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ABSTRACT

If v is a norm on C%, let H(») denote the set of all norm-Hermitians in C**. Let
S be a subset of the set of real diagonal matrices D. Then there exists a norm » such
that S = H(») {or S = H(») 1 D) if and only if S contains the identity and S is a
subspace of D with a basis consisting of rational vectors. As a corollary, it is shown

that, for a diagonable matrix %2 with distinct eigenvalues 1;,..., 4,, » < #, there
is a norm v such that 2 e H(y), but hsg’_: H(v), for some integer s, if and only if
Ay — Ay, ..., A, — A are linearly dependent over the rationals. It is also shown that

the set of all norms », for which H(») consists of all real multiples of the identity, is
an open, dense subset, in a natural metric, of the set of all norms.

INTRODUCTION

For a norm » on C*, the complex #n-tuples, an (# X #) matrix & is
called norm-Hermitian if the numerical range of %z with respect to » is real.
(For a precise definition see Section 1 and the beginning of Section 3.)
An unsolved problem in this area is

(1) Given anorm » on C*, characterize the set H(») of norm-Hermitian
matrices.

An alternative, easier problem is
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(2) Characterize all subsets S of C**, the set of (n X ») complex
matrices, such that there exists a norm v on C” for which S = H(»).

In an earlier paper [14] (cf. Theorem (6.2)), we solved (1) under the
additional hypothesis that » is absolute. (The norm » is absolute if »(x)
depends only on the absolute values of the coordinates of x in C*.) Implicit
in [14] is the solution of problem

(2a) Characterize all S in C™" such that there exists an absolute norm
y on C» for which S = H(v).

The result is: There exists an absolute norm » with § = H(») if and only
if there exists an equivalence relation = on the set of integers {1, 2,. . ., n}
for which

S = {he C*|h;; = hy;, for ¢ =j and k;; = 0 otherwise}.

In the present paper we take a step toward a solution of problem (2). Here,
in Sections 3 and 4 we deal with sets S contained in the set D of real
diagonal matrices. We solve two problems. The first is

(2d): Characterize all subsets S in D such that there exists a norm » for
which S = H(») N D.

The solution is stated in Theorem 3.3. The second problem is

(2¢): Characterize all S in D such that there exists a norm » for which
S = H().

For a solution of (2¢c) see Theorem 4.54. In describing S we identify
the space D of real diagonal matrices with R”®, the real n-tuples. For each
of (2d) and (2¢) S is characterized by being a subspace of R which contains
the identity and which has a basis of rational vectors. By a rational
vector we mean a vector (e,. .., «,) where each «; is a rational number.
In resolving (2d), one could omit the proof of Theorem 3.2, and use instead
Theorem 4.7. However, we include Theorem 3.2, both to show that the
more complicated Theorem 4.7 is not required to resolve (2d) and also
to shed light on the proof of Theorem 4.7. The construction of the norm
in Theorem 3.2 was motivated by an example due to M. J. Crabb [6];
[4, p. 57]. The more elaborate norm (4.3) used in the proof of Theorem
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4.7 is apparently required to deal with the off-diagonal elements of a
norm-Hermitian matrix without disturbing the desired class of diagonal
elements.

A crucial ingredient in the characterization of diagonal norm-Hermitian
matrices is a theorem on inhomogeneous diophantine approximation. The
archetypal theorem is due to Kronecker, but for our purposes we require
the form given in Theorem IV of the appendix. There are several versions
of the approximation theorem in the literature (Perron [11], Koksma [9],
Cassels [5]) but we have been unable to find the version we require. We feel
it isinformative to show, as we have done in the appendix, how the different
forms of the approximation theorem can be derived from Theorem 63,
p. 153 of [11], 1st Edition (or Theorem 64, p. 159 of [11], 4th Edition). In
fact, Theorem I of the appendix is a restatement of Perron’s Theorem.

As a consequence of our characterization of diagonal norm-Hermitian
matrices, we are able to shed light on Problem 4, p. 128, of Bonsall and
Duncan [4], which concerns norm-Hermitian elements whose powers are
not all norm-Hermitian. Near the end of Section 3, in Corollaries 3.5 and
3.6, we give conditions on the eigenvalues of a diagonable matrix 42 which
are necessary and sufficient for the existence of a norm with respect to
which some, but not all, powers of %4 are norm-Hermitian. In Corollary
3.7, we show that a norm is absolute if and only if there is diagonal norm-
Hermitian matrix diag(d,,. .., d,) wheredy, — d,,. .., d, — d, are linearly
independent over the rationals.

In Section 5, we examine the set of norms which allow only the identity
and its real multiples as norm-Hermitian elements. It is shown that
almost all norms are of this type. More precisely, we introduce a metric
in the space of norms on C® and show that the set of norms allowing only
real multiples of the identity as norm-Hermitians constitutes an open,
dense set.

1. NORMS AND DUALITY

We will be concerned with the vector space of n-tuples of complex
numbers, C*, over the field C.

DermniTiONs 1.1, A4 semi-norm on C 1$ a funciton o from C* to the non-
negative veal numbers Rt satisfying

(1) olx + ) <olx) +a(y); =xyeCr
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(2) o(£x) = |Elo(x); EeC, =xeCn

where |§| denoles the absolute value of §&. A norm is a semi-norm satisfying
the additional condition

3) o(x) =0=>x=0.

We denote the usual Euclidean norm on C” by y and use the fact
that any semi-norm-on C™ is continuous with respect to the Euclidean
norm topology.

Lemma 1.2, Let oy, a€ o, be an indexed family of semi-norms and
suppose there exists a norm v on C* such that o,(x) < v(x) for all o € & and
all xe C*. Then o defined by

o(x) = sup g(x)
14

is a semi-norm. If o, 1S a norm for some ag € 57, then o is a norm.

Proof. Straightforward.

The dual space of C», that is, the space of linear functionals on C=,
can be identified with C” and if y is a linear functional, its value at x is
denoted by (y, x). We assume {y, x) is conjugate linear in y. Ifyisa
norm on C7, then the dual norm »?, on linear functionals, is defined by

270 V(x)

If %, y are in C" and
1 =y, %) = »2(y)r(x)

we say that y is dual to x and indicate this relationship by writing y||.
It is well known that for each x € C», x # 0, there is at least one y such
that y||x and for each y # 0, there is at least one x such that y||x (e.g.,
[11).

Lemma 1.3, Let 7 be a norm on C™ and let o be a semi-norm. Let

¥(x) = sup(n(x), o(x)).

Suppose 1 = a(%) > n(%o) and that a vector x' satisfies {x', xy) = 1 and
[K#', x)| < o(x) for all x. Then x'||x, with vespect to ».
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Proof. Since (¥, xy) = »(x,), it suffices to show that [(x’, x)| < »(¥)

for all x. However, |(x', #)| < a(x) < »(x) for x € C™.

DEFINITION 1.4.  Suppose v is a semi-norm and is defined by

v(x) = sup o,(x),
acsf

where the o, are semi-norms. Suppose that for a given xoe C™ and fe A,

04(%0) > sup a,(%xo).
acss
a#f

Then we say that o, is active (with respect to v) at %.

LeEmMA 1.5. Let v be the semi-norm in Definition 1.4. If o, is active
at x, thew it 1s active in a Euclidean neighborhood of xy.

Proof. Since »(x) < ky(x) for some constant 2> 0, o,(%) < ky(x)
for each a and, by Lemma 1.2,
v1(x) = sup o,(x)

acss
a#f

is a semi-norm. Then »(x) = sup(o,(x), #1(*)) and o5(xe) — v1(x9) = & > 0.
Since both ¢, and », are continuous with respect to y there exists a
x-neighborhood V of x4 such that o,(x) — »;(x) > ¢/2 for x€ V. Hence,
oy is active in V,

Let ¢4, eq,.. ., €, be a basis for C*. Then there exists a unique basis
er',. .., e, for the dual space, satisfying {e/, ¢;) = J;;, the Kronecker
delta. The set {¢;'} is the algebraic dual basis to {e;}.

DEriNITION 1.6, Let v be a norm on C*. If the basis {e,} and its algebraic
dual {e;'} satisfy e;'||e; with vespect to v and v(e) =1 for i =1,2,...,n,
we call {¢;} a double-dual basts.

We will use the result:

THEOREM 1.7 (e.g. Schneider [13]). For any norm v on C" there exists
a double-dual basis with vespect to v.

