Let xG 

,..:..;. Ct.\:1 -I- (I - 0:) ,t~, where 0 ~ IX ~ I, and let 

P, = {~E [0, I]: A ... E K .. }, 

P, =(~E[O,ll:Ax·E-K.). 

Since 1', and 1', are closed nonempty intervals in [0, 1] and P, U 1', = [0, I], 
there exists a ,8, 0 < ,8 < I, such that ,8 E 1', () F, . Thus Ax' E K. () ( - K.), 
whence Ax' = O. Thus, ,8y' + (I -,8) y' = 0, and y' and y' are linearly 
dependent. It foHows that rank A :: I, contrary to assumption. 

In our next theorem we characterize the matrices that map Kfl onto itself. 

THEOREM 2.4. Let A E IR .. •. Then A E B(K.) u (- e(K.» if and only .f 

A'i • .4 = I'i. jor some I' :> O. (2.4.1 ) 

Proof. Suppose (2.4.1) holds. Then A is nonsingular and 

Hence, by Theorem 2.3, both A and A-' belong to r(Kn) u ( - r(Kn». It 
follows easily that either both A and A -' bclong to r(Kn) or both A and A-' 
belong to -r(Kn). Thus, either A E e(K .. ) or A E -8(K.). 

Conversely, suppose that A E e(K.) u (.- &(K .. ». Then A and A- ' belong 
to I'(Kn) U ( - (r(Kn»' By Theorem 2.3, there exist H :;P 0, p :;P 0, I' ;;, 0 
and v ~ 0 such that 

Hence 

A'i.A = I'i. + fl and (A-')' i .. A' = vi .. + P. 

in = I'(A-')' i .. A-' + (A-')' lIA-' 

= I'vi. + I'P + (A - ')' flA-'. 

So (I - I'v) i. :;P O. Thus I'V ~ I, whence I'P + (A ")' HA- ' = O. Hence 
P = 0 and H = 0, and (2.4.1) holds. 
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LEMM o" 3.1. Let rank A . ~ I. Theil the follOfuing are equivalent: 

(I) There exist u, v E K" such that A ~ uvi , 

(2) A E r(K.). 

381 

Proof. (I) .,:· (2). If A .. _ uvt, where u,vEK", then for every x E K" 
we have A:\: = (v1x) U E K", since Kn' = K" . 

(2) .~ (I). Let A E r(K,,). Then A ~" . uv' for some U, VE IR". There 
exists x E All sueh that .-l.:~ oF O. Then Ax = (v'x) U E K n , whence 
U E KOI U (-KII ). If U E -K", we replace U by -u, v by -v, so we can 
assume that U E Kn . Then for all x E Kn Ax ;:;: (vtx) U E K n , whence 
vEK,/ = K II • 

LEMMA 3.2. Let A E [R".n. Then the following are equivalent: 

(I) There exist u, VE aK" such that A = uvt , 

(2) A E L1(K.). 

Proof. (I)~. (2). Let 0 ';; B ,;; uv' in the ordering of r(K.). Let 
x E K II • Then 0 ::0;; Bx ~ (vtx) u, Hence, as u E E(Kn), we have B ."\: = ct;r;U 

for some a.~ ::.;::: O. Thus B = uw' for some W E 1Ji". But by Lemma 3.1 WE Kn. 
Thus 

o ~ (w'x) U ,c:; (v'x) u for all x E Kn , 

so w'x ~ v","\: for aU x E Kn. Hence v - W E Kn' = K". or, equivalently, 
0 , w 'S v. Sinoe v E E(K,,), we have w =, !lv for some!l ;;. O. Thus B ~ !lA, 
and so A E L1(K.). 

(2) ". (I). Let A E L1(K,,). If A = 0, choose u = 0 and any v E oK" . 
So we may assume that rank A ~= 1. By Lemma 3.1 , there exist u, 'V E K" 
such that A ..:. uvt . \Vc prove that u, vE oK n . Suppose u ¢ i}Kn . Then 
there exists a w, O ' ,~ W : ::~ u, such that for any fJ ~ 0, flJ '*- fJu. Hence 
o · wv' < uv' and wv t :F fJA for any f1 ;;: 0, It follows that A is not an 
extreme matrix uf r(K,,), contrary to assumption. Thus U E oK" . Similarly 
one proves that v E DKn . 

LEMMA 3.3. Let A E r(KfI).lf there e.'l'isll.~ E int K" such that Ax E i)K II , 

thelt rank A· I. 

