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Let K, = {xeR":(x,* + --- + =}_)'"* < x,} be the n-dimensional ice
cream cone, and let I'(K,) be the cone of all matrices in R™ mapping K, into
itself. We determine the structure of I'(K,), and in particular characterize the
extreme matrices in D(K).

INTRODUCTION

In the vector space R™ of real a-tuples we consider the cone

Ky ={xeR™ (x* + - + 2l < x,).

A matrix 4 € R™ is a positive operator on K, if AK, C K . In this paper, we
determine the structure of the cone I'{K ) of positive operators on K., In
Section 2, we show that AK, = K, or AK, == —K, if and only if
A4 =pf,, for some 0 <pueR, where [, ==diag(—1,...,—1,1).
Further, if rank 4 +# 1, then 4K, C K, or 4K, C —K,, if and only if, for
some p 20, A'f, 4 — pf, is a positive semidefinite symmetric matrix.
Fhese are related to the notion of copositivity for K, . Section 3 contains
some basic lemmas, Lemmas 3.5 and 3.7 exhibit interesting properties of
ynatrices mapping K, onto itself. In Scction 4 we prove our main result: The
extreme matrices in the cone I'(K|) are precisely the matrices A which map
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K, onto K, together with the matrices of the form wef, where 1 and v belong
to the boundary of KA, . As a corollary, we show that I'(K) is the closure
of the convex hull of all matrices mapping K, onto X, .

We have the following conjecture * Let Cbe a cone in R” (see Definition 1.2),
and let I'{C) be the cone of positive operators on C. If 4 is an extreme matrix
of I'{C), then A4 maps the sct of extreme vectors of C into itself. The converse
of this conjecturc is proved in Locwy and Sehneider [5] for a nonsingular A
and an indccomposable cone €. The converse is in general false for a singular
matrix A4 or a decomposable cone C,

1. PRELIMINARIES

Let R be the real field, and let R" be the vector space of all real column
vectors x = (xy ,..., x,)!. (We use &t for the transpose of & and we shall always
assume that n = 2.} By ¢ we denote the fth standard unit vector in R®. For
any « € R", let the vectors ¥ and £ in R™-! be given by

= (x] y Xz -ny xu—-[)y £ = (x2 1% ey xﬂ)‘ (l])

Dernimion 1.2, A cone € in R% is a nonempty subset of R® such that
M C+ccce.
iy ACCC, forQ=CAel,
(iiiy € (=€) = {0}
(iv) C—C=Rn,
(v) Cis closed.
Wewritex zyif x —yeC.
If C is a cone, then so Is
C' ={yeR™ y'x 20, ¥xe C},

and C" is called the cone dual to C. For the sake of precision, we define:

Dermvireon 1.3, Let € be a cone in B If xe €, then x is an extreme
vector in € if 0 < v < x implies that y = ax, for some a € R.

DertrarioN 1.4, Let S be a nonempty subset of R™ Then x < hull § if
and only if there exist ' € 5,0 << A, € R, { = 1,..., r, such that

=) Axi

i=1

1 After the completion of this paper R. C. O’Brien has shown in an interesting
counterexample (private communication} that the conjecture is false in general
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We denote the set of extreme veetors in € by E{C). It is known that
E()C £C, the boundary of C, and that C -= hull(E(C)) (cf. [6, p. 167]).
Note that hull .5 satisfies (i) and (i1) of 1.2, but not necessarily the others.
‘The interior of € is denoted by int C.

DermiTioN 1.5, A cone C in R* is called decomposable if there exist
nonzero subeones C, and C, such that

(i) C,+C,=C, and
(il span C; M span C, = {0}.

(Here span X is the linear span of a subset X of R".) A cone that is not
decomposable is called indecomposable.

Notation 1.6. Let C be a eone in R*, Then
(i) MC)y={AeRm: ACC C},
(i) C)={AeRr: AC = C},
(i) A(C) = {4 e E(I'(C)): rank 4 < 1}.

It is known that I'(C) is a cone in R"" (Sehneider and Vidyasagar [8]). For
A, BeR"™ we write A = B if A— Bel(C).

