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ABSTRACT 

If v is a norm on en, let H(v) denote the set of all norm-Hermitians in e nn. Let 
S be a subset of the set of real diagonal matrices D. Then there exists a norm v such 
that S = H(v) (or S = H(v) n D) if and only if S contains the identity and S is a 
subspace of D with a basis consisting of rational vectors. As a corollary, it is shown 

that, for a diagonable matrix h with distinct eigenvalues .111" '" AT' r ~ n, there 
is a norm v such that hE H(v) , but hS ¢= H(v), for some integer s, if and only if 
.112 - .Ill" .. , AT - .Ill are linearly dependent over the rationals. It is also shown that 
the set of all norms v, for which H(v) consists of all real multiples of the identity, is 
an open, dense subset, in a natural metric, of the set of all norms. 

INTRODUCTION 

For a norm v on en, the complex n-tuples, an (n X n) matrix h is 
called norm-Hermitian if the numerical range of h with respect to v is real. 
(For a precise definition see Section 1 and the beginning of Section 3.) 
An unsolved problem in this area is 

(1) Given a norm v on en, characterize the set H(v) of norm-Hermitian 
matrices. 

An alternative, easier problem is 
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(2) Characterize all subsets 5 of enn, the set of (n X n) complex 
matrices, such that there exists a norm v on en for which 5 = H(v). 

In an earlier paper [14] (d. Theorem (6.2)), we solved (1) under the 
additional hypothesis that v is absolute. (The norm v is absolute if v(x) 
depends only on the absolute values of the coordinates of x in en.) Implicit 
in [14] is the solution of problem 

(2a) Characterize all 5 in enn such that there exists an absolute norm 
von en for which 5 = H(v). 

The result is: There exists an absolute norm v with 5 = H(v) if and only 
if there exists an equivalence relation == on the set of integers {I, 2, .. " n} 
for which 

5 = {h E ennlhi; = h;i' for i == i and hi; = 0 otherwise}. 

In the present paper we take a step toward a solution of problem (2). Here, 
in Sections 3 and 4 we deal with sets 5 contained in the set D of real 
diagonal matrices. We solve two problems. The first is 

(2d): Characterize all subsets 5 in D such that there exists a norm v for 
which 5 = H(v) n D. 

The solution is stated in Theorem 3.3. The second problem is 

(2c): Characterize all 5 in D such that there exists a norm v for which 
5 = H(v). 

For a solution of (2c) see Theorem 4.54. In describing 5 we identify 
the space D of real diagonal matrices with [Rn, the real n-tuples: For each 
of (2d) and (2c) 5 is characterized by being a subspace of [Rn which contains 
the identity and which has a basis of rational vectors. By a rational 
vector we mean a vector (OCI,' • • , ocn ) where each OCi is a rational number. 
In resolving (2d), one could omit the proof of Theorem 3.2, and use instead 
Theorem 4.7. However, we include Theorem 3.2, both to show that the 
more complicated Theorem 4.7 is not required to resolve (2d) and also 
to shed light on the proof of Theorem 4.7. The construction of the norm 
in Theorem 3.2 was motivated by an example due to M. J. Crabb [6]; 
[4, p. 57]. The more elaborate norm (4.3) used in the proof of Theorem 
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4.7 is apparently required to deal with the off-diagonal elements of a 
norm-Hermitian matrix without disturbing the desired class of diagonal 
elements. 

A crucial ingredient in the characterization of diagonal norm-Hermitian 
matrices is a theorem on inhomogeneous diophantine approximation. The 
archetypal theorem is due to Kronecker, but for our purposes we require 
the form given in Theorem IV of the appendix. There are several versions 
of the approximation theorem in the literature (Perron [l1J, Koksma [9J, 
Cassels [5J) but we have been unable to find the version we require. We feel 
it is informative to show, as we have done in the appendix, how the different 
forms of the approximation theorem can be derived from Theorem 63, 
p. 153 of [l1J, 1st Edition (or Theorem 64, p. 159 of [l1J, 4th Edition). In 
fact, Theorem I of the appendix is a restatement of Perron's Theorem. 