Proof. Let .·Ix ~:::: y. Let :: E R'I. Then there exists E > 0 such that 
.\' .1: 'z E K .. . Hence .1(., ± <Z) ~ J' oJ: <.4z E K .. . Hut, 

y = !(y + eAz) + !Lv - <.4z), 
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whence Hy + <Az) ,,;; y. Thus <.4z ;;; y, and since y E E(K,,), it follows 
that Az = ex,y for some O:z ~ O. Hence rank A :'.' I. 

LEMMA 3.4. Let Q" Q, E elK,,). Then A E E(r(K,,» if and only if 
Q,AQ, E E(r(K,,)). 

PToof. Suppose A E E(F(K,,)) and let 0 ;;:; B .;; Q,AQ, . Since 
Q,' , Q,' E r(K.), it follows that 0 ;;:; QI'BQ, ' ;;:; A, whence Q, 'BQ,' ~ f3A , 
where 0 ;;:; f3 ;;:; I. Hence B = f3Q,AQ" and so Q,AQ, E E(r(K.)). The 
proof of the converse is similar. 

Recall that e" is the nth unit vector in Hn, 

LEMMA 3.5. ut x E int K •. Then there exists Q E e(K.) such that 
Qx = eT!, 

Proof, Case I. n = 2. Let .< E int K,. Without loss of generality sup­
pose that x' = (a, I), where I a I < I. Let 

A = (I _ a')-' [ I -al 
-a I' 

Then Ax = l:l and A'l,A = (I - a')- I 1" whence by Theorem 2.4 A 
maps K2 onto itself. 

Proof. Case 2. n > 2. Let x E int K,. . Without loss of generality assume 
that x' = (Xl' XII"" X,,_I ' I) , where II i 1l2 = r.,::.1 xl < l. [x is defined in 
(1.1)]. There exists an orthogonal matrix Q E Rn-I.,,-I such that 

Let 

Then 

Qx ~ II x II (0, 0, ... , 0, I)' E Rn-l. 

y = QIX = 

o 
o 

o 
11 i!l 

E int Kn. 

and QI'l.QI ~" ln' so that QI " elK,,). 
By the case n ;:!;.": 2, there exists a 1' e [R22 such that Ttl'},1' = Ill.! for some 

/' > 0, and 
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Let 

Then Q.y = e" and Q,'J.Q, = I'J., whence Q, E e(K.) by Theorem 2.4. 
Let Q = Q&, . Then Qx = e· and Q E e(K.). 

Thus we have shown that there are matriees mapping Kn onto itself which 
are far from rotations around the axis of the ice cream cone. 

LEMMA 3.6. Let 

II = {XE Ill" : x, = OJ. (3.6.1 ) 

If L is any n - I dimensiunai subspace of IRn such that L (I int Kn '# 0 
thell there exists Q E e(K.) such that QL = II. 

Proof. Let x E I. rt int K •. By Lemma 3.5, there exists a Q, E e(K.) 
such that Ql'x = eU

• Let L. = Q.L. There exists a vector hEIR" such that 

lib II = I and L, = {y E Ill": y'h = OJ. 

Since e· E L, , we have b" = O. Let jj be defined by (1.1). Then there exists 
an orthogonal matrix Q. E iJ;l.-l..-, such that QJ == (I, 0, ... , 0)' E iJ;l.-'. 

Let 

Then Q,h = e' and Q. E e(K.). We shall show that Q,L, = II. So let :r E L, . 
Then z'h = 0, and hence (Q,..)' e' = z'QiQ,b = :r'b = O. Thus Q,. E II, 
and Q,L, c: II. But dimension (Q.L,) = n - I = dimension (II), so Q.L, = II. 
If Q "= Q2Q, , then Q E e(K.) and QL = II. 

LEMMA 3.7. LeI 

un = (0, 0, ... , I, 1)' E R", 

v" = (0, 0 •... , - J, l)t E IRtf. 
(3.7.1) 

If ., .. yare lillearly illdepmdent vectors belonging to f-K" I then there exists a 
matr;.\' Q E B(K,,) such that Q.\: = u" and Qy -- v'!. 