If ey,. .., €, is any basis for C* then each x is uniquely represented as
x = 2% e, The quantity |x|, = (D7 |«;]?)/? defines a norm on C»
for 1 < p < o and as usual we set |x|,, = SUP; ;o]
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Lemma 1.8 (cf. Schneider [13]). Let ¢y,..., e, be a double-dual basis
with vespect to a norm v. Then with respect to this basis

|%]o0 < #(x).
Proof. Suppose x = > 7 ae; and |x|, = |og|. Then
%[ = [<ex's #)| < ¥P(ex (%) = v().

DeriniTION 1.9. Let E be a set. A semi-metric on E is a function d
from E X E into Rt satisfying

(1) d(x, x) = 0,
(2) dlx, y) = aly, %),
(3) d(x, 2) < dlx, y) + d(y, 2),

for all x, y,ze E. If also
(4) Alx, y) =0 implies x =1y

then (as usual) 4 is a metric on E.

The distance function used in the following lemma is similar to ones
that have been used in other contexts (e.g. G. Birkhoff [2]).

LemmA 1.10. Let N = N(n) be the set of all norms on €. Then
(1)  The function defined by

a(p, v) = log (iig%iig%) (1.11)

s a semi-metyic on N.
(2) d(p,») = 0if and only if there is a ¢ > 0 such that p = cv.

Proof. Clearly d(p, p) = 0 and d(p, ») = d(», p) for all p,ve N. To
prove the triangle inequality, suppose also that ¢ € N. Then

() = 10g3p 0 -sup 2%}

=1og( plx) o) () a(y))

SUp ——*——~*SUp —+ * ——~
2o 0(x) (%) yeo 0(3) Py
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pl¥) . o(w) v(y) o(z)
log (i‘i&’m P ) SRty S ﬂ)

= d(p,0) + d(o, »).

If p =cv where ¢ >0, then obviously d(p, ») = log(c-1l/c) = 0.
Conversely, suppose d(p, ») = 0 and let

This infinum will be achieved at a point %, on the unit Euclidean sphere.
Then

yielding p(x) = cv(x) for all x.

THEOREM 1.12. Let e be a nonzero element of C* with y(e) = 1 and let
N, be the set of all norms p on C™ such that p(e) = 1. Then the function d
defined in (1.11) is a metric on N, and N is complete with vespect to d.

Proof. Let d(p,v) = 0 where p, v are in N;. Then by Lemma 1.10
(part 2), p = cv for some ¢ > 0. But p(¢) = #»(¢) = 1so p = ». Henced
is a metric on IV;.

Let p, be a Cauchy sequence of norms in /N;. The Cauchy property
implies there is an M > 0 such that d(p,, ) << M for all #, implying that
pr(x) < e for all x on the sphere

= {xe Crx(x) = 1}.
Further, for x;, x, € S,

|Pr(xl) - P‘r(x2)| < P‘r(xl - x2) < 6M
Z(x — xg) 2(xy — x2)

independently of #, making p, a uniformly-bounded, equicontinuous set
of functions on S. By the Arzela-Ascoli Theorem [8, p. 266], the sequence
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pr restricted to S, is precompact in the space of continuous real valued
functions on S and has a subsequence p, converging uniformly to a function
p. Since p, is a Cauchy sequence, the whole sequence converges to p.
Since d(p,, x) < M for all », restricting to S we see that the limit p must
be positive on S. We extend p to p defined on C* setting

5 (— , x# 0
) < |19 (555) +#
0 , x=0.

One readily verifies that this homogeneous extension is a norm in N,
and that d(p,, p) = 0 asr» — co.

2. RATIONAL BASES

Let Z, @, and R denote the integers, the rational numbers, and the real
numbers, respectively. By Z", Q~, and R™ we denote the modules (linear
spaces in the case of Q or R) of #-tuples with values from Z, Q, and R,
respectively. If « = («y,..., «,) belongs to Z*, Q*, or R”, then we set

|ot]oo = max |a],
1<i<n

||| = max |&;(mod 1)
1<i<<n

, (2.1)

where |«,| denotes the absolute value of «; and «;(mod 1) is the number in
the interval (— %, 4] which is congruent to «; modulo 1.

DEeFINITION 2.2. We say a subspace S C R™ has a rational basis if S
conststs of all veal linear combinations of a set of vectors {vy,. . ., vx} from Q™.

1f S is a subset of R™ we let sp(S) denote the subspace consisting of real
linear combinations of elements from S. We are interested in the largest
subspace contained in the set of vectors that can be approximated ‘‘modulo
1" by vectors in sp(S). Accordingly, we introduce the following:

DEFINITION 2.3.  Let S be a non-empty subset of R™ and o a vector in R™.
Then a € App(S) if and only if for each ¢ > O and each real ¢, there is a
A€ sp(S) such that ||A — ta|| < e.

It is readily seen that App(S) is a subspace of R” containing S. To
obtain another characterization of App(S) we introduce the polar of aset S;
that is,
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St ={BeRrKB, sy =0 forallse S},

where {f, s) denotes the standard scalar product in R*. Even though S
need not be a subspace, the set S+ will be a subspace and is easily seen
to have the property that if S; < S, then S;+ 2 S,t.

THEOREM 24. App(S) = (St N Q»)-.

Proof. We appeal to Theorem IV of the appendix. Let w,,..., w,,
be a basis for sp(S) over Rand let M be the # X m matrix havingw,,. .., ®,,
as its columns. An arbitrary element of sp(S) then has the form Mx for
x € R™, while § € R® will be in the polar of S if and only if fM =0 asa
row vector. Given o € R™, we have o € App(S) if and only if A4 of Theorem
IV (Appendix) holds. But A4 is equivalent to B4 of that theorem which
states thatif fisin Q7 and in S+ then {8, «) = 0; thatis, e € (ST N Q™.

REMARK. Since S+ = (sp(S))+, App(S) = App(sp(S)).

Lemma 2.5. Let T C R™ be a set consisting of rational vectors (elements
of @*). Then T+ has a vational basts.

Proof. The subspace sp(7) C R® has a basis vy, v,,. .., v, with each
v,€Q" A vector « = (3 «,) is in sp(T)L = T+ if and only if it
satisfies a matrix equation Mo = 0, where M is the ¢ X # matrix having
¥1,..., Ug as its rows. The matrix M contains a ¢ X ¢ submatrix with
nonzero determinant and hence has a 2 =# — ¢ dimensional nullspace
over @ or R. If w,,..., w, from Q" are a basis for the nullspace over Q,
then w,,. .., w, are also a basis for the nullspace over R.

Lemma 2.6. For any non-empty set S C R™, App(S) has a rational
basis.

Proof. Let St NQ” = T in Lemma 2.5.

LEmma 2.7. A subspace S C R™ has a rational basis if and only if
S = App(S).

Proof. If S = App(S), then from Lemma 2.6, S has a rational basis.
Conversely, if S has a rational basis and has dimension ¢, the argument
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given in the proof of Lemma 2.5 shows that S1 has a rational basis and
has dimension #» — ¢. Since sp(S+ N Q») = S+, App(S) = (StNQYHL =
S+Ll. But S11 has dimension ¢ and contains S, so App(S) = S.

COROLLARY 2.8. ApD ¢s a “closure’” operation; that is,

(1) S C App(S)
(2) App App(S) = App(S)
(3) Sc S = App(S) C App(S).

Proof. Item (1) is a consequence of SC SLL cC (St NQ7L. Item (2)
follows from Lemmas 2.6 and 2.7. If SCSthen St C St so St NQrc
SLn @ and App(S) = (51N QYLD (SLNQY)L = App(S).

COROLLARY 2.9. I} S is any set in R” then

App(S) = vrly w

where & is the collection of subspaces W having vational bases and containing S.

Proof. 1f We &, then W =sp(W)Dsp(S) so W = App(W)D
App(sp S) = App(S), using Lemma 2.7. Since App(S) € &, the desired
equality follows.

3. DIAGONAL NORM-HERMITIAN MATRICES

We denote the collection of # X # complex matrices by C*», If yis a
norm on C” then we say 4 € C™ is a y-Hermitian matrix if y||x with respect
to » implies that {y, sx) is real. We let H(») denote the set of y-Hermitian
matrices. If D denotes the set of real diagonal matrices in C** we set
D(y) = H(») N D. In the sequel we will identify D with R™. Note that
I={(1,1,...,1) is always in D(»), and that D(») is a subspace of D.

THEOREM 3.1. Let v be a norm on C* and let S be a non-empty subset
of D(v). Then App(S) C D(v).