As a consequence of our characterization of diagonal norm-Hermitian 
matrices, we are able to shed light on Problem 4, p. 128, of Bonsall and 
Duncan [4J, which concerns norm-Hermitian elements whose powers are 
not all norm-Hermitian. Near the end of Section 3, in Corollaries 3.5 and 
3.6, we give conditions on the eigenvalues of a diagonable matrix h which 
are necessary and sufficient for the existence of a norm with respect to 
which some, but not all, powers of h are norm-Hermitian. In Corollary 
3.7, we show that a norm is absolute if and only if there is diagonal norm­
Hermitian matrix diag(dJ,' .. , dn ) where d2 - d1 , . •• , dn - d1 are linearly 
independent over the rationals. 

In Section 5, we examine the set of norms which allow only the identity 
and its real mUltiples as norm-Hermitian elements. It is shown that 
almost all norms are of this type. More precisely, we introduce a metric 
in the space of norms on en and show that the set of norms allowing only 
real multiples of the identity as norm-Hermitians constitutes an open, 
dense set. 

1. NORMS AND DUALITY 

We will be concerned with the vector space of n-tuples of complex 
numbers, en, over the field C. 

DEFINITIONS 1.1. A semi-norm on e is a function a from en to the non­
negative real numbers IR+ satisfying 

(1) a(x + y) ~ a(x) + a(y); 
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(2) a(~x) = 1~la(x); 

where I~I denotes the absolute value o/~. A norm is a semi-norm satislying 

the additional condition 

(3) a(x) = ° =? X = 0. 

We denote the usual Euclidean norm on en by X and use the fact 
that any semi-norm on en is continuous with respect to the Euclidean 
norm topology. 

LEMMA 1.2. Let arx , rx E d, be an indexed lamily 01 semi-norms and 

suppose there exists a norm y on en such that arx(x) ::;:;; y(x) lor all rx E d and 

all x E en. Then a delined by 

a(x) = sup arx(x) 
rxEd 

is a semi-norm. II arxo is a norm lor some rxo E d, then a is a norm. 

Proal. Straightforward. 
The dual space of en, that is, the space of linear functionals on en, 

can be identified with en and if y is a linear functional, its value at x is 
denoted by (y, x). We assume (y, x) is conjugate linear in y. If y is a 
norm on en, then the dual norm yD, on linear functionals, is defined by 

If x, yare in en and 

yD(y) = sup I(y, x)l. 
#0 y(x) 

1 = (y , x) = yD(y)y(X) 

we say that y is dual to x and indicate this relationship by writing Yllx. 
It is well known that for each x E en, x =1= 0, there is at least one y such 
that yllx and for each y =1= 0, there is at least one x such that yllx (e .g., 
[1 J). 

LEMMA 1.3. Let'Yj be a norm on en and let a be a semi-norm. Let 

y(x) = sup('Yj(x), a(x)). 

Suppose 1 = a(xo) > 'Yj(xo) and that a vector x' satislies (x', xo) = 1 and 

I(x', x)1 ::;:;; a(x) lor all x. Then x'llxo with respect to y. 
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Proof. Since (x', xo) = v(xo), it suffices to show that I(x', x)1 ~ v(x) 
for all x. However, I(x', x)1 ~ a(x) ~ v(x) for x E en. 

DEFINITION 1.4. Suppose v is a semi-norm and is defined by 

v (x) = sup a,,(x), 
"E~ 

where the a" are semi-norms. Suppose that for a given Xo E en and (J E d, 

ap(xo) > sup aa(XO)' 
aE~ 

a*P 

Then we say that a p is active (with respect to v) at Xo. 

LEMMA 1.5. Let v be the semi-norm in Definition 1.4. If ap is active 
at Xo, then it is active in a Euclidean neighborhood of Xo. 

Proof. Since v(x) ~ kX(x) for some constant k > 0, aa(x) ~ kX(x) 
for each IX and, by Lemma 1.2, 

Vl(X) = sup a,,(x) 
aE~ 
a*p 

is a semi-norm. Then v(x) = sup(op(x), 'Vl(X)) and G.o(xo) - 'Vl(XO) = e > O. 
Since both ap and v, are continuous with respect to X there exists a 
x-neighborhood V of Xo such that ap(x) - Vl(X) > 8/2 for x E V. Hence, 
ap is active in V. 