2. CoprosITIvITY AND THE IcE CrEaM CowE

For x € R", we shall always use the Euclidean norm:
= G+ o 4 5,
‘The n-dimensional ice cream cone K, is defined by
K, ={xeR": (x*+ = + 22 )2 < x,).

Equivalently, xe K, if and only if | x| << v/2 x,,. It is well known that K,
is a cone. Further, K, is self-dual, viz. K,” = K, . Since the norm || - || is
strictly convex (ie., if !x|| =ll¥|| =1, then || x + 3{ =2 if and only if
x = y), it follows that aK, = E(K,) and that the cone K, is indecomposable
for n = 3 (Barker and Schneider [1], Loewy and Schneider [5]).
Let 2, be the set of symmetric matrices in R, If i, , H,e X, . we shall

write

H > H,,
to mean that H;, — H, is positive scmidefinite (p.s.d.) and

Hl > Hz ’

to mean that H, — H, is positive definite (p.d.).
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Let J, = diag{—1, —1,..., =1, )& Z,. We have
K, ={xeR:x]x=0andx, =0}

DeriniTioN 2.1. Let € be a cone in RY, and let M e Z,. Then M is
called copositive for C if x'Mx 2= 0 for all xe C.

Lemma 2.2, Let K, be the ice cream cone tin R, and let M e 2, . Then M
is coposttive for K, if and only if there s a p € R, u 32 0, such that M 2> u], .

Proof. Let u»0 and let M2 uf,. Then xJ.x 20 implies that
xMx 2 pxt] e 2 0.

Conversely, suppose that M 1s copositive for K. Let x*J,x = 0. Then
xe K, U ({—K,), whence z'Mx = 0.

Case |. Let n > 3. We first consider the special case when

2]x =0 and x50 imply that ='Max > 0. (2.2.1)

Then, by a result due to Greub-Milnor [4, p. 256] it follows that there exists
a nonsingular T in ®&"" such that T*J, T and T'MT are diagonal matrices.
By Sylvester’s law of inertia (cf. [3, Val. I, p. 297]) we may suppose that
TJ].T = J.. Let

TtMT = D = diag(d, , d; ,..., dp).
It follows from (2.2.1) that
*fx>20 and x5£ 0 imply that ='Dx > Q. (2.2.2)
Let x = x¢! + ¢”, where | <{{ << nmand | x;| <X 1. Then

xfx=1—2220

Hence
2®Dx=d, + dx2 > 0.

Thus 4, > 0 and 4, + d; > Q. Hence

D =d,], + diag(d, + dy ... dp + dyy, 0 2 d, ], .

Thus,
M = (T DT-12 d (T2 [T == dy ], .



We now turn to the general case. Let P = M -} (1/r} 1, forr =1, 2,....
Then »* [ x > 0, x % 0 imply that x*P®x > 0. Hence there exists a u, = 0
and a p.s.d. H' ¢ X, such that P19 = . J. + HU), Then

M + 12 p50 =, + B 2 ey

Hence w4, , pta,..., ate bounded and we may select a subsequence that con-
verges to a nonnegative p, Since the limit of the same subsequence of

P, P@ s M, it follows that M s ], .

Case 2. Let n == 2. In this ease the Greub-Milnor theorem eannot be
applied. Let

M= [mu mlz]

My, Ml ’
be copositive and let x* = (x,, 1), where | x, | << ]. We have
Jx) = x*Mx = mx,? + 2mygx; + my, 2 0.
Let
J(€) = min{f(x): —1 < x, < 1).

Case 2a. |c|<<1. Inthiscase we must have my; > Oand | m,, | < m,,.
Thus ¢ = —my,fm,; and f{c) = m}] det M = 0. Hence M > >0 =up/,
where p = 0.

Case 2b. je| =1 In this case either my; <0 or 0 << myy < 1oy, |
Then f(c) =myy, — 2| my, | + my = 0. Choose p = 4(myy — my;). Then

p=my|—m; 20
and

[myn m _ [3mn + mg)
M'—‘u'h_[ m, mzefﬁ]_[ My, 2 i(’”11+"'22)]>0

The next theorem cssentially characterizes them atrices which map K, into
K,.or K, into — K, .