Proof. Suppose g = (u1,..., i) is in App(S). Then ior each ¢ > 0
and each ¢ e R there is an element A = (A3, A¢,. .., A,) €sp(S) satisfying
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[|A — tu|| < e (cf. (2.1)). Since i€ D(»), the diagonal matrix
MR = (g2MiAy || g2rits)
will be an isometry for the norm » (cf. [4, p. 46]). Then for any xe C»
with »(x) = 1,
p(e2itx) — w(x)| = [p(eBrideRrittn=Ag) — p(x)|
= |p(erritn—Nx) — v(x)|
< pl(emih — I)x).
A matrix map is continuously dependent on its entries and
eritu—d) = T if |jip— 3| = 0.
Hence, given d > 0, we can find A € sp(S) such that
y((e¥te =4 — Ix) < Ov(x).

Hence |v(e?*x) — »(x)| <C dv(x) and it follows that 2% is an isometry
for each real £, But then using Lemma 2, p. 46, of [4] again, we see that
w must be »-Hermitian and hence in D(»).

The following theorem is a counterpart to Theorem 3.1. A strengthened
version is contained in Theorem 4.7, but we feel that the proof given here
will help to illuminate the more complicated proof of 4.7.

TueoreM 3.2. Let S be a subspace of R™, and suppose I€S. Then
there exists a norm v on C™ such that D(v) = App(S).

Proof. Let {¢;} be a basis for C* and let {¢,'} be its algebraic dual
basis. If x = ZL] oe; and [ = Z?=l ¢; then (I, x) = Z?=1 o I A=
(A1, -+, An) is in S we form the semi-norm x — [{/, et'x)|, where ¢itx =
D1 ¢ioze,. Such a semi-norm satisfies {4, e*x)| < vy(x), where »;(x) =
D1 |ees] and hence o defined by

o(x) = sup |{!, x)|
AeS
is a semi-norm, by Lemma 1.2. Setting »(x) = »;(x) + o(x) we see that
v is a norm.
If ne§, then to show pe D(y) it suffices to show that et is a »-
isometry for all real ¢ (cf. [4, p. 46]); that is, that »(e*tx) = »(x) for each
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xeC™ and all te R. It is clear that »,(e%*'x) = »;(x) and since S is a
subspace,

sup |(l, e¥4 5y | = sup |(l, etx)|,
AeS AeS

yielding o(¢?*#x) = o(x). It follows that ¢** is isometric and hence SC D{»).

We next show that D(v) C App(S).

Suppose that u’ ¢ App(S). Then there exists a > 0 and a ¢t € R such
that forall A€ S, ||A — ty’|| > §, and clearly, such a ¢ is non-zero. We let
tw' = u = (41, .-, 4y) and show that u ¢ D(»). Then it will follow that
w ¢ D(v). We let x be the vector (¢72™#4,. .., e=2m#») and have

‘V(ani“x) = vl(ezmux) + sup |<l, eile2m'ux>‘
2eS

I

n
n+ sup 2 gthi

AeS |i=1

= 2n.

If (%) # 2#n, then e?** is not an isometry and u cannot be »-Hermitian.
But

v(x) = (%) + sup |(l, e2¥2x)|
AeS

n
2 e2ni(A—u;)

i=1

= n + sup
2eS
and can equal 2z only if, by varying A€ S, one can come arbitrarily close
to making the complex numbers ¢?#{4i=#) equal.
Since we may multiply a complex number by ¥, § real, without changing
its modulus and since (8, §,. . ., 8) € S for each real §, we need only consider
those A for which 4; = u;. Hence

n
Z eZni(l,——u,;)

i=1

»(x) = n + sup
AeS
A=,

where we still have || — u|| = 6 > 0. Since |(4; — u;) mod 1| > § for
some ¢ 2= 2, a simple estimate yields

v(x) <21 — 2 4 (2 + 2 cos 2n8)V2 < 2n.

Thus w is not »-Hermitian.
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Since S C D(») C App(S), it follows from Lemma 2.7, Corollary 2.8,
and Theorem 3.1 that App(S) C App D(v) = D(») and hence App(S) = D(»).

THEOREM 3.3. Let S be a subset of D. Then therve exists a norm v on
C* such that S = D(v) if and only if I € S and S ts a subspace of D with a
rational basts.

Proof. Let S = D(v). Clearly Ie€S. By Theorem 3.1, App(S)C
D(») = S and hence AppS = S. It follows by Lemma 2.7, that S is a
subspace with a rational basis. Conversely, if S contains I and is a subspace
with a rational basis then, again by Lemma 2.7, App S = S, and it follows
that S = D(»), for some norm » on C?, by Theorem 3.2.

CoROLLARY 3.4.  Suppose S is a subset of D and that I € S. Define
S1 = M) {DW)|v is a norm on C* and H(y) = S}.

Then App(S) = S;.

Proof. Since D(v) has a rational basis for each », App(S) C S; follows
from Corollary 2.9. But from Theorem 3.3 there exists a norm » such that
App(S) = D(»), so App(S) = S,.

A matrix he C™ is called diagonable if there exists a non-singular
$ € C™ such that p—thp is a diagonal matrix.

CorROLLARY 3.5. Let Aq,..., A, 1 < v < n be parrwise distinct real
numbers. Let he C* be a diagonable matvix with spectrum {4y,..., A,.}.
For each positive tnteger s and Ae R, put v(A) = (1, 4, A2,..., A%) € Retl,
Then theve exists a norm v on C* such that he H(v) for m = 1,2,..., s,
but h* ¢ H(v) for some k > s if and only tf v(Ry),..., vk, are linearly
dependent over Q.

Proof. If v is a norm and the norm v, is defined by V(%) = v(px), for
x € C*, then the numerical range of % with respect to » equals the numerical
range of p~1hp with respect to v, (cf. Nirschl and Schneider [10]). Hence
we need consider only diagonal #. Let § C R" be spanned by the 7-tuples
A = (4™,..., A, form = 0,1,...,s. Suppose there exists a non-zero
vector f€ Q7 such that D7_; Bws;(4) = 0. Then e (S+NQ7), and it

follows that App(S) # R™. Since the numbers A; are distinct, the vectors
RO, RY,..., k7' span R™ and hence for some % > s, Ak ¢ App(S).
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Suppose that the eigenvalues 4y,. .., 4, of %, occur with multiplicities
wy,. . ., M, respectively. Let S < R” be the span of I, &,..., A5 with s
as above. For the same %2 > s, suppose #* € App(S). Then for each e > 0
and each real ¢, there is a u € S such that ||u — ¢#*|| < e. Since, in the
vector yu — th*, the entries are repeated according to the multiplicities m;,
one sees that || — #h*|| < e follows for an appropriate & € S. This contra-
dicts %% ¢ App(S). Hence #*¢ App(S). But by Theorem 8.3 there is a
norm » such that App(S) = D(»), implying #* ¢ H(»), since #* e D.

Conversely, let anorm » and an integer s be given. Suppose 41, 42,. . ., ke
H(v) and that &* ¢ H(v) for some & > s. Then with S as in the last section,
h* is not approximable modulo 1 by elements of S; that is, App S # Rr.
Hence SL N Q7 # {0}so thereisa S Q7, 8 # 0, such that D7_, Bv4(4,) = 0.

COROLLARY 3.6. Let A4,..., A, and h be as in Corvollary 3.5. Then there
exists a norm v on C" such that h € H(v) but h* ¢ H(v) for some k > 0, if and
only if (Ag — Aq,..., A, — A1) ave linearly dependent over Q.

Proof. One uses Corollary 3.5 in the case s = 1 observing that, in the
notation of that corollary, vi(44),..., vi(4,) are linearly dependent over
@ if and only if 4, — 44,..., 4, — 4; are linearly dependent over Q.

DeriniTION 3.7. 4 norm v on C* is absolute ¢f for cvery (04, 0,,...,0,)3
R, the diagonal matrix (€*,. . ., %) is an isometry.

COROLLARY 3.8. A norm v is absolute if and only if there exists d € H(v),
where d is a diagonal matrix (d1, ds,. .., dy) and dy — dg,. .., d1 — 4, are
linearly independent over Q.

Proof. If a norm » is absolute then every real diagonal matrix is
v-Hermitian (cf. [13]) and one can choose the entries so that d; — d,,. . .,
d, — d, are linearly independent over @. On the other hand, given the
independence for a,real diagonal matrix d = (dy,...,d,), there is no
B e @ satisfying (8, I) = 0 and {f, d) = 0. Hence App(sp{, 4}) = R*,
which means every diagonal matrix is »-Hermitian (cf. Theorem 3.1). Then
for any diagonal 68 = (04,. .., 0,), €% is an isometry.

In the remainder of this section we shall prove the converse of a
theorem due to Nirschl and Schneider?! [10]. For a given norm » on C* and

1 We are grateful to B. D. Saunders for a suggestion which led to the proof of
Theorem 3.11. .
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aeCm let V(a) = {{y, ax)|y||x} be the numerical range of a. We begin
by restating [10, Theorem 3] (see first line of proof).