Let el, e2,' .. , en be a basis for en. Then there exists a unique basis 
el', ... , en' for the dual space, satisfying (e/, e;) = tJu , the Kronecker 
delta. The set {e/} is the algebraic dual basis to {e i } . 

DEFINITION 1.6. Let v be a norm on en. If the basis {ei} and its algebraic 
dual {e/} satisfy e/llei with respect to v and v(ei) = I for i = 1,2, ... , n, 
we call {ei} a double-dual basis. 

We will use the result: 

THEOREM 1.7 (e.g. Schneider [13]). For any norm v on en there exists 
a double-dual basis with respect to v. 

If ev . .. , en is any basis for en then each x is uniquely represented as 

x = L7=1 IXiei' The quantity IXI1> = (L7=1 IIXilp)lfp defines a norm on en 
for I ~ P < (X) and as usual we set Ixloo = sUP1~i~nIIXil. 
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LEMMA 1.8 (d. Schneider [I3J). Let e!> ... , en be a double-dual basis 
with respect to a norm v. Then with respect to this basis 

Ixl"" ~ v(x). 

DEFINITION 1.9. Let E be a set. A semi-metric on E is a function d 
from E X E into R+ satisfying 

(1) 

(2) 

(3) 

d(x, x) = 0, 

d(x, y) = d(y, x), 

d(x, z) ~ d(x, y) + d(y, z), 

for all x, y, Z E E. If also 

(4) d(x, y) = 0 implies x = y 

then (as usual) d is a metric on E. 

The distance function used in the following lemma is similar to ones 
that have been used in other contexts (e.g. G. Birkhoff [2J). 

LEMMA 1.10. Let N = N(n) be the set of all norms on en. Then 
(1) The function defined by 

( 
p(x) V(y)) 

d(p, v) = log sup -(-) . sup -(-) 
x~o v x y~O p Y 

is a semi-metric on N. 
(2) d(p, v) = 0 if and only if there is a c > 0 such that p = cv. 

(1.11) 

Proof. Clearly d(p, p) = 0 and d(p, v) = d(v, p) for all p, v E N. To 
prove the triangle inequality, suppose also that a E N. Then 

( 
p(x) V(y)) 

d(p, v) = log sup -(-) . sup -(-) 
x~o v x y~O p Y 

= log (sup p(x) . a(x) . sup v(y) . a(y)) 
x~o a(x) v(x) y~O a(y) p(y) 
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~ log (SUp p(x) . sup a(w) . sup v(y) . sup a(Z)) 
"" " .. 0 a(x) w .. o v(w) " .. 0 a(y) z..o p(z) 

= d( p, a) + d(a, v). 

If p = cv where c > 0, then obviously d(p, v) = log(c' llc) = O. 
Conversely, suppose d(p, v) = 0 and let 

c = inf p(x) . 
" .. 0 v(x) 

This infinum will be achieved at a point Xo on the unit Euclidean sphere. 
Then 

sup v(y) ~ v(xo) = c-1 
p(y) ~ p(xo) , 

so to have d(p, v) = 0 one must have 

p(x) 
sup v(x) ~ c, 

yielding p(x) = cv(x) for all x. 

THEOREM 1.12. Let e be a nonzero element of en with x(e) = 1 and let 
N 1 be the set of all norms p on en such that p(e) = 1. Then the function d 
defined in (1.11) is a metric on N 1 and N 1 is complete with respect to d. 

Proof. Let d(p, v) = 0 where p, v are in N 1. Then by Lemma 1.10 

(part 2), p = cv for some c > O. But p(e) = v(e) = 1 so P = v. Hence d 
is a metric on N 1. 

Let Pr be a Cauchy sequence of norms in N l' The Cauchy property 
implies there is an M > 0 such that d(Pr, X) ~ M for all r, implying that 
Pr(x) ~ eM for all x on the sphere 

Further, for Xl, X2 E 5, 

independently of r, making Pr a uniformly-bounded, equicontinuous set 
of functions on S. By the Arzela-Ascoli Theorem [8, p. 266J, the sequence 
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Pr, restricted to 5, is precompact in the space of continuous real valued 
functions on 5 and has a subsequence Pr converging uniformly to a function 
p. Since Pr is a Cauchy sequence, the whole sequence converges to p. 
Since d(Pr' X) ~ M for all r, restricting to 5 we see that the limit p must 
be positive on 5. We extend p to P defined on en setting 

{

X(X)P (~( )), x f= 0 
p(x) = X x 

o ,x=O. 