Proof. The proof is by induction on 11. The C,ISC n ._' 2 is easy and the 
proof is omilled. So assumt: the result holds fur Kn ~ l I and let x, y be linearly 
indcpcnuent vectors helonging to ilK>!. Let L be some 11 - J dimensional 
subspace containing .\' and y. Sil1<.:e .~ + Y E iot K", it follows that 
I. rt int K" "" " . By Lemma 3.6, there existsQ, E 6l(K.) such that Q.L = II. 
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Let Q,.' = z and Q,y = w. Observe that z and '" belong to uK", .no 
z, o~ w, = O. Hence z (see (1.1)), w belong to DK,,_,. Also, z and '" arc 
linearly independent in jRn-·l. Hence, by the induction hypothesis, then! 
exists Q E S(K"_l) such that Qz = u,,- l and OW = v"-). By Theorem 2.4, 
Q'I,,-,Q = I'-I,,-, for some I'- > O. Let Q, = «1'-)'/') ED Q. Then Q,z ~" un, 
Q,w = v" and Q,'I"Q, = I'-I", whence Q, E e(K,,). If Q = Q,Q, , then Q 
has the required properties. 

Thus, given any two linearly independent vectors .\', y in oKn , however 
close they are, there is a matrix A m.ilpping Kn onto itself such that Ax and 
Ay are the given orthogonal vectors un and V", 

4. THE EXTREME MATRICES IN r(K,, ) 

In this section we shall use the following result concerning the singular 
values of a matrix. For a proof in the complex case see [7, p. 349], the proof 
in the real case is similar. 

PROPOSITION 4.1. Let A E Rn,l. Then there exist orthogOlUl/ matrices p. 
Q E IR"" such that 

PAQ = di.g(~, , >., , •.. , ~,,), 

where ~, ;;. ~" ... , ;;. ~, > 0 = ~H' = '" = ~" are the singular values of A 
and r = rank A. 

LEMMA 4.2. Let A E IR"". If A'I"A}> 0, then rank A ~ I. 

Proof. (due to J. Bogmir). Let rank A = r. Since A'I"A}> 0, ,hen 
Ax E Kn U -Kn for every x E R". Suppose that r > 2. Then K" U - Ku 
contains a 2-dimensional subspace L. But L meets the (n -- I)-dimensional 
subspace 

{x E IRn : x" = O} 

in a nonzero subspace. This contradicts the fact that if .\' E Kn and XII = 0 
then x = O. Hence r ~ 1_ 

COROLLARY 4.3. Let A E R"". If A E E(T(K,,)) and A'I"A }> 0, the" 
A EA(K,,). 

Proof. Follows immediately from the previous lemma and the definition 
of A(K,,). 

I 

, 
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LEMMA 4.4. f.et G}> O. Suppose that Gu" ,~O and Gz = 0, where u" 
is givell by (3. 7. J) and .01 

cc (.01 ,z. ,"' , z._z' -I, I). Then there exists y E D;l' 

such that 

y, u'· arf 'ilJfariy indfpenJfnl , 

Y E oK" , 

Gy=O. 

(4.4.1) 

(4.4.2) 

(4.4.3) 

Proof. Let)' ;: .. :: au" + Z, where a = t L;~12 zl. Then y has the required 
properties. 

Our main theorem is Theorem 4.5. 

THEOREM 4.5. Let n :;, 3. Then 

E(r(K,,» = e(K.) U i1(K.). 

Proof. (a) We first prove the inclusion 

E(r(K.» C e(K.) U i1(K.). 

Let 0 "" A E E(r(K.». Let 

F = {x E D;l": x E oK. and Ax E oK.}, 

and let L be the linear space spanned by F. Let q = dimension L. We want to 
show that q = n. We shall show this by assuming that q < n and obtaining a 
contradiction. 

Cast I. q .-~ O. Let 

S = ilK. n {x E D;l': x. = I }. 

Then Sis. compact subset of D;l', in fact II x II = ~ for all XES. It follows 
that A S is also compact. By the assumption that q = 0, we have 
AS () oK" = 0 . Since oK" is closed, it follows that there is an E > 0 such 
that II Ax - y II :;, " for all XES andy E ilK • • We deduce that if X E S and 
II Ax - z II < ', then z E K • . Now, let B = A - (./2) f. If XES, then 
II Ax - Bx II c = (./2) II x II < E, whence Bx E K •. Thus 0", B '" A . Sup­
pose it were true that B ,= .. A, where 0 ,.,; « .,; J. Then (./2) I = (I - «) A, 
eontradicting q :::: O. Hence A is not extreme. It follows that q =t= O. 