Turorem 2.3. Let Ae Ren If Ae N(K,) W ((—I'(K,)), then
AJ AP pl,  for somep 20, (2.3.1)

Conversely, if rank 4 s£ 1 and there is a p = 0 such that (2.3.1) kolds, then

Ae DKy v (—IXK,)).
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Proof. Lot A€ I(K,) U (—T'(K,)). Then x' [« 2> O imphies that
A Ax = (Ax) J(Ax) =0,

whence 4tJ A is copositive for K, . Thus (2.3.1) holds, by Lemma 2.2.

Conversely, suppose (2.3.1) holds and that rank 4 > 1. Let xe K,,.
Then (Ax)t Jodx 2 px'Jx 20, whence Axe K, v —K,. We must
show that etther Axe K, for all xe K, or Axe — K, for all xe K, . So
suppose these exist x!, x*€ K such that 3! = Axle K, »* -z Ax?e — K,
and y', 3% 52 0. Let x* = ax! - {I — o ¥%, where 0 = « = !, and let

F={ae|0, 1]: 4x=c K )},
Fy={ae[0, 1] Ax*e —K,}.

Since F, and F, are closed nonempty intervals in [0, 1] and F;, U F, = [0, 1],
there exists a8, 0 << B < I, such that Be F; N F, . Thus Ax8e K, N (—K,),
whence Ax® = 0. Thus, 83! + (I — B} »*> =0, and »' and »* are lincarly
dependent. It follows that rank A := 1, contrary to assumption.

In our next theorem we characterize the matrices that map K onto itself.

THeorem 2.4, Let A eRen, Then A e @(K,) v (—O(K,)) if and only if
AtJ A =uf],  forsomeyu > O (24.1)
Proof. Suppose (2.4.1) holds. Then A is nonsingular and
(AN JoA™ = p 1

Hence, by Theorem 2.3, both A and A-! belong to I(K,) U (—T(K,)). 1t
follows easily that either both 4 and A-* belong o 1K) or both 4 and 4-1
belong to —I'(K,). Thus, either 4 € H(K,) or 4 & —B(K,).

Conversely, suppose that A € &(K,) (- O(K,,)). Then A4 and A~! helong
to I'(K,) U (—(/(K,)). By Theorem 2.3, there exist 220, P2> 0, u = 0
and v 2z 0 such that

AJA=p], + H and (A A=y, + P

Hence
Jo = WA LA+ (A 1A
=], + P+ (A1) HAL

So (1 — w) J,220. Thus v = |, whence P +- (A1) HA-! = (. Hence
P=0and H =0, and (2.4.1} holds.
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3. Basic Lemmas on P(K) anp O(K,)

Lenma 31, Let rank 4 = |. Then the following are equivalent:

(1) There exist u,ve K, such that A — uvt,
2y 4K,

Proof. (1) - (2). Il 4 . ue!, where w,ve K, , then for every ve K,
we have Ax = (vlx)we K, since K, == K, .

(2) = (). Let 4e (K,)). Then A= urt for some u, veR". There
exists v€ K, sueh that Hdx 0. Then Ax:==(v'xjuecK,, whence
vue K, U(—K)). M uec —-K,, we replace u by —u, v by —v, so we can
assurne that we K. Then for all xe K, Adx = (v'x)ue K, whence
ve K, =K, .

Lemma 3.2, Let Ae R~ Then the following are equivalent:

(1) There exist u,ve 0K, such that 4 = urt,
(2) AeAK).

Proof. (1) = (2). Let 0= B =lwuet in the ordering of I'(K,). Let
x€ K, . Then 0 =% Bx = (v'x) u. Hence, as ue E(K,), we have Bx = au
for some o, 2= 0. Thus B = uw' for some w € R*. But by Lemma 3.l we K, .
Thus

O < (wix) w3 (v'a) u forallxc K, ,

so whr = v'v for all xe K. Hence v — we K, = K, or, equivalently,
0: w < v Sinceve E(K,), we have w = Svforsome B = 0. Thus B = 84,
and so 4 € A(K,).

(2) =+ (1). Let ded(K,). If 4 =0, choose u =20 and any ve oK, .
S0 we may assume that rank 4 = 1. By Lemma 3.1, there exist u, ve K,
such that 4 - ue!. We prove that w, ve 0K, . Suppose ug¢eK,. Then
there cxists a w, 0 -Jaw:  u, such that for any 8 = 0, w + Bu. Hence
0 wo' = uo' and w34 BA for any B > 0. It follows that .4 is not an
extreme natnx of N(K,), contrary to assumption. Thus u € 8K, . Simijlarly
one proves that v € 0K, .