One readily verifies that this homogeneous extension is a norm in N 1 
and that d(Pr' p) ->- 0 as r ->- 00. 

2. RATIONAL BASES 

Let 71., IQ!, and IR denote the integers, the rational numbers, and the real 
numbers, respectively. By 71.n, IQ!n, and IRn we denote the modules (linear 
spaces in the case of IQ! or IR) of n-tuples with values from 71., IQ!, and IR, 
respectively. If (1. = ((1.1, ... , (1.n) belongs to 71.n, IQ!n, or IRn, then we set 

1(1.100 = max l(1.il, 
l<i<n 

11(1.11 = max I(1.Amod 1)1, 
l~i<n 

(2.1) 

where l(1.il denotes the absolute value of (1.i and (1.i(mod 1) is the number in 
the interval (- i, iJ which is congruent to (1.; modulo 1. 

DEFINITION 2.2. We say a subspace 5 C IRn has a rational basis if 5 
consists of all real linear combinations of a set of vectors {VI, . .. , Vk} from IQ!n. 

If 5 is a subset of IRn we let sp(5) denote the subspace consisting of real 
linear combinations of elements from 5. We are interested in the largest 
subspace contained in the set of vectors that can be approximated "modulo 
1" by vectors in sp(5). Accordingly, we introduce the following : 

DEFINITION 2.3. Let 5 be a non-empty subset of IRn and (1. a vector in IRn. 
Then (1. E App(5) if and only if for each 8 > 0 and each real t, there is a 

.I.E sp(5) such that 11.1. - t(1.11 < 8. 

It is readily seen that App(5) is a subspace of IRn containing 5. To 
obtain another characterization of App(5) we introduce the polar of a set 5; 
that is, 



DIAGONAL NORM HERMITIAN MATRICES 383 

S.L = {fJ E [Rnl(fJ, s) = 0 for all s E S}, 

where (fJ, s) denotes the standard scalar product in [Rn. Even though S 

need not be a subspace, the set S.L will be a subspace and is easily seen 
to have the property that if SI S S2 then SI.L ;2 S2.L . 

Proof. We appeal to Theorem IV of the appendix. Let WI, ... ,Wm 

be a basis for sp(S) over [R and let M be the n X m matrix having WI,· .. , Wm 

as its columns. An arbitrary element of sp(S) then has the form Mx for 
x E [Rm, while fJ E [Rn will be in the polar of S if and only if fJM = 0 as a 
row vector. Given IX E [Rn, we have IX E App(S) if and only if A4 of Theorem 
IV (Appendix) holds. But A4 is equivalent to B4 of that theorem which 
states that if fJis in (lin and in S.L then (fJ,lX) = 0; thatis,IXE(S.Ln(linj.L . 

REMARK. Since S.L = (sp(S)).L, App(S) = App(sp(S)). 

LEMMA 2.5. Let T C [Rn be a set consisting of rational vectors (elements 
of (lin). Then T.L has a rational basis. 

Proof. The subspace sp(T) C [Rn has a basis VI, V2, . .. , Vq with each 
Vi E (lin. A vector IX = (IXI··· IXn) is in sp(T).L = T.L if and only if it 
satisfies a matrix equation MIX = 0, where M is the q X n matrix having 
VI> •• . , Vq as its rows. The matrix M contains a q X q submatrix with 
nonzero determinant and hence has a k = n - q dimensional nullspace 
over (li or IR. If WI, ... , Wk from (lin are a basis for the nullspace over (li , 
then WI, .. . , Wk are also a basis for the nullspace over [R. 

LEMMA 2.6. For any non-empty set S C [Rn, App(S) has a rational 
basis. 

Proof. Let S.L n (lin = T in Lemma 2.5. 

LEMMA 2.7. A subspace S C [Rn has a rational basis if and only if 
S = App(S). 