Case 2. q = I. Suppose that At" E oK.. Then, by Lemma 3.3, 
rank A <; I, and A E i1(K.). This implies q = n, by Lemma 3.2, • COntra­
diction . Hence Af" E iot Kft . By Lemmas 3.4 and 3.5 we may assume without 
loss of generality that Af" = e". 



386 LOEWY AND SCHNEIDER 

Since q = 1, there exists x E ilK" such that .\'" = I and A.\' E [JAn' There 
exist orthogonal matrices 

Q. = [0, 0] ER"" , 0 I • i = 1,2, 

such thatQ,x = un, Q,(A.<) = au" (where a = (Ax),,) and Qie" ~" e", i = 1,2. 
Hence, by replacing A by Q2AQ~l. we may assume that Ae" :::.: en and 
Au" = au", where a. ~ O. It follows that Aen- t = au" - en, and so A can 
he partitioned 

A - [Au 0] 
- A:!I A22 ' 

where 

We observe that ex :f=. I, for otherwise AV'I = v". contradicting q = I. Let 
B = A'InA. If we partition B conformably with A we obtain 

where 

and 

[ 

(a(a"l - a,,_,.,) - a.,,) 
(a(on! - an_u :) ~ a,,:!) 

(a(an.n_z - an~1.n_~) - a",n_2} 

_ [I - 2a a - I] 
B" - a - II' 

ani 1 
an! E [R1I- 2.2 

a".n_' 

By Theorem 2.3, B =" p.In + II where p. ;;' 0 and II ~ O. Since 
(ufl)t In"" = 0 and Au" = au", we also have (un)' Bu" ::...-: 0, and so 
(u")' Hu" "" O. Since II ~ 0, it follows that /fun 0." 0 (ef. [3, p. 319]). 

By computing the last component of /lu" ,~ 0, we conclude that IX - ..: fL. 

Since hfln :. -= I - fL and since fL '- . a t - I, we have 0 ~ fL < L But if fL ~ 0 
then AI InA ~ 0, whence by Corollar), 4.3 and Lemma 3.2 A -" zw' for 
some vectors z, W E &K II • Thus q ;-::. ", which is impossible. Hence 
o < fL <..: I. Computing the first (n - 2) components of Hun ~:. 0 we obtain 

j = 1,2, ... , " - 2. 
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Hence, if we partition II conformably with A we obtain 

where 

[ =::: ::: 1 Hn = BJ2 = 

-a~ . " _2 an '/1 - 2 

and 

Let D = A - t:U"(V11)1, where £ > O. Since £(u") ('£111 )1 ~ 0, we have D ~ A. 
We shall show that for sufficiently small " D ;;' O. We do this by showing 
that there exists P ~ O such that D'I"D = fll" + P. Since Hu" =0, we 
have 

But Au" = lLu" and IL > 0, whence A']"u" = ]"u". Thus, 

D'I"D = A'I"A - <[v"(u")' I"A + A'l"u"(v")'] + .'v"(u")' l"u"(v")' 

= A'I"A - 2EV"(V")', 

where from (3.7.1) 

-I] 
I . 

Let D'I"D =, fll" + P. Then, since A'I"A = fll" + H, it follows that 
P = H - 2EV"(Vll)!. Thus, partitioning P in the same way as H, 

[
' - fI - 2. fI - , + 2<] 

P" = fI - I + 2< I - fI - 2. . 

We shall show that for sufficiently small and positive " P ~ O. Let p'" 
[or h"'] be the ith column of P [or H]. Since P'"' = _ p'"-I', det P = 0 for 
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all E. Hcnce it is enough ro prove that der PUt. i,! , ...• im] -:;:. 0, where 
I ..; il < i'J, < ... " i,,, -, n .-. I and P[it, i~ ,"', ill,] denotes the priorip;}1 
submatrix of P based on rows and columns i l , i'.! , ...• i"I' If i.., <" .- I, 
then det PIi) I;t. ,"', im1 :=.= det fI[i) • it, , ...• illl ] . O. So suppose that 
i lll -:= n ~ I. If det l1[il .;'2. "." i"'_I, n -- I] 'O- 0, then 

det PUt. i'l •... , im_ J , Il - I] > 0 

for f: sufficiently small and positive. So suppost: that 

det fI[i] ,;2 "'" i,n_t I It - J] -= O. 

As can be shown by taking the mth compuund of ff (ef. [3, p. 19), it follows 
that hlil', ...• h1i""-I', hlrl-l) are linearly dependent. Hence there exist (Xi E ~, 

i = I, 2, .. " m, not all 0, such that 

(4.5.1) 

Suppose that (XIII "# O. Then, since "till = _/lln-H, 

Let Z E R" such that 

and OJ = 0 elsewhere. 