TuEOREM 3.9. Let v be an absolute norm on C*, and let ac C*. If W
is an open convex subset of C which contains the spectrum of a, then theve
exists a non-singulay s € C* such that V(sas™) C W.

We first prove a lemma, the proof of which is modeled on the proof
of Crabb, Duncan, and McGregor [7, Lemma 1.5].

Lemma 3.10 (B. D. Saunders). Let v be a norm, let a € C™ have distinct
eigenvalues. Let WD Wo D ... be a sequence of closed bounded subsets of C.
If, for k = 1,2,..., there exists a non-singular matvix s, € C*™ such that
V(sias,™Y) C Wy, then there exists a non-singular matriz s in C™ such that
Visas™) C 5o W

Proof. For ce Cm, let v(c) = sup{|A| |A€ V(c)}. Then it is known
(see Bohnenblust and Karlin [3] or [4, Theorem 1.4.1] that #°(c) <C ev(c),
where 29 is the operator norm on C™” associated with ». Since V(s as,™1) C
Wy, fork = 1,2,.. ., it follows that {»%(s.as,~!)|k = 1, 2,...} is a bounded
subset of R. Hence the b, = sgas, ™1, £ =1,2,..., lie in some compact
subset of C»#, and we may select a convergent subsequence of by, by, . .. .
Without loss of generality, we may assume that by, b,,... converges to a
matrix b. Let 4 be a diagonal matrix similar to a. Then, fork = 1,2,...,
there exists g, € C** such that ¢.0,4,~! = 4. We may choose the ¢, so that
W) =1, k=1,2,..., and then suppose that ¢, g5,... converges to
ge C™. Thengq % 0 and ¢b = dg, and since the diagonal elements of 4 are
distinct, it follows that ¢ is non-singular. Hence b is similar to a, say
b = sas™, for a non-singular s € C**. Let y||x. Then

(y, sas7x) = lim(y, sas, ) € () W,
=1

R—0

since ()51 Wy is closed. The lemma follows.

THEOREM 3.11. Let v be a norm on C*. Let h be a diagonable matyix
m Cm* with real spectrum {dy,..., d,}, where dy — dy,...,dy — d, are
linearly independent over Q. Then the following ave equivalent:
(i) There is a non-singular s € C™™ such that the norm v, 1s absolute,
where v, is defined by vy(x) = »(sx), for xe C™.
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(i) For each ac C" and each open convex subset W of C containing
the spectrum of a there is a non-singular s € C™ such that Vy(a) C W, where
V() is the numerical range of a for the norm v,.

(i) For each open convex subset W of C which contains the spectrum
of h there is a non-singular s € C™ such that V. (h)C W.

Proof. Since V(a) = V(sas™1), it follows immediately from (3.9) that
(i) implies (ii). It is trivial that (i) implies (iii). Thus we need only prove
that (iii) implies (i). So suppose that (iii) holds. Let X be the convex hull
of {dy,...,d,} and let W), = {£€ C| |§ — w| < 1/k, for some w € X}. By
assumption, there is a non-singular s, € C* such that V(sphs,™!) C W,.
Since 44, . . ., 4, are pairwise distinct, it follows by Lemma 3.10 that there
exists a non-singular p € C** such that V,(3) = V(php~)) C [ Wi =
X CR. Let s be a non-singular matrix in C*” for which s~1php~1ls = d is
a diagonal matrix. Then V(d) = V{sds™) = V(php~1) CR. Hence
d e H(»,) and so by Corollary 3.8, the norm , is absolute.

4. NORM HERMITIAN MATRICES

In this section we suppose we are given S C D with App(S) = S and
Ie S, and construct a norm » so that H(») = S. In order to force all
v-Hermitian elements to be diagonal, but still preserve all elements of S
as v-Hermitian we require a more complicated construction than was used
in the proof of Theorem 3.2. We begin with a technical lemma that will
be used several times.

LemMa 4.1, Let 6y << 0y << -+« << 0, be veal numbers and let by, hs, . . ., by
be complex. If the function

/(t) — kle‘[tﬁl + cue + hke‘l.'wk
is veal for veal t in some neighborhood of ¢ = 0, then the following hold:
(i) if 0, = O for some <, then h; is real,
(i) 1f 0, = — 0, for some pair of indices 1, §, then b, = h;,
(iil) for each i, if there does not exist a j withj # ¢ such that |0;| = |64,
then h; = 0.

Proof. 1, for a given + with 8; > 0, there is a §-such that §, = — 8,,
then there is at most one such § and we have

hie® + hiet% = (hy — h,)et®i 4 hie=i% - heité,
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Since h,e~%% + h;et% is real for ¢ real, we can incorporate it into f(¢) and
consider a sum of exponentials in which the absolute values of all exponents
are distinct. We shall show in this latter case that all coefficients are
zero except for a possible constant term and show that the constant
term is real. It will then follow that each difference %, — %,, above, is zero,
and all parts of the conclusion will follow.

Suppose then that we have a function

7(;) —_ go + gle"“"l + - + tmeiwm

where the g; are complex constants and the ¢, are real with all values |¢,]
distinct. Assuming 7(¢#) is real for £ in a neighborhood of zero, the derivatives

PR(E) = g1(ihy)eits + « v+ g (i) eitom

will be real for such ¢. Taking the imaginary part at £ = 0 we obtain
> Imggt? =0, p=12...,m
j=1

Since the determinant of the coefficients {¢,%#} is of Vandermonde type
with distinct constants ¢4 we must have Img, = 0 forj =1,2,...,m.
Similarly,

Reg;(¢)%1 =0, p=0,1,...,m—1

yielding Re g, = 0, fory =1,2,...,m. Theng; = 0forj =1,...,mand
&o = 7(f) which must then be real. The lemma is complete.

Let S be a subspace of R® having a rational basis, with 7€ S. Define
a relation on the integers {1, 2,. . ., n} with respect to S, setting ¢ ~ 7 if, for

every element (3,..., 4,)in S, 4; = 2;. The relation is easily seen to be an
equivalence relation. For a given S suppose there are T equivalence
classes, denoted by Cy, C,,. . ., C,. If C,, consists of a single integer we call

Cm and the integer it contains, a singleton. Otherwise we call C,,, and
any integer it contains, multiple.

Asbefore, weuse A = (13, 4g,. . ., 4,) todenotea pointin R" and adiagonal
matrix in C"*,

Suppose {¢;} is the canonical basis for C* and that {¢,"} is the algebraic
dual basis. Given an g, 0 << ¢ < }, we describe a collection of functionals
L to be used in the construction of a norm. A functional I = D7, v.e/
belongs to L if and only if / satisfies:
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There exists ¢, C,, » = 1,2,..., 7, and, if C, is multiple,
i, in C,, 7, # ¢, such that

(1) Among the coefficients y,, » = 1, 2,..., 7 precisely
one has the value 2 and the remaining v — 1 coefficients have ; (4.2)
the value 1.

(2) If C, is multiple, y, /y; = +-¢and y, = 0 for te C,,
L# 1, b # ]

Note that the numbers 4,, 1, may be different for different elements of L.
We let I stand for an arbitrary functional from the collection L. Later
we will distinguish among the functionals with subscripts. We now define

»(x) = sup [{!, e*x)| (4.3)
leL
AeS

for each x = D>'7_| ;¢; in C*, where, as before, e*x = >7"_ ¢'% aye;.
LEMMA 4.4. v defined by (4.3) is a norm on C™.

Proof. Foreach pairle Land 1€ S, the map x — |(J, e**x)| is a semi-
norm and if x = D7, ase, it is easily seen that

L, eitx| < 2; .

Thus the semi-norms are uniformly bounded with respect to the /; norm.
Using Lemma 1.2 we see that » is a semi-norm, so one need only show
that »(x) = 0 implies x = 0. For this purpose we shall show that there
existsa A = (4,..., 4,) from S such that ¢ ~ § implies A; # 1,. For each
pair 7, § such that ¢~ g, the set of A€ S for which A, = A, is a proper
subspace. Since S is not the union of a finite number of proper subspaces
(cf. [12]), there exists a A = (4;,..., 4,) € S which, after a renumbering of
the basis vectors, satisfies

(1 b= A # A
(4.5)
@) i<i= h< A

Let 2 = (2,..., 4,) satisfy (4.5) and let u,, u,,. .., u, denote the distinct
numbers occurring among the 1,. Then for any / € L, the quantity (I, e‘*x)
will be of the form s(f) = e**18; + -~ - + e, where §; = (I, Px) and
Pix is the projection D). c{e;, x)e;. If »(x) = 0, then s(f) = 0 for all
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real ¢ and its derivatives at { = 0 will vanish. Then f,,..., 8, will provide
a solution of

B+ Bot-or + B, =0
piby+  pebe 4+ wB =0

it A et e s p 8, = 0.