Proof. If S = App(S). then from Lemma 2.6, S has a rational basis. 
Conversely, if S has a rational basis and has dimension q, the argument 
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given in the proof of Lemma 2.5 shows that 5.1 has a rational basis and 
has dimension n - q. Since sp(S.1 n IOn) = 5.1, App(S) = (5.1 n iQn).1 = 

5.1.1. But 5.1.1 has dimension q and contains 5, so App(S) = S. 

COROLLARY 2.8. A pp is a "closure" operation; that is, 

(1) 5 e App(S) 

(2) App App(S) = App(S) 

(3) 5 e 5 =:> App(S) e App(5). 

Proof. Item (1) is a consequence of 5 e 5.1.1 e (5.1 n iQn).1. Item (2) 
follows from Lemmas 2.6 and 2.7. If se5 then 5.1eSJ. so 5.1 n lOne 
5.1 n IOn and App(5) = (5.1 n iQn).1:::) (5.1 n iQn).1 = App(S). 

COROLLARY 2.9. If 5 is any set in [Rn then 

App(S) = n W 
We[!7 

where .9' is the collection of subspaces W having rational bases and containing S. 

Proof. If WE.9', then W = sp(W) :::) sp(S) so W = App(W) :::) 

App(sp 5) = App(S), using Lemma 2.7. Since App(S) E .9', the desired 
equality follows. 

3. DIAGONAL NORM-HERMITIAN MATRICES 

We denote the collection of n X n complex matrices by enn. If 'V is a 
norm on en then we say h E enn is a 'V-Hermitian matrix if yiix with respect 
to 'V implies that (y, hx) is real. We let H('V) denote the set of 'V-Hermitian 
matrices. If D denotes the set of real diagonal matrices in enn we set 
D('V) = H('V) n D. In the sequel we will identify D with [Rn. Note that 
I = (1, 1, .. " 1) is always in D('V), and that D('V) is a subspace of D. 

THEOREM 3.1. Let 'V be a norm on en and let 5 be a non-empty subset 
of D('V). Then App(S) e D('V). 

Proof. Suppose p, = (p,1,' .. , P,n) is in App(S). Then for each s > 0 
and each t E R there is an element A = (AI> A2,' .. , An) E sp(S) satisfying 
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11,1 - t,ull < e (d. (2.1)). Since AED(v), the diagonal matrix 

will be an isometry for the norm v (d. [4, p. 46]). Then for any x E en 
with v(x) = 1, 

Iv(e2"itllx ) - v(x) I = Iv(e2"i'\e2"i(tll-'\)x) - v(x) I 

Iv(e2"i(tIl-'\)x) - v(x) I 

~ v((e21ti(tll-'\) - I)x). 

A matrix map is continuously dependent on its entries and 

e21ti (tll-'\) = I if Ilt,u - All = o. 

Hence, given c5 > 0, we can find A E sp(S) such that 

v((e21ti(tIl-'\) - I)x) ~ c5v(x) . 

Hence Iv(e21titllx) - v(x) I ~ c5v(x) and it follows that e21titJ1. is an isometry 
for each real t. But then using Lemma 2, p. 46, of [4] again, we see that 
,u must be v-Hermitian and hence in D(v). 

The following theorem is a counterpart to Theorem 3.1. A strengthened 
version is contained in Theorem 4.7, but we feel that the proof given here 
will help to illuminate the more complicated proof of 4.7. 

THEOREM 3.2. Let 5 be a subspace of IRn, and suppose IE S. Then 
there exists a norm v on en such that D(v) = App(S). 

Proof. Let {ei} be a basis for en and let {e;'} be its algebraic dual 

basis. If x = ~:=I (:J.iei and l = ~:=I e/ then (l, x) = ~7=1 (:J.i' If A = 
(AI,' . " An) is in 5 we form the semi-norm x -> I(l, eiAx)l, where eiAx = 
~7=1 eiAi(:J.iei' Such a semi-norm satisfies I(l, ei'\x) I ~ VI(X), where VI(X) 
~7=1 l(:J.il and hence a defined by 

a(x) = sup I(l, ei'\x) I 
AES 

is a semi-norm, by Lemma 1.2. Setting v(x) = VI(X) + a(x) we see that 
v is a norm. 