Levima 3.3, Let A e D(K,). If there evists x € int K, such that Ax e &K,
thew rank A - . 1.

Progf. Let Axv ==y, Let xeR" Then there exists ¢ > 0 such that
x {-exe K, . Hence A(x 4- ez) =3 4 edre K, . But,

y =4y + edz) + (¥ — edzn),



whence #(y + edz) X y. Thus edz =l y, and since ye E{(K)), it follows
that 4z = a,y for some o, 2 0, Henee rank o = |,

Lemma 3.4, Let Oy, Qe &K,). Then Ae E(I(K,)) if and only if
QAQ, € E(I'(K,.))-

Proof. Suppose A4eE(IN(K,)) and let 0 < B < Q,A4Q,. Since
07, 05 e I'(K,), it follows that 0 < O7'BO;! < 4, whence O7'BO;! = 84,
where 0 <<f << }. Hence B =£0,40,, and so 0,40, c E(I'(K,))). The
proof of the converse is similar.

Recall that ¢ is the #th unit vector in R".

Lemna 3.5, Let xeint K,. Then there exists QO c O(K,) such that
Qx = e,

FProof, Case 1. n = 2. Let xeint K,, Without loss of generality sup-
pose that x' = (&, 1), where | «| << 1. Let

I —«
= {] — a2)-1
seamen L7

Then Ax =[] and A¢J,4 = (1 — o®)! J,, whence by Theorem 2.4 4
maps K, onto itself.

Proof, Case 2. n > 2. Letxcint K, . Without loss of generality assume
that x* = {x, , 23 ,..., X,y , 1), where || ¥|2 = Z:-': x2 < 1. [% is defined in
(1.1)]. There exists an orthogonal matrix € R*-1-#-1 such that

0% =| #(10, 0,..., 0, 1)t € R,

Let
J— Q.- 0 NIt
Q0 = [0 l] & .
Then
0
0
y=0x = 0 eint K,
I

and O, ],0, = [, so that 0, e &(K,).
By the casc n = 2, there exists a T'e R22 such that T¢ f, 7' = p [, for somc

- )



H-DIMENSIONAL ICE CREAM CONE 383

Let
— (F)l'ri Iﬂ_a 0 "N
e = [ 0 T] € R

Then O,y == " and O, J,05 = p f,, whence O, € (K} by Theorem 2.4.
Let O = 0,0, . Then Ox = ¢" and O € &K ).

Thus we have shown that there are matriees mapping K, onto itself which
are far from rotations around the axis of the ice cream cone.

Lemma 3.6, Let
IM={xeR:x =0} (3.6.1)

If L is any n — | dimensional subspace of R® such that Lnvint K, # @
then there exists O e O(K,) such that QL = IT.

Proof. Let xel. nint K. By Lemma 1.5, there exists a O, € &(K,)
such that Qyx = e®, Let L, = QL. There exists a vector 5 € R* such that

Il =1 and L, ={yeRm yt =0}

Since e" e L, , we have b, = 0. Let 6 be defined by (1.1). Then there exists
an orthogonal matrix @, € R™17-1 such that @6 == (1,0,..,0) e R~1,
Let

oonff e

Then Qb = e' and Q, € &(K,). Wc shall show thatQ,L, =TI Solet el .
Then z'6 =0, and hence (Qgo)t et = 2'(,'0b = 2'b == 0, Thus Q,zcT,
andO,L, CII. But dimension {((Q,L.,) = n — 1 = dimension (IT), so J,L, = I1.
If Q s=0,0;, then Qe &K) and QL = II.

Lrvmma 3.7, Let
ut = (0,0,...,1, 1} e R,

(3.7.1)
v =(0,0,.,—1, 1) eR"

If x. v are nearly tndependent vectors belonging to &K, , then there exists a
matrix O e (K ) such that Ox = w* and Qv - v™.