However, the coefficient matrix of (4.6) isnonsingular, being a Vandermonde
matrix with distinct g,, and so {/, Pix) = f8; = 0 for each 7. But the span
of the functions in L is all of C*®, so Pix = 0 for each ¢, giving x = 0.

THEOREM 4.7. Let S be a subspace of R™ and suppose I € S. If the norm
v 1s defined by (4.3) then H(y) = App(S).

Proof. Let hibeav-Hermitian matrix. We examine what the Hermitian
condition implies about the elements 4,,, of #, and begin with the case in
which both p and ¢ are multiple.

Case mm: peC,, g€, both multiple. We assume p # ¢, but do
not exclude » = s. We let A be an element of S satisfying conditions (4.5).
Letl; € L havei, = pandi, = qif p+~g; andlets, =1, = p,7, = 7, =
if p ~g. Assumey,[y; = v,y = + € and that y;, = 2. Beyond these
requirements, but maintaining condition 4.2, /; can be arbitrarily chosen.

Having0 < & < }, weset?; = (1 4 ¢2)~L Letting J = {s;[r1 <<s; <1}
and setting s, = £71(1 — s;) one has s; + es, = 1 for s; € J. Further

&Sy 4 sp <e+ el —7y)
=eg+ &1 — (1 + &)1
<1
and one then easily sees that for s; € J, each of the quantities 4 £s; + s,
S1 — &S9, S1, + €51, So, and + s, has absolute value less than 1. By the

continuity of addition and multiplication there is a neighborhood U of J
in the complex plane such that for z; € U, z, exists such that

(1) 21 + E2g = 1,

(2) the numbers 4+ ez; + 29, 27 — €29, 27, £ €29, 29, + €29 (4.8)

each has modulus less than 1.
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With /; as fixed above and 4 satisfying (4.5) we define
y, = e~ (4.9)
and
%y = 0167 p(218;, 4 29¢;) + 0o a(z16; + 29¢5) (4.10)

where ¢ is real; z;€ U; zj, 2, satisfy (4.8); and §,, 8, satisfy

(1) 0y >0, 20,
(3) 61 = O, lf P ~ q.

Suppose we choose any !’ from L and any A’ from S. Then
KV, eFxp)| < O1[(, X070 (z1e,, + 25¢5))|
+ O[(, eV et (200, + 2565 ))|-

Depending upon whether /" has a coefficient 2 associated with the class
C,, with the class C;, or with neither class, the expression |(, e?4'x,)| will
be bounded by a quantity 26;|a;| + Ja|as|, 61]2:] + 208s|ag|, or é|a,| +
da|ag|, respectively, where each number a, (i = 1, 2) is either zero or one
of the complex numbers listed in parts (1) and (2) of (4.8). In any case,
using (4.11) we see that

|V, e x,y| < 1.
Thus, referring to (4.3), we conclude that »(x,) << 1. However,
(Yo %) = (7, %) = (b, e*%y)
= 0; + 26, = 1,
so ¥(x,) = 1 and v?(y,) = 1. Since, for arbitrary z € C*,

[{ve, 23| = [, e*%2)| < sup [(F, e¥'2)| = »(z),
VeL

i'eS

we see that »°(y,) = 1 and that y,||x, with respect to » for all real ¢.
Consequently, (y,, hx,) is real for all &, We can write the scalar product as
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(Yo by = (e, hxy)

= (4, o)
= (b, 2 (6400, + et AR 0oty ey ), (4.12)
k=1

where
tem = a2y + s 2o, M =¥ Or §. ) (4.13)

Before pursuing (4.12) further we obtain corresponding expressions
for the remaining cases.

Case ms: pe(C, multiple; ge C,, singleton. Let /; have ¢, = p,
yily;, = + € and y;, = 2. Define y, by (4.9) and let

%y = 81670 (210, + 296, ) + dge™a e, (4.14)

Again, v,||x, and the expression (4.12) is real, where now

ber = hpi 21 + s 20,
(4.15)

tks = hka‘

Case sm: pe C,, singleton; ge C;, multiple. Let /; € L have i, = g,
Vi lvi, = + ¢ and y;, = 2. Define y, by (4.9) and let

x, = 0167 e, + Ope™ (216, + 29¢;,). (4.16)
Again, (4.12) is real with
tk'r _ hkp;
(4.17)
bes = Pys21 + Py 2ae
Case ss: p €C,, g € Cg,.both singletons. We require y, = 2, define y,
by (4.9), and set
Xy = (Sle_i“'p €y + 626_‘”1‘1 €q- (418)
One finds that (4.12) is real with
bem = Prms W =7 OT S. (4.19)

We now return to examine (4.12).
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Let g be in C,. The first necessary condition we obtain is that 4,, = 0
whenever p ~ ¢g. For this purpose we take §, = 0 and maintain this
assumption through formula (4.31).

In Case mm, (4.12) yields the real expression

"
> ettt (), ey, s = L. (4.20)
A=1

Since g € C;, the terms 4, — 4, are all non-negative and for % in a given
class C,, ¥ > 1, all of the terms 1, — 1, are equal and positive. Moreover,
if keC, and &' ¢ C,, then |A, — 1| # |4z — A,|. By grouping the terms
in (4.20) according to equivalence classes for the index 2 and applying
Lemma 4.1, we can conclude that for » > 1,

2l e)y =0, s=1, (4.21)
keCy

or, evaluating {/;, ),
b + ety = 0, s =L (4.22)

Were one to follow the same type of argument using a functional
Iy € L, which differs from /; only in having & replaced by — g, then with
yy = e"%4, and

Xy = jem%(z18;, — 29¢;) (4.23)
one would arrive at
tie—el, =0, s=1, (4.24)
with
by = Mg — Mij2a. (4.25)

Adding (4.22) and (4.24) with the use of (4.13) and (4.25), one obtains
B2y + el 20 = 0, s =1, (4.26)

or, noting (4.8),
(Riyig — hii)zy + by =0, s=1. (4.27)

Since 2z, can vary while maintaining conditions (4.8), Eq. (4.27) can hold
only if fpg = hii, = hs5, = 0.
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In Case ms we obtain (4.21) with £, as in {4.14), yielding
hi,q + Ehj,q = 0, qe Cl' (428)

Using an [, € L differing from [; only in having ¢ replaced by — ¢, setting
vy, = e~%4,, and replacing z, by — zp in (4.14), with d, = 0, one obtains

hio — €h;

irq

=0, geC, (4.29)

iq

or, from (4:28) and (4.29), h,q = k; , = 0.
* In Case sm, (4.12) provides

b2y + Ry ze = 0 (4.30)

from which &, = h;,;, = 0 follows, using (4.8) and the variability of z;.
In Case ss, (4.12) immediately yields %,, = O for p > 1, with the aid of
Lemma 4.1.
Thus, when ¢g € C,, we have shown that

hpg = 0 (4.31)

when p ~ ¢.

If the matrix A is partitioned into blocks corresponding to the classes
C,, Cy,...,C, one must then have all zero entries in the first column of
blocks with the exception of-the block in the upper left hand corner. We
will later return to the diagonal blocks. First, however, we proceed to show
that the other off-diagonal blocks must have entries equal to zero.

Let 1 < p, ¢ < n. We shall call the pair (p, q) non-degenerate if

kv p = Ay — Ag| # |2y — Ad (4.32)

Otherwise we call the pair (p, q) degenerate. (As we have already observed
{(p, ¢) is non-degenerate if g € C,.) We proceed by induction. Suppose we
have shown that for some s > 2, ¢geC,,, 5" <{s —1 and p~ ¢ imply
hye = 0. Let g be in C;. We shall show that h,, = 0, for p ~ ¢. 1f (, ¢)
is non-degenerate, then the arguments accompanying Eqs. (4.19) through
(4.31) hold without the restriction s = 1. Hence 4,, = 0 follows.

Now let (p, ¢) be degenerate. Suppose we have shown that 4,, = 0 for
peC,withr <s. Let (p’, q) be degenerate, where p' € C,., #' > s. Then
|Ap — Al = |A, — 44| for some peC,, » <s. Again, the arguments
accompanying Eqgs. (4.19) through (4.31) (without therestrictions = 1) show
that Ay, — %, = 0. But 2,, = 0, so h,., = 0. It suffices, then, to show
hye = 0for peC, withy <s.