If ,u E 5, then to show ,u E D(v) it suffices to show that eiJ1.t is a v­
isometry for all real t (d. [4, p. 46]); that is, that v(ei J1.tx) = v(x) for each 
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X E en and all t E IR. It is clear that Yl(eilltx} = Yi(X} and since 5 is a 
subspace, 

sup I(l, ei(A+tIl)X) I = sup I(l, eiAx)l, 
Ae5 Ae5 

yielding a(eitllx} = a(x}. It follows that eitll is isometric and hence 5c D(Y}. 
We next show that D(Y} C App(5}. 
Suppose that ft' ¢ App(5}. Then there exists a b > 0 and atE R such 

that for all ,I.E 5, 11,1. - tft'll ~ b, and clearly, such a t is non-zero. We let 
tft' = ft = (ftl, . .. , ftn) and shC!w that ft ¢ D(Y}. Then it will follow that 
p,' ¢ D(Y}. We let x be the vector (e-21till l, . .. , e-21tilln) and have 

y(e21tillx} = Yl(e21tillx} + sup I(l, eiAe21tillx) I 
Ae5 

= n + sup I ± eiA
' I 

Ae5 .=1 

= 2n. 

If y(x} "# 2n, then e21till is not an isometry and ft cannot be v-Hermitian. 
But 

y(x} = Yl(X} + sup I(l, e21tiAx) I 
Ae5 

= n + sup I ± e21ti(Ai-lli) I 
Ae5 ;=1 

and can equal 2n only if, by varying ,I.E 5, one can come arbitrarily close 
to making the complex numbers e2"i(Ai-lli) equal. 

Since we may multi ply a com plex number by eiB , e real, without changing 
its modulus and since (e, e, . . . , e) E 5 for each real e, we need only consider 
those A for which Al = ftl. Hence 

y(x} = n + sup I ± e21ti(A'-Il') I 
Ae5 . = 1 

A1 =1'. 

where we still have 11,1. - ftll ~ b > O. Since I(Ai - fti) mod 11 ~ b for 
some i ~ 2, a simple estimate yields 

y(x} ~ 2n - 2 + (2 + 2 cos 2nb}1I2 < 2n. 

Thus ft is not v-Hermitian. 
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Since 5 C D(v) C App(5), it follows from Lemma 2.7, Corollary 2.8, 
and Theorem 3.1 thatApp(5)cAppD(v) = D(v) and hence App(5) = D(v). 

THEOREM 3.3. Let 5 be a subset of D. Then there exists a norm v on 
en such that 5 = D(v) if and only if IE 5 and 5 is a subspace of D with a 
rational basis. 

Proof. Let 5 = D(v). Clearly IE 5. By Theorem 3.1, App(5) C 
D(v) = 5 and hence App 5 = 5 . It follows by Lemma 2.7, that 5 is a 
subspace with a rational basis. Conversely, if 5 contains I and is a subspace 
with a rational basis then, again by Lemma 2.7, App 5 = 5, and it follows 
that 5 = D(v), for some norm v on en, by Theorem 3.2. 

COROLLARY 3.4. Suppose 5 is a subset of D and that IE 5. Define 

51 = n {D(v) Iv is a norm on en and H(v) 2 5}. 

Then App(5) = 51' 

Proof. Since D(v) has a rational basis for each v, App(5) C 51 follows 
from Corollary 2.9. But from Theorem 3.3 there exists a norm v such that 
App(5) = D(v), so App(5) = 51' 

A matrix h E enn is called diagonable if there exists a non-singular 
p E Cnn such that p-1hP is a diagonal matrix. 

COROLLARY 3.5. Let Av . . . , AT> 1 ~ r ~ n be pairwise distinct real 
numbers. Let hE Cnn be a diagonable matrix with spectrum {Av .. " Ar}. 
For each positive integer s and A E [R, put vs(A) = (1, A, A2 , . •. , AS) E [Rs+1. 

Then there exists a norm v on en such that hm E H(v) for m = 1,2, ... , s, 

but hie rf= H(v) for some k> s if and only if Vs(A1),' .. , vs(Ar) are linearly 
dependent over Q. 