Proof. ‘The proof is by induction on n. The case n -: 2 is easy and the
prooi is omitted. So assume the result holds for X, | | and let x, y be linearly
indcpendent vectors belonging to @A, . Let L be some » — | dimensional
subspace containing » and y. bince & + yeint K, it follows that
Lrvint K, 5 ©. By Lemma 3.6, there exists Q) € &(K,) such that QL = IT.
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Let Qyx ==z and Q,y = w. Observe that z and w belong to 2K, , and
%, =w, = 0. Hence # (sec (1.1)), ¥ belong to 0K, , . Also, # and @ arc
linearly independent in R"'. Hence, by the induction hypothesis, there
exists O € O(K,,_,) such that 0% == -1 and O =: ¢"'. By Theorem 2.4,
0']us0 = ] s for some > 0. Let O, = ((1/2) B Q. Then Qyz == u™
Quw =" and (! .0, = p ], , whence Oy € @(K,). If Q =3,0,, then O
has the required properties.

Thus, given any two linearly independent vectors «, ¥ in 9K, , however
close they are, there is a matrix 4 mapping K, onto itself such that Ax and
Ay are the given orthogonal vectors 4" and o7,

4. THE ExTREME MaTricEs 1IN I'(K,)

In this section we shall use the following result concerning the singular
values of a matrix. For a proof in the complex case see [7, p. 349], the proof
in the real case is similar.

ProrosiTiON 4.1. Let A e R". Then there exist orthogonal matrices P,
Qe R™ such that

PAQ = diag(hl * A‘Z [Ad] Aﬂ).v

where Ay 2 Xy .., 22 A >0 = Ay == o0 = A, are the singular values of A
and r = rank 4.

Lemma 4.2, Let Ac R, If A*],A 20, then rank 4 <C 1.

Proof. {duc to ]. Bogndr). Let rank A — r. Since A*J,42> 0, then
Axe K, {) —K,, for every x € R". Suppose that r .2 2. Then K,{} — K,
contains a 2-dimensional subspace L. But L meets the (n — I)-dimensional
subspace

{xeR:x, =0}

in a nonzero subspace. This contradicts the fact that if xe K, and x,, = 0
then x = 0. Hence r = 1.

CoroLrary 4.3. Let AeRm. If AeE(I(K,)) and A'J,A20, then
Aed(K).

Proof. Follows imnmediately from the previous lemma and the definition
of A(K,).



LemmMa 4.4, et G2 0. Suppose that Gu" == 0 and Gz = 0, where u”
s prven by (3.7.1) and 2% == (%, 24\, Snog, — 1, 1). Then there exists y € R"
such that

¥, u" are linearly independent, (4.4.1)
redk,, (4.4.2)
Gy =0 (4.4.3)

Proof. Lecty == as® -+ %, where o« = }2::12 z;% Then y has the required
properties.
Our main theorem is Theorem 4.5.

THeorEM 4.5. Let n = 3. Then
E(I(K,)) = 8(K,) v A(K,).
Proof. (a) We first prove the inclusion
E(L(K,) < 6(K,) U A(K,).
Let 0 ¢ A ¢ E(I'(K,)). Let
F={xeRr:-xcdK, and Axc 0K},

and let {. be the linear space spanned by F. Let ¢ = dimension L. We want to
show that ¢ = n. We shall show this by assuming that ¢ << n and obtaining a
contradiction,

Case 1. q=0. Let
S=dK, Nn{xeR:x, = 1}.

Then S is a compaet subset of R, in fact || x ]| = v/Z for all x& S. It follows
that A4S is also compact. By the assumption that ¢ =0, we have
AS N 8K, = @, Since 3K, 1s closed, 1t follows that there is an € > 0 such
that || dx — y|| = ¢ for all xe § and v & 9K, . We deduce that if x & S and
| Ax — z|| <¢, then ze K. Now, let B=A — (¢/2}{. If xS, then
|| A% — Bx|| == (¢/2}|| x|| <¢ ¢, whence Bxe K,. Thus 0 < B < 4. Sup-
pose it were true that B :— o4, where 0+ o« =X 1. Then (¢/2} ] = {1 — &} 4,
contradicting ¢ == 0. Hence A4 1s not extreme. It follows that g 7 Q.