Then Hz = 0 and the conditions of Lt.:mma 4.4 are satisfied. Hence 
there exists a vector Y E D;l" satisfying (4.4.1), (4.4.2) and (4.4.3) (with 
respect to H). But (Ay)' J,,(Ay) ,= I'y'J"y + y'ffy ' O. Hence Ay E vK. , 
contradicting q = I. Thus CXm = 0 in (4.5.1). It follows that htil', .•• , hUm-I) 

are linearly dependent. Since pli/l :::.. h'ij ', j ::.: 1,2, ... , m - I, we have 

det P[i" i, , ... , i",_l ,n - I) = O. 

Thus, for ( > 0 sufficiently small P > O. Since .-lull = /LU" for some 
0 < J.J- < 1 and At" =: e", we have rank A :? 2. For sufficiently small and 
positive ~ it follows that rank D ;~ 2 and that D -.c_ A - ~u"(vn)t is not ;) 
multiple of A. Since D'J"D .= I'J. ·c P, it follows by Theorem 2.3 that 
DE r(K"), contrary to .-I E E(F(K"ll. Hence q /= I. 

Case 3. 2 ~ q ~ n - I. There exist Xl, .\.2 EF which are linearly 
independent and A .\:1 .= ,Vi E (IKpt I A .\:2 :~ )'2 E ;~Kn' By Lemma 3.7 there 
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exists {It E €J(KI/) such tlmt Ql;\'1 . II" and Ql.\';! . .:. VII. Then AQi 11111 :-:= yl 

alld AQi.·IV" . _'\':!' By Lemma 3.4 we may assume without loss of generality 
that AU'i , .)'1 and Av" ' y2, 

Case 3a. Suppose that yL and y2 are linearly independent. By a similar 
argument we may assume that Au" . . ' II" and AVli ':"~ v". Hence 

Ae" = e". (4.5.2) 

Let 

where An E [Rn-2,n.-2. It follows frum (4.5.2) that A12 = 0 and A22 = 12 , 

Since A E F(K.), there exist" ;;:, 0 and H ~ 0 such that A'I.A = "I. + H. 
Since 1" .'" - /"_2 ED 12' we obtain 

where Hll E 1R·-2.,,-2. Thus (I - ,,) I, = H,, ~ 0, whence ,,= I and 
H" = O. It follows that HI2 = O. Hence I,A" = 0, and so A" = O. Thus 
A = All EEl I, , and 

(4.5.3) 

We obtain 0 <{ Ai,A" <{ 1._,. If A\,A" = 1._, , then by (4.5.3) H" = 0 
and so H = O. Thus A'I.A = 1" , whence by Theorem 2.4 and (4.5.2) 
A E I9(K.). This contradicts q < n. Thus A\,A" *.1._, . 

By Propositton 4.1 there exist P, {I E [Rn - 2.n-Z such that 

PAllQ = A .= diag(A" A, ,,.., ,1._,). 

It is easy to see that 0 <{ A'A <{ 1,,_, and A'A * 1._2 . Thus I - A.' ;;:, 0, 
j = I, 2, ... , n - 2 and I - A/- > 0 for some j , 1 ~ j !( n - 2, say j = I­
Choose < > 0 such that I A, ± < I < I. Let 

A(±E) = diag(A, ± E, A, ,,.., ,1._,), 

and A(±<) = A ll(±<) EEl 12 , 

Since o <{A'( ±<)A(±E) <{ /. - 2 , we have A( ±E)' I.A(±<) ~ I •. Since 
rank A ;;:, 2 it follows from Theorem 2.3 and (4.5.2) that A(±<) E F(Kn). 
But A = t[A«) + A( -E)l. Now suppose that A(E) = aA for some a E IR. 
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Then 122 = tJ'l': t whence a: = I. However, A(I£) or:· A. Thus A is not extreme. 
a contradiction. 