Proof. If v is a norm and the norm v1J is defined by v1J(x) = v(px), for 
x E en, then the numerical range of h with respect to v equals the numerical 
range of p-1hp with respect to V1J (d. Nirschl and Schneider [lOJ). Hence 
we need consider only diagonal h. Let 5 C [Rr be spanned by the r-tuples 
hm = (AIm, . .. , Arm) for m = 0, 1, ... , s. Suppose there exists a non-zero 
vector fJ E iQr such that L~=l fJivs(Ai) = 0. Then fJ E (S.l n iQr) , and it 
follows that App(S) i= [Rr. Since the numbers Ai are distinct, the vectors 
hO, hI, . .. , fir-I span Rr and hence for some k > s, hie rf= App(S). 
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Suppose that the eigenvalues AI>' .. , Ar of h, occur with multiplicities 
ml,' .. , mr, respectively. Let 5 s:; IRn be the span of I, h, . .. , hS with s 
as above. For the same k > s, suppose hk E App(S). Then for each B > 0 
and each real t, there is a f-l E 5 such that 11f-l - thkll < B. Since, in the 
vector f-l - thk , the entries are repeated according to the multiplicities mj, 

one sees that 11,u - thk II < B follows for an appropriate p, E S. This contra­
dicts hk ¢= App(S). Hence hk ¢= App(S). But by Theorem 3.3 there is a 
norm v such that App(S) = D(v), implying hk ¢= H(v), since hk E D. 

Conversely, let a norm v and an integer s be given. Suppose hI, h2, • •• , hS E 
H(v) and that hk ¢= H(v) for some k > s. Then with 5 as in the last section, 
hk is not approximable modulo 1 by elements of 5; that is, App 5 =p W. 
HenceS.l n (It =p {O}so there is a,8E([J)r,,8 =p 0, such that Li=l ,8ivs(Ai) = o. 

COROLLARY 3.6. Let AI,' .. , Ar and h be as in Corollary 3.5. Then there 
exists a norm v on ICn such that h E H(v) but hk ¢= H(v) for some k > 0, if and 
only if (A2 - Av· .. , Ar - AI) are linearly dependent over ([J). 

Proof. One uses Corollary 3.5 in the case s = 1 observing that, in the 
notation of that corollary, VI (AI)' ... , VI (Ar) are linearly dependent over 
([J) if and only if A2 - AI,' .. , Ar - Al are linearly dependent over ([J). 

DEFINITION 3.7. A norm von ICn is absolute if for every (01, O2,, .. , On) 3 

IRn, the diagonal matrix (eiol, . .. , eiOn) is an isometry. 

COROLLARY 3.8. A norm v is absolute if and only if there exists dE H(v), 
where d is a diagonal matrix (dl , d2, ... , dn) and dl - d2, . .. , dl - dn are 
linearly independent over ([J). 

Proof. If a norm v is absolute then every real diagonal matrix is 
v-Hermitian (d. [I3J) and one can choose the entries so that dl - d2 , . •. , 

dl - dn are linearly independent over ([J). On the other hand, given the 
independence for a. real diagonal matrix d = (d l , ... ,dn ), there is no 
,8 E ([J)n satisfying (,8, I) = 0 and (,8, d) = O. Hence App(sp{I, d}) = IRn, 
which means every diagonal matrix is v-Hermitian (d. Theorem3.I). Then 
for any diagonal 0 = (Ov ... , On), eiO is an isometry. 

In the remainder of this section we shall prove the converse of a 
theorem due to Nirschl and Schneiderl [10]. For a given norm v onlCn and 

1 We are grateful to B. D. Saunders for a suggestion which led to the proof of 
Theorem 3.11. 
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a E I[nn let V(a) = {(y, ax)lyllx} be the numerical range of a. We begin 
by restating [10, Theorem 3J (see first line of proof). 

THEOREM 3.9. Let v be an absolute norm on I[n, and let a E I[nn. If W 

is an open convex subset of I[ which contains the spectrum of a, then there 

exists a non-singular s E I[nn such that V(sas-1) C W. 

We first prove a lemma, the proof of which is modeled on the proof 
of.Crabb, Duncan, and McGregor [7, Lemma 1.5J. 