Case 2. ¢ = 1. Suppose that A4e" e dK,. Then, by Lemma 3.3
rank 4 -7 |, and 4 € A(K ). This implies ¢ = n, by Lemma 3.2, a contra-
diction. Hence Ae™ e int X, . By Lemmas 3.4 and 3.5 we may assume without
loss of generality that 4e™ = e,
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Since g = 1, there exists x € A, such that x, == | and 4ve ?X . There
exist orthoponal matrices

such that Qx = u", Qy(Ax) == an” (where a = (dx),)and Q,e” = ¢m,1 == 1, 2.
Hence, by replacing A by (0,407, we may assume that Ae” = ¢7 and
Aum — ay™, where a == 0. It follows that 4e® ! = ay™ — e, and so A can
be partitioned

A=l a)

Aﬂ:[cxil (l)]

We observe that o £ |, for otherwise 4v* = v", contradicting ¢ = |. Let
B = At] A If we partition B conformably with 4 we obtain

where

B, B
B = I 12] ,
B':E BEE
where
B, = _AilAll + AéleAEI y
(a(anl - “n‘l..l) - anl) Qny ]
By, = {a(an, — an‘—l.‘a) — dpa) Anp € Rr-2.2
(“(an.n—z - an——l.n—‘:) _ au.n—z) Qyon-2
and

| —2a a—1
e

By Theorem 2.3, B == jj, + H where p 30 and H 22 0. Since

() Jou» =0 and Au = au", we also have (u")' Bu" =0, and so
(u")t Hum = 0. Since H 2> 0, it follows that Hu™ == 0 (cf. [3, p. 319)).
By computing the last compounent of ffu ;. 0, we conclude that « - u.

Since App == 1 —~pand since p-.a % |, we have 0 = Jp << 1. But if p = 0
then A4'J,4 2 0, whenee by Corollary 4.3 and Lemma 3.2 4 - zw' for
some vectors z,we @K, . Thus g -=n, which is impossible, IHence
0 << p < 1. Computing the first (v — 2) components of Hu? == 0 we obtain

Ay,i = Ay, = l: 2:---1 n— 2
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Hence, if we partition 7 conformably with 4 we obtain

H, I
H— [ 11 12] ,
H:z Hy,
where
Hy =By +plasy,
—dg a5
Hyy = By, = _flm" a.,,z '
_"an.n—z Qnn-2
and

=[5 12

Let D = A — eu"(v")f, where ¢ > 0. Since e(u") (v")' = 0, we have D < 4.
We shall show that for sufficiently small ¢, D 2z 0. We do this by showing
that there exists P2> 0 such that D'],D = pJ, + P. Since Hu" = 0, we
have

A'Jodw = pJoun + Hu = pJou.
But Au" = pu" and p > 0, whence 4] u" = Jum. Thus,
DD == At A — do(un)t JoA 4 A (o)) + o) Jan(on)
= A Jod — 2ev(@"),
where from (3.7.1)

o) =0,_, @ [_} —]] )

Let D'] D = pj, + P. Then, since At], 4 = pn], + H, it follows that
P o~ H — 2eom(vm), Thus, partitioning P in the same way as H,

P=ls 2l

we have P, = H,,, P, = H,, and

M =p—2 p—14 2
P"'“’“L;.—l—t—k l—p.—fZe]'

We shall show that for sufficiently small and positive e, P2 0. Let p0
[or #7] be the ith column of P Jor H). Since pt = —ptn-11 det P =0 for
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all . Hence it is cnough to prove that det Pliy, 7, ..., 4,] 50, where
dd <l <~y =~m— 1 and Plip, 4, ..., 4,] denotes the principal
submatrix of P based on rows and columns &), rn, .0, IF 7, <n - L,
then  der P[ry, 4, ,..., 0] s=det H[i| . %, ..., 0] 0. %o suppose that
Gy mn— 1M det T, ey duog o i -- 1] 0, then

det Pli, ,hy ey ipy st — 1] =0

for ¢ sufficiently smal} and positive. So suppose that
det H[il N PRI "m-l y = 1] =0.