398 HANS SCHNEIDER AND R. E. L. TURNER

Assume p € C,, » < s and that C,. is the unique class such that p’ € C,.
implies 2, — &, = 4, — 4,

Suppose we are in the Case mm. We now use expressions (4.9) and
(4.10) under conditions (4.8) and (4.11) with d; > 0. Since, by our induc-
tive hypothesis, 4, = hy;, = 0 for k¢ C,, the expression (4.12) contains
the terms

e*r=R0 (8 o + ety ) - e TR0 (¢ o 4 ety ) (4.33)

together with terms having exponents unequal to 4 it(, — ;). The
expression (4.12) is still real and Lemma 4.1 enables us to conclude that

(ti,s + tc315:;',s) - (ti,‘s + st:i,'s) =0, (4.34)

where the bar denotes the complex conjugate.

Let I3 be a functional from L having y; = 2,y; = 2¢,p,, = 1,p,, = ¢,
and having its remaining coefficients equal to those of /;, introduced for
the case mm at the beginning of the proof. Let'y, = ¢4 and let

x, = 6ze—i"'#(zlei, -+ 29¢; ) -+ 616"'“4(zle,-s + 29¢;), (4.35)

which differs from (4.10) in having d, and d, interchanged. Repeating
the type of argument given in the last paragraph, but using the quantities -
I3, v;, and x, just defined, one finds y,||x,, and the reality of {y,, hx,) yields

25 + etys) — (s + 805) = 0, (4.36)
with ¢, still given by (4.13). Together, (4.34) and (4.36) lead to
tis 4 ety = 0. (4.37)

Assume [y (introduced after formula (4.22)) and /, differ from /; and /3,
respectively, only in having ¢ replaced by — e. Then with y, = e %4/,
(+ =2,4) and with an x, differing from (4.10) and (4.35), respectively,
only in having — zg where 2z, stands, one can repeat the steps above to
obtain equations differing from (4.34) and (4.36), respectively, only in
having — & where ¢ stands. From the new equations one obtains

tis— €l =0 (4.38)
in place of (4.37), which, together with (4.37) implies

tis = b2y + Ry 20 = 0. (4.39)
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But we have already seen (cf. (4.30)) that an equation of the type (4.39)
can hold only if 4, , = 0.

The argument just completed can be imitated in the Cases ms, sm, and
ss. For Case ms werefer back to definitions (4.14), (4.15) and the accompany-
ing discussion. Using (4.12) one obtains

tis+ elys — by = 0. (4.40)

Use of an /3 differing from /, only in having y; = 2 rather than y, = 2
together with an x,, differing from (4.14) oxnly in having 4,, d, interchanged,
provides

2(ti's —‘l— et]"s) - t‘[,'S = 0. (441)

Combining (4.40) and (4.41) we have 4, , + ¢;, = 0. Next, one uses I,
and /4 differing from /, and I3, respectively, only in having ¢ replaced by
— &. These, together with appropriate vectors y,and x,, supply the vanishing
of t; , — &t;,. Then{,; = 0, leading as before to 4,,; = 0.

For Case sm we use (4.16) and then the vector obtained by interchanging
01, 0o together with the appropriate /; and /3, respectively, to obtain

ti,s - (ti,'s + Eti,’s) =0= 2ti,s - (ti,’s + Eti,’s)

and hence ¢,; = h,, = 0. Finally, in the Case ss one uses functionals
/; and /3 to obtain A,, = 0. This completes the argument showing that
geC; and p ~ g imply 4,, = 0. By induction the assertion holds for
1 <s<n.

We now know that % can have non-zero entries only in blocks along
the diagonal. The structure of a multiple block is obtained by further
examining the Case mm, setting 7, = ¢, = p and 7, =7, =¢g. We use
(4.9) and (4.10) under conditions (4.8) and (4.11) with é; = 0 and ¢ = 0.
Now, the fact that (4.12) is real means that

(hppz1 + Ppeza) + &(hgpz1 + hog2e) (4.42)

must be real. Using /p (introduced earlier) and replacing z;- by — 25 in
(4.9) one finds that

(hpp?s — hpg2e) — &(hqp21 — Pgqa) (4.43)
is real and, subtracting, that

Bpg?e + €hen2y (4.44)
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is real. Since z; + €z = 1,
hpa + (%hep — hp)2a (4.45)
isreal. As z, can vary in a complex open set we conclude that 4., is real and
Moo = €2hgp. (4.46)
But then
hpe = E%hyp = e%hp, (4.47)

and since 0 < & < %, Ay, = 0. )
If we add (4.42) and (4.43) we get the real expression

hppZy + Ehogze = 21(hpp — hog) + hge (4.48)

Again, as z; can vary, we see that A, is real and 4, = A,.

If p is a singleton, and ¢, is the unit vector having its pth coordinate
equal to 1, then }¢, and any /e L with y, = 2 are easily seen to be dual
vectors, forcing ${!, ke,) = h,, to be real.

We have shown that a necessary condition for 4, represented by {%,,}
to be »-Hermitian is that its entries be real and

hpg=0 1t p#g¢
. (4.49)
hop = haa if p~q.

The elements A€ S, of course, satisfy (4.49), a fact that will also follow
from the inclusion S C H(»). The inclusion, in turn, follows easily from
the definition of the norm since

v(e*x) = sup |(J, ei¥etix)|
35
A’eS

sup [{Z, e x)|

= (%), (4.50)

and any 1 generating an isometric group must be »-Hermitian. Since
SC H{y) and H({») = D(») by (4.49), it follows from Theorem 3.1 that
App(S) C H(»). It remains to show that H(») C App(S). We note that
if S generates just one equivalence class then by (4.49) H(») consists of real
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multiples of the identity and thus H(v) C (S) C App(S). Accordingly,
we can assume that the number 7, of equivalence classes, 1s at least 2. We
shall show that if 2" ¢ App(S) then 4" ¢ H(»). We may restrict attention
to an &’ satisfying (4.49), since if (4.49) fails, then 4" ¢ H(v). Thus let #" be
the diagonal matrix (4,',..., &,") where &, = h; if i ~ 4. If 1" ¢ App(S),
there exists a § > 0 and a ¢ € R such that forany A€ S,

12 — '] = 6. (4.51)

Since (4.51) cannot be satisfied with £ = 0, if we show that » = (&' ¢ H(»),
it will follow that A’ ¢ H(v).
From each equivalence class C,. choose an integer 7, and let

— sk —omih. -
% =2ve Mg, 4 T irg, (4.52)

2gr<st
Then for any A€ S,

; 2mifa; —hy ) S 2wl —h; )
ety = 27¢ 0T ey 4 D T T e, (4.53)
2Lr <L

and
v(x) = sup [{/, e2"x)|.
leL
AeS

As was noted in the proof of Theorem 3.2, the norm of x will be unaffected
by taking the supremum over those A€ S having 4,, = 4;,.
If I = > 7 y:e/ andy, =1, then

|<L, e¥2x)| < 27+ 2 + 7 — 2 = 37,

sincey; = 2 for at most one class C, with 7 # 1. However, if y, = 2, then
from the triangle inequality,

<L, 62";‘x)| =241 — (-1 =3+ 1L

So the norm »(x) can be determined by using only functionals in L with
¥:, = 2. Suppose ! is within this restricted class and that 1 is an arbitrary
element of S normalized so that 4; = A;,. Since, in (4.53), |(4;, — k;,) mod 1|
> 6 for some k = 2, [{l, €***x)| has the form

|47 + 7e¥% 4 ag 4+ + a4,
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where 0 <7 < < |6] < % and |a;| <1 for 3 <7< v. Hence, using
the fact that (oc2 ,8)1/2 < o — BJ(2a) for positive a and B, we find

¢, e?mitx)| < (1672 + 8t cos 2 + 1)V2 7 — 2
[(47 + 1)2 — 87(1 — cos 2)]V2 4 7 — 2

87(1 — cos 2n4)
8t + 2

87(1 — cos 276)
8712

//\//\

<L4r+1— +Tr—2

=5r—1 —

and consequently »(x) is strictly less than 57 — 1.

If & were v»-Hermitian, then »(¢?***x) would equal »(x). However, ¢#"hx =
27e; + D 7 s¢;,50ifle Lhasy; = 2andy, = lforr >>2, then [{/, e*hy)| =
5t — 1 from whichit follows that »(¢?"*x) > 5¢ — 1. Consequently, 2 ¢ H(»)
and the proof of Theorem 4.7 is complete.

THEOREM 4.54. Let S be a subset of D. Then theve exists a norm v on C*
such that S = H(v) if and only if I€S and S is a subspace of D with a
rattonal basis.

Proof. The “only if’”’ portion is the same as that of Theorem 3.3. In
the other direction, one obtains S = App S and the desired norm is that
given in Theorem 4.7.

While one does not need such an elaborate norm construction to obtain
the following result, it follows immediately from Theorem 4.7.