LEMMA 3.10 (B. D. Saunders). Let v be a norm, let a E I[nn have distinct 

eigenvalues. Let WI:::> W 2 :::> . .. be a sequence of closed bounded subsets of IC. 
If, for k = 1,2, ... , there exists a non-singular matrix Sk E I[nn such that 

V(Skask-1} C W k, then there exists a non-singular matrix s in I[nn such that 

V(sas-1) C n:r:'=l Wk' 

Proof. For c E I[nn, let v(c) = SUp{IAIIA E V(c)} . Then it is known 
(see Bohnenblust and Karlin [3J or [4, Theorem 1.4.1J that VO(c) ~ ev(c}, 

where VO is the operator norm on I[nn associated with v. Since V(Skask -I} C 

W k' for k = 1, 2, ... , it follows that {VO(Skask -1) Ik = 1, 2, ... } is a bounded 
subset of IR. Hence the bk = Skask-l, k = 1, 2, . . " lie in some compact 
subset of I[nn, and we may select a convergent subsequence of bI> b2, . ... 

Without loss of generality, we may assume that b1 , b2, . .. converges to a 
matrix b. Let d be a diagonal matrix similar to a. Then, for k = 1,2, ... , 
there exists qk E I[nn such that qkbkqk -1 = d. We may choose the qk so that 
VO(qk) = 1, k = 1, 2, . . . , and then suppose that ql, q2,' .. converges to 
q E I[nn. Then q i= 0 and qb = dq, and since the diagonal elements of dare 
distinct, it follows that q is non-singular. Hence b is similar to a, say 
b = sas-1, for a non-singular s E I[nn. Let Yllx. Then 

00 

(y, sas-1.x) = lim(y, Skask-1x) En W k, 
k->-oo k=l 

since n%'=l W k is closed. The lemma follows. 

THEOREM 3.11. Let v be a norm on I[n. Let h be a diagonable matrix 

in I[nn with real spectrum {d1, ... , dn}, where d1 - d2, . . " dl - dn are 

linearly independent over Q. Then the following are equivalent : 

(i) There is a non-singular s E I[nn such that the norm Vs is absolute, 

where Vs is defined by vs(x) = v(sx), for x E I[n. 
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(ii) For each a E ICnn and each open convex subset W of IC containing 
the spectrum of a there is a non-singular s E ICnn such that Vs(a) C W, where 
Vs(a) is the numerical range of a for the norm Vs' 

(iii) For each open convex subset W of IC which contains the spectrum 
of h there is a non-singular s E ICnn such that V.(h) C W. 

Proof. Since Vs(a) = V(sas-1), it follows immediately from (3.9) that 
(i) implies (ii). It is trivial that (ii) implies (iii). Thus we need only prove 
that (iii) implies (i). So suppose that (iii) holds. Let X be the convex hull 
of {d1, ... , dn } and let W k = {~E ICII~ - w I ~ 11k, for some WE X}. By 
assumption, there is a non-singular Sk E ICnn such that V(skhsk -1) C Wk' 
Since d1, . •• , dn are pairwise distinct, it follows by Lemma 3.10 that there 
exists a non-singular p E ICnn such that V 1)(h) = V(PhP-l) c n::'=1 W k = 
Xc IR. Let s be a non-singular matrix in ICnn for which s-1php-1s = d is 
a diagonal matrix. Then Vs(d) = V(sds-1) = V(PhP-1) C IR. Hence 
dE H(vs) and so by Corollary 3.8, the norm v. is absolute. 

4. NORM HERMITIAN MATRICES 

In this section we suppose we are given SeD with App(S) = Sand 
IE S, and construct a norm v so that H(v) = S. In order to force all 
v-Hennitian elements to be diagonal, but still preserve all elements of S 
as v-Hermitian we require a more complicated construction than was used 
in the proof of Theorem 3.2. We begin with a technical lemma that will 
be used several times. 

LEMMA 4.1. Let 01 < O2 < ' , , < Ok be real numbers and let hI> h2 , . .. , hk 
be complex. If the function 

f(t) = h1eitO l + ' , , + hkeitOk 

is real for real t in some neighborhood of t = 0, then the following hold: 
(i) if 0i = 0 for some i, then hi is real, 

(ii) if 0i = - OJ for some pair of indices i, j, then hi = li j, 
(iii) for each i, if there does not exist a j with j "# i such that 10ji = 10il, 

then hi = O. 

Proof. If, for a given i with 0i > 0, there is a isuch that 0i = - OJ, 
then there is at most one such j and we have 

hieit9i + hjeit