As can be shown by taking the mth compound of H {(ef. [3, p. 19]), it follows
that A0 ., hiim-0) piv-1} are linearly dependent. Hencc there exist o, e |,
i =1,2,..,m not all §, such that

alh("') __}_ .o + am—lh(imﬂl) #ﬁ amh{n—l) 20' (45.1)

Suppose that «,, 7 0. Then, since A" = —fin-1}
alh(iﬂ R xm_lh(im_l) + .J_[Cimil("_” _ '}.amh(ﬂ) —0.
Let z € R® such that

-1 _ ~}
zi, = =200 0 8, = — 200 0y,

— Ry = 3 = | and z, = 0 elsewhere.

Then Hz==0 and the conditions of Lemma 4.4 are satisfied. Hence
there exists a vector y e R" satisfying (4.4.1), (4.4.2) and (4.4.3) (with
respect to H). But (Ay)* J(Ay) = wy' [y + ytHy= 0. Hence dyeék,,
contradicting g = I. Thus «, =0 in (4.5.1). It follows that &t .. A=)
are linearly dependent. Since plind = At -2} 2., m— ], we have

det Pls, , 4 ey ipey, . — 1] =0,

Thus, for € > 0 sufficiently small P2 0. Since Aun == pu" for some
0 <<p <1 and He" = ¢*, we have rank A = 2. For sufficiently small and
positive € it follows that rank D) = 2 and that D — 4 — ew'(z")! 1s not a
multiple of 4. Since D', D =puf, + P, it follows by Theorem 2.3 that
D e F(K,), contrary to 4 € K(I'(K)). Hence ¢ + I.

Case 3. 2 <g<in — 1. There exist x!, x¥*&F which are lincarly
independent and Ax' -= yle 4K, , Ax? =y2e K, . By Lemma 3.7 there
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exists O, € O(A,) such that Opat & and 02 - o, Then 40 'y == !
and AQ'e™ . 3%, By Lemma 3.4 we may assume without loss of generality
that Au” - v and do 32

Case 3a. Suppose that 3! and y? are linearly independent. By a similar
argument we may assume that Ay . " and Ae* -~ ", Hence

Ae? = gn-1) Ae? — ", (4.5.2)
et
A A
A = 11 12 ,
[‘421 Ay

where 4, € R*-%"-2 It follows from (4.5.2) that 4;, =0 and Ay, =1,.
Since 4 € I'(K,), there exist & == 0 and H 2 O such that 4 [, A = p ], + H.
Since [, - —I,_, & J,, wc obtain

AL A, + AL A, AT . 01 [Hy H
[ —_ 11 11 2172400 2172 —_ n-g i1 12
Athd = | Jod e T B g B

where H,; e Rn-2"2 Thus (I — ) J, = H,, 220, whence =1 and
My = 0. It follows that H, == 0. Hence [,4,, =0, and so 4, = 0. Thus
A=A, DI,, and

— AL Ay = —lyy -+ Fy (4.5.3)

We obtain 0 <€ 4% 4,, €I,_,. If 4Y, 4, =1, ,, then by (4.53) H,; =0
and so H =0. Thus A*J A = ], whence by Theorem 2.4 and (4.5.2)
Ae O(K,). This contradicts ¢ < n. Thus 4%, 4,; % 1,_,.

By Proposition 4.1 there exist P, ) € R"-21-2 gueh that

PAI.IQ =A== dlag(’\l ’ ‘\2 LA ‘\ﬂ '.’.)‘

It is easy to see that 0 _QS/,A’A gl,,_E and A*A = I, ,. Thus | — A2 =0,
i=1,2..,8—2and | —A?>>0 for some j, | <j<n—2 say j=1.
Choose € > 0 such that | A; | e| < I. Let

A(iG) = d‘ag(Al :I: S ‘\‘.’. LA ‘\n-'z)a
An(de) = PA(-Le) )t and  A{d4-€) = Ap(+e) DT, .
Since 0 € A +e) A(£e) €1,_,, we have A(+e) [,A(Fe) > J,. Since

rank 4 2 2 it follows from Theorem 2.3 and (4.5.2) that A(+e)e IN'(K,).
But A4 = {[A(c) + A(—e)]. Now suppose that 4(e) = ad for some xeR.
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Then £, == afyy , whence o == 1. However, A(¢)  A. Thus 4 is not extreme,
a contradiction.