CorROLLARY 4.55. For any positive ne€ Z. There exists a norm v on
Cr such that

= {h|h = al, o real}.
Proof. In Theorem 4.7 let S be the span of 1.
In the next section we will strengthen this last result.
5. NORMS WITH TRIVIAL HERMITIANS

Recalling that Ny = N;(#) is a metric space of norms in C?, we can
strengthen Corollary 4.55 as follows:
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THEOREM 5.1.  For each positive n € Z, the norms in N (n) which permat
only rveal multiples of the identity as Hermitians arve dense tn N,(n).

Proof. Since the result is clearly true for » = 1, we may suppose
n > 2. Let 5 be a norm in N(#). By Theorem 1.7 there is a basis {¢;}
for C* which is double dual with respect to , and we use this basis for
the rest of the proof. Without loss of generality, we assume that the {e;}
are the canonical unit vectors.

Let v, = 4»,” where »,” denotes the norm (4.3) in the case that S is
the span of I and 0 < ¢ < } is the number entering in the description of
the space L of functionals. Since 1€ S has the form «- I for « € R, the
expression (I, e*x)| equals [{/, x)| and thus

vy(x) = }sup [{L, x)|- (5.2)
leL

As S gives rise to just one equivalence class C; consisting of the integers
{1,2,...,n},if x = D7 ae; then

ve(¥) = 4 sup [2e; & Zea
1<i,j<n
1#)

= sup Jo & eaty. (5.3)
1<, j<n
155

If |- |, denotes the I, norm with respect to the basis {e;}, then » (x) <
(1 + ¢)|x|e with equality occurring for x = ¢; + e,.

By Lemma 1.8, the norm # satisfies |x|,, < n(x), where |x|, is with
respect to the double dual basis {¢;}. Now we define the norm p, by

ps(%) = sup(n(x), (I + &)v,(x))- (5.4)

Since

= (I + &)’n(x),

we obtain 5(x)/p.(x) < 1 and p,(x)/n(x) < (1 + &)? for all #, or, using the
semi-metric introduced in Definition 1.9,
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dln, py) < 2log(l + &) < 2e. (5.5)

If we now show that p, allows only multiples of the identity as Hermitian
elements, the density of such norms in N(#), and consequently in N(n),
follows from (5.5).

Since nle;) = v.(e;) = 1 for each basis vector ¢;, the norm (1 4 &)y, in
(5.4) is active at each basis vector (cf. Definition 1.4). Then from Lemmas
1.3 and 1.5 it follows that there is a Euclidean neighborhood U; of each
basis vector ¢, so that if x € U, and y||x with respect to », (or equivalently
(I + &),) then y||x with respect to u,. But forany pairofindices 1 4,7 < »,
1 % 7, the neighborhood U; contains vectors x, = z,¢; 4 z9¢; where z;, 2o
satisfy (4.8). As vector operations are continuous, z; can be allowed to
vary in an open subset U’ C U, where U was described in connection with
(4.8). But with [, € L as described before (4.8), /||, with respect to ,.
Likewise lp||x_ where I, differs from /, only in having & replaced by — &.
Then the equations (4.42) through (4.48) are valid if A is a p,-Hermitian
matrix, forcing % to be a real multiple of the identity.

The remainder of this section is aimed at showing the openness of the
set of norms admitting only trivial Hermitians.

Remarks on Convexity 5.6. If v is a linear functional and ¢ is a real
number the set

A4 = {xeC"Re(y, x) = c}

is an affine hyperplane. If C is regarded as a 2n-dimensional linear space
over the real numbers, then 4 has codimension one. If K is a convex set
in C» one says that 4 is a supporting hyperplane for K at z, if

(1) Re(y, %) = ¢
and either

(2) xe K = Re(y, x) <¢
or

29 xeK => Re(y, x) = ¢

are satisfied. Suppose K is a convex set which is dalanced; that is, has the
property that x € K implies ¢?x € K for all real 6. Then if K is supported
by a hyperplane 4 at %, (in the sense of (1) and (2) above) the condition
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Redy, xg) = ¢ implies (y, %o) = ¢. Otherwise one could obtain
Re(y, €¥%%y) > ¢ for a suitable 6.
If p is a norm on C* we let

K, = {xeC|p() <1}

Clearly K, is balanced and from the foregoing discussion one easily derives
the known result that given x with u(x) = 1, one has y||x with respect
to p if and only if {#|Re(y, #) = 1} is a supporting hyperplane for K, at x.

LEMMA 5.7. Let py be a norm and suppose yy||xo with respect to py.
Then, given &€ > 0, there 1s a 8 > 0 such that if p s a norm and d(p, o) << 6,
theve are vectors x, y satisfying x(x — xo) < &, x(y — ¥o) < &, and y||x with
respect to p.

Recall that y is the Euclidean norm.

Proof. We use the canonical basis {¢;} for C* so that with x =

> e and y = X Bies, (v, ) = > a:f; and (x, x) = §3(x).
Suppose that yg||%, with respect to py and that py(xg) = poP(¥e) = 1.
We let

B, = {x e C*x(x — %0 — yo) < (1 + @)x(¥0)},

where 0 <C w <w; < 1 and w, is chosen so that the ball B,,, does not contain
% = 0. Since y, is dual to x;, we have Re{y,, x) <{ 1 for each x in the
unit ball K, . Ifx € K, N B, and we write x = %, + ¢, then Re(y,, ¢) < 0.
Since y(x — %y — ¥o) < (1 4+ w)x(yo), we have

(1 + @)%*(yo) = #*(x — %0 — Yo)
= (¢ — Yo, ¢ = Yo)
= {e¢,¢) — 2 Re(yo, &) + (Yo, ¥o)
= 1¥e) + 1*(¥o),
yielding

x2e) < [(1 4 )2 — 17%(%o)

or

x(e) < Bw) 2y (y,). (5.8)
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Since 0 ¢ B,,, an intermediate value theorem allows one to choose 0 <
& <1 so that, letting x; = (1 — &)xp, the equality y(x; — %o — vo) =
(1 + wy)x(yo) holds and hence, x; € B,,,. Now, with 0 < § < §/2 we let p
be any norm satisfying d(p, po) << d with p normalized so that sup po(y)/p(¥)
= 1. Recalling the definition of 4(p, py), we see that p(x) <C ¢®po(x) for any
x and consequently

p(x1) = p((1 — &)xo)
< e®po((1 — €)%o)
< et — §
<1

We now have x; € K,N B, and we have normalized p so that K, = K, .
As a consequence of inequality (5.8) with w = 0, one sees that the Euclidean
distance from %, 4+ 9, to the set K, is precisely the distance from x4 + ¥,
to xo; that is, y(ye). Since K, < K, , the distance from %y 4 y, to K,
must be (1 + wg)x(yo) for some 0 < wg < w; and it is a standard result
that the minimum distance is achieved at a unique point which we call
xg. It is known (cf. [15, p. 98]) that there is a hyperplane which is support-
ing for both B, and K, at their common point x;. Since the ball B,,, has
a unique supporting hyperplane at x,:

{#[Re(yy, £) = c}

with y; = %y + 9o — #2 and ¢ = Re(yy, x2), it must be a supporting
hyperplane for K,. Denoting ¢}y, by y, we have p(xg) = 1, (yg, x3) =
Re{yq, %9y = 1 and pP(y,) = 1, so ¥y, and x, are dual with respect to p.
It remains to be seen how far they are from ¥, and %, respectively.

Recall that d depended upon ¢, and ¢, in turn, upon ;. Since x, is in
B,, N K, x(xs — %) < (Bw)Y2x(y,), using (5.8). In terms of x — %o we
have

1
1(Ve — Yo) = % (7 Y1 — %)

AQM+M—M—@

1
- x<Re<)’0 — (g — %), (¥2 — %0) + xo>(y0

— (%g — xq)) — )’0>'
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Since Re{y,, %9) = 1, one easily sees that by choosing w; > 0 sufficiently
small one can make y(x; — %p) << eand y(ys — ¥o) < €. The value d arising
from the choice of w;, and the dual vectors x = x5 and y = y, then serve
for the conclusion of the lemma.

DeFINITION 5.9. Let (X, d) be a metric space and let & be the collectron
of subspaces of a normed lineay space V. We say that a map m from X to &
s upper semi-continuous if the two conditions

(1) x,eX (B=1,2,...)and x, converges to x,

2) wveeV, v, emxy,), and v, converges to v,
imply that v € m(x).

In the following we identify the space C™* of # X % complex matrices
with the Euclidean space C*' and let & be the collection of subspaces of C*».

THEOREM 5.10. The map H on Ny taking a norm v to H(y) C C™ is
upper semi-continuous.