Case 3b. Suppose that yl :....-,:; Au" and y1 -= Av" arC linearly dependent, 
say yl = "'y and y' = f3y. where y E uK" and "'. f3 ;;, O. !ly Lemmas 3.4 and 
and 3.7 we may assutne without loss of generality that y = un, so that 
Au" = OIU", Av" = (Ju ll , Since 

. Ae" = !Au" + !Aw" = 1('" + (3) u" 
an~ 

Ae"- ' = !Au" - tAv" = !C'" - (3) u". 

it follows that 

A - [An 0 1 
- Au A22 ' 

where 

A = t f'" - f3 '" + f3l. 
22 L.-f3 "' + f3 

Let B = A'I"A. Then B}> p.I" for some p. ;;, O. since A E F(K,,). If we 
partition B conformably with A, we obtain B'l'l. = A~2J~22 = O. Hence, 
O}> p.I,. whence p. = O. Thus A'I"A }> O. and since A E E(F(K,,)) we 
conclude from Corollary 4.3 that A E LI(K,,). An immediate application of 
Lemma 3.2 yields q = n, a contradiction. This completes the investigation 
of Case 3. 

We have proved that q = n. Hence there exists a basis xl, r,o .. , x" for 
A'" such that x' E oK" and A.\:i E flK", i = 1,2, ... , n. Since A E F(Kn), 
there exist H }> 0 and p. ;;' 0 such that A'I"A = 1"1" + H. Hence 

o = (Ax')' I"Ax' = p.(x·)' I"x' + (x')' H~" = (x')' Hx'. 

It follows that H.<' = O. i = I. 2 •...• n. and so Ii = O. Thus A'I"A = p.I". 
If p. > O. then by Theorem 2.4 A E 8(K,,). If p. ~, O. then by Corollary 
4.3 A E LI(K,,). We have established the proof that 

E(F(K,,)) C 8(K,,) u LI(K,,). 

(b) We now prove that E(F(K,,)) ;;) 8(K,,) U LI(K,,). So let 
A E 8(K,,) U LI(K,,). If A E LI(K,,). then A E E(F(K,,)) by definition. So sup­
pose that A E 8(K,,). Since the cone K" is indecompo .. ble for n ;;, 3 (see 
Barker and Schneider [I] and Loewy and Schneider [5]). it follows from 
Theorem 3.3 of Loewy and Schneider [5] that A E E(l'(K .. )). This completes 
the proof of the theorem. 

Remark. Note that the condition n > 3 is requirl~d in the proof of 
Theorem 4.5. It is clear that E(F(K,)) :" LI(K,). sint'C every nonsingular 
A E F(K.) is the sum of two matrices in F(K,) of rank I. 
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Theorem 4.5 characterizes the extreme matrices in r(Kn), for n ;;: 3. We 
can now determine the structure of r(Kfl) : 

COROLI.ARY 4.6. Let n :-; 2. ThCll r(K,) = hull[8(K,) U LI(K,)]. 

Proof. This is an immediate corollary of Theorem 4.5, the preeeding 
remark and the well-known theorem that any eone in IRk is the hull of its 
extremes (ef. [6, p. 167]). 

Finally, we show that r(K,) is determined by the matrices that map K, 
onto itself. 

THEOREM 4.7. Let n ~:. 2. Then r(K,) = hull(closure e(K,». 

Proof. By Corollary 4.6 it is enough to show that any matrix A in LI(K,) 
is a limit of matrices in 19(K,). So let 0 'F A E LI(K,). Then by Lemma 3.2 
there exist nonzero vectors x, y E iJK" such that A = xy'. By Lemma 3.7, 
there exist Q" Q, E e(K,,) such that Q,x = u' and Q,y = u'. Let 
B == tQIAQ,'. Then BE LI(K,) and it is enough to show that B i. a limit 
of matrices in B(KlI ). But 

B = !QIAQ.' = iu'(u')' = 0"_2 Ef> ! r: :J. 
Let 

l' = (2<)1 /2 I Ef> [! + < ! - <J ' ,-, t -. i+<' 

Clearly, lim,_o T, = Band T.'j"T, = 2<j, . Hence, by Theorem 2.4, 
T, E 19(K,,), completing the proof. 

Addendum to 
Positive Operators on the 

n-Dimensional Ice Cream Cone 

After the eompletion of this paper J. Bognar informed us of a different and 
more elementary proof of Lemma (2.2). Dy modifying a proof found, for the 
complex ease, in M. G. Krein and Ju. L. Smut'jan (Plus-operators in a space 
with indefinite metrie, /lmer. Mat". Soc. Trans!. 85 (1969), 93- 113), one 
first proves: If xIJJI"'\' ----"' 0 implies ,,\,tMx ':: 0, then the relations y'JnY < 0 
and z'j"z > 0 imply that y'J1Iy/y'j"y < z'Mz/z'j"z . Lemma 2.2 then 
follows easily. . 
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