Case 3b. Suppose that y' == 4u" and ¥* = Av" are linearly dependent,
say yt = ay and 3* = By, where y € ¢K, and «, # = 0. By Lemmas 3.4 and
and 3.7 we may assuine without loss of generality that y == 4", so that
Au™ = au”, Av" = fu*. Since

(A = 3w YAV = Yt B
and
Aent = {4um — FAV = Y« — By w7,

a=[i a)

a—f a+p
Amz%[a—ﬂ cx--l—ﬁ] '

Let B = A'J, 4. Then B2 p], for some p = 0, since 4 N'(K,). If we
partition B conformably with A, we obtain By, = A}, J,4,, = 0. Hence,
0> pf,, whence p = 0. Thus 4], 4 20, and since A e E(I'(K,)) we
conclude from Corollary 4.3 that 4 € A(K,). An immediate application of
Lemma 3.2 yields g == n, a contradiction. This completes the investigation
of Case 3.

We have proved that ¢ == n, Hence there exists a basis x1, %,..., x" for
=, such that x*e 8K, and Axt € 2K, , i = I, 2,..., n. Since 4 € I'(K,),
there cxist H2>0 and p >0 such that A'J,4 = puJ, -+ H. Hence

= (Ax) JoAxT = p(x) o8 4 (O) Hat = (xl)t Ha.

It follows that Hx' =0,7=1,2,....,n,andso H = 0. Thus A*J A =p],.
If g >0, then hy Theorem 2.4 4 e 6(K,). If p =0, then by Corollary
4.3 A€ 4(K,). We have established the proof that

E(I(K,)) € O(K,) v A(K,).

(b) We now prove that E(I(K.)) 2 &(K,) v 4K} So let
Ae K,y vAK,). If A€ A(K,)}, then 4 € E(I'(X,)) by definition. So sup-
pose that 4 € O(K,). Since the cone K, is indecomposable for # = 3 (sce
Barker and Schneider [I] and Locwy and Schneider [5]), it follows from
Theorem 3.3 of Loewy and Schncider [5] that 4 € E(I'(K,,)). This completes
the proof of the theorem,

Remark. Note that the condition 773 is required in the proof of
Theorem 4.5. It is clear that E{I(K,)) =: A(K,), since every nonsingular
A € I'{Ky) 1s the sum of two matrices in I'(K,} of rank I.

it follows that

where
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Theorem 4.5 characterizes the extreme matrices in I'(K)), for n = 3. We
can now determine the structure of I'(X,):

CoroLtary 4.6. Let n 2 2. Then I'(K)) = hull[&(K,) v A(K,)].

Proof. This is an immediate corollary of Theorem 4.5, the preceding
rcmark and the well-known theorem that any eone in R* is the hull of its
extremes (ef. [6, p. 167]).

Finally, we show that I'(K,) is determined by the matrices that map X,
onto itself.

Taeorem 4.7. Let n = 2. Then I'(K,)} = hull{closure 8(K,))}.

Proof. By Corollary 4.6 it is enough to show that any matrix 4 in 4(K )
is a limit of matrices in @(K.}. So let 0 # 4 e A(K,). Then by Lemma 3.2
there exist nonzero vectors x, y € 6K, such that 4 = xy*. By Lemma 3.7,
there exist Q,, 0y € @K} such that (hx = a" and O,y = u® Let
B =10,4A0,' Then Be A(K,) and 1t is enough to show that B is a limit
of matrices in (K, }. But

B =10,40; = polwy = 0, @3], ]

Let

. b e §-—-c¢
T — QPRI , @ [% i Z ; N E] X
Clearly, him_,T, =B and T}J, T, = 2¢],. Hence, by Theorem 2.4,
T, e &(K,), completing the proof.

Addendum to
Positive Operators on the
n-Dimensional Ice Cream Cone

After the eompletion of this paper J. Bognar informed us of a different and
more clementary proof of Lemma (2.2}. By modifying a proof found, for the
complex ease, in M. G. Krein and Ju. L. Smut'jan (Plus-operators in a space
with indefinitc metrie, Amer. Math. Soc. Transl. 85 (1969), 93-113), one
first proves: If =t J,x -~ 0 implies »'Mx ~= 0, then the relations v [,y << 0
and z'[,z >0 imply that y*AMy/yt],y <2 2'Ms/z' ], 3. Lemma 2.2 then
follows eastly.
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