Proof. Suppose p, (8 =1,2,...) is a sequence of norms converging
to p, that 4, is Hermitian with respect to p,, and that %, converges to
heC™. We must show that 2e H(p). We have a continuous map of
C» x C™ x C» (with the product topology) into C defined by taking
(v, 8 %) to {y,gx). Given he C™, from above, and y,||x, with respect
to p, let (v, Axg) = z. If, for some dual pair (y,, %p), z is not real, then
there exists an & > 0 so that the disc D; = {w & C| |w — z| < £} contains
no real number. By the continuity of the expression (¥, gx), there is an
e>0 so that y(y — vo) <& x(x — %) <e and x(g — k) <& imply
{y, 8%y € D,. But using the hypotheses of the theorem together with the
previous lemma, we can find an integer £ and vectors y,, x; so that
1 — B) <&, x(% — %0) < & x(¥r — ¥o) < & and y,||x, with respect to
px- Then {y;, Ax,) € Dy and is also real, a contradiction. Hence z is real
for each dual pair (yg, x¢) and % is in H(p).

THEOREM 5.11. The set
C = {peN1|EIheH(p), hs ol aeR}

18 closed in Nj.

Proof. Suppose that p,eC (m =1,2,...) and that d(p,,, p) =0 as
m — oo for somhe p e N;. By hypothesis, each space H(p,,) contains a
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Hermitian element %, which is not a real multiple of 7. With (-, )
denoting the C™ inner product we may assume that (%, I) = 0 and
(hm: hm) = xz(hm) = 1. Let

T = {ge C|y(g — al) < }, for some a € R}
and
B = {geCry(g) < 2.

The set B — T contains 4, for each integer m and, as B — T is compact,
we may assume without loss of generality that the matrices %, converge
asm —co tosome ke B — T. Using Theorem 5.10 we see that %z € H{p),
and as ¢ T it follows that p e C.

THEOREM 5.12. The set of norms
{peN;ijheH(p) > h =al, e R}

s a dense, open subset of N .
Proof. The result is immediate from Theorem 5.1 and Theorem 5.11.
APPENDIX

We use the notation introduced in Section 2 and in addition let R™™
and Z*™ denote the spaces of matrices having real and integral entries,
respectively, and having » rows and m columns. If L € R*? and M € R*™,
then [L, M] will denote the element of R™™+? obtained by situating
L to the left of M. Similarly, if L € R?™ and M € R"™ then we denote by

[1\]:]} the element of R"+#.™ obtained by situating L above M.

The four theorems stated below are all concerned with simultaneous
diophantine approximation. The first three can be found in the references
cited, but it is the fourth version we require and, while the result may be
known to workers in number theory, we could find no reference for it.
We thought it would be worthwhile to give all four theorems and show
how each can be obtained starting with a restatement of the Perron result.
{(Perron states the result in terms of the rank and rational rank of the
matrix M.) By R* we denote both the space of row and column #-tuples
with real elements; the context indicates which is intended.
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TureoreM I (Perron [11, Theorem 63, p. 153, 1st edition, or Theorem
64, p. 159, 4th edition)). The following two statements are equivalent for a
given o€ R™ and M e R*™:

Al. For each ¢ > O there is a g € Z™ such that |Mq — o, < e.

Bl. Forany fe R»,

(1) M =0eR™ = fa =0elR,
and

(2) BMeZm = facZ.

Tureorewm II (Cassels [5, p. 53], Koksma [9, p. 83]). Given « € R" and
M € R™™ the following are equivalent:

A2. For each € > 0 there is a g€ Z™ such that || M, — o|| < e.

B2, Forany fel SMeZ™ = fac Z.

Proof. (Assuming Theorem I).

A2 = B2. Suppose € Z™ and M € Z™. Statement A2 says that for
any given ¢ > 0 there is a g € Z™, a vector z € Z*, and a vector u € R™ with
|t < € such that

Mg=a+u+z
Then
Mg = fo + fu + B2

Since the terms fMyg and fz are integers and since |Bule << [B|one, we
can make |ful, arbitrarily small by choosing ¢ > 0 small. Thus the
number fSu«, which is independent of &, must be an integer.

B2 = A2. Now suppose that B2 is satisfied and let [I, M] = K be
in Rrmtn Clearly SK = O only if § = 0, so Bl, Part (1) is satisfied. If
B e R™ and SK € Z™*, then fe€Z™ and M € Z™ which, by B2, implies
faeZ. We have verified Bl and hence Al holds. That is, there is a
g€ Z™+ such that |Kg — «|, < e. Otherwise stated, Mg =a4+u — ¢
where |u|, < &. But then ||Mg — «|| < ¢ showing that A2 is satisfied.

TueorEM III (Koksma [9, p. 83]). Given o€ R™ and M € R™™, the
following are equivalent:

A3. For each ¢ > 0 there is.an x € R™ such that ||Mx — «f| < e.

B3. Forany feZ™ M =0€Z™ = facZ.
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Proof. (Using Theorem II).

A3 = B3. The proof is similar to that above, except that in this
case SMx is the integer 0.

B3 = A3. Suppose that B3 holds and that M has the special form

=y

where 7 is m X m and L is in R?~™-™ (note that in this case » > m). Write

. ol
« in the form .
o

} where o' € R™ and o € R*~™. Let y be in Z"~™ and
suppose yL e Z™. Let f = [— yL,y] be the n-tuple having its first m
entries equal to those of — L and the last # — m equal to those of y. By
assumption, f€ 7 and M = —yLl 4+ yL = 0eZ™. Since we are
assuming B3, we must have fu = — yLal + ya?e Z. Now, assuming
thaty € Z»~™ and that yL € Z™ we have shown that y(«? — Lal) € Z. Thus
B2 holds for the matrix L and the vector «* — Lol € R®»—™. Hence A2
holds for the same pair. That is, for each ¢ > 0 there is a g € Z™ such that
|[Lg — («® — La)|| < & or letting x =g+« ||[Lx —o?|| <e  But
[[fx — ot|| = |l]g + &> — «!|| = 0. Hence ||[Mx — «|| < e. This completes
the proof in the case that
I
[

Suppose that M has rank m (and so # > m). Then by reordering rows,
if necessary one can assume that

Y ek

where M, is a nonsingular m X m matrix and My is (n — m) X m. Write
I .

M as [L} M, where L = MyM,~1. We are supposing that € 7" and

BM = 0 e Z™ together imply fa = 0. If f & 7™ and

o[l] -

then M = 0 and hence fa = 0. According to what was proved in the
special case above, given ¢ > 0, there is a y € R™ such that
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I
L ¢

Letting x = M~y one has ||Mx — «|| <e. This completes the proof
in the case that rank M = m.

Finally suppose M has rank &2 << m (this includes the case # << m).
By a permutation of rows and columns, if necessary, we can assume M is
partitioned as

< €.

M:[Mu Mlz}
MZl M22

where My, is a & X k nonsingular matrix. We can then write
My 0]
M = .
[M 21 0} M
where M € R™™ is nonsingular. Suppose that 8 € Z* and
My,
] o
Mg,

Then M = 0€ Z™ and, as we are assuming B3, fa e Z. Then from the
previously established case, there is a w! € R* such that

HMll

< &.
My

}wl—a

We let w be the vector in R™ having its first & entries those of w! and the
remaining ones zero. Then

sz o
w— &

My 0 < &

and letting x = M 1w we have ||Mx — «|| < &.

TuEOREM IV. Given € R™ and M € R™™, the following are equivalent:

A4. For each ¢ > 0 and each veal t, theve 1s an xc R™ such that
[|Mx — t|| < e.

B4. Forany fe@Q® M = 0in Z™ = fo = 0.

Proof. (Using Theorem III).
A4 = B4. Suppose A4 holds, and for a fixed S € Q™, fM = 0. Then
for some integer p, pf € Z™ and p8M = 0. Choose a non-zero ¢ so that
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|pBte| < §. Then given ¢ such that 0 < 2pn|B|ee < 1, there is an x such
that Mx = fa 4 z 4+ p where z€ Z™ and |u|, < &. Hence 0 = pMx =
phto+ pBz + phu, and so |pfz| < |phta| + |pBu| <} + prlflue < L.
Since pfz € Z, we obtain pfz = 0. Thus |pfta| = |pBu| < pn|f|.e. Since
¢ can be chosen arbitrarily small, it follows that S = 0.

B4 = A4. Assuming B4, we see that f € Z™and M = 0 e Z™ together
imply that fta = 0 € Z, for every t € R. Hence B3 holds with o replaced
by fe, for € R. The implication (B3 = A3) now yields A4.

We wish to thank B. D. Saunders for his comments on a draft of this

paper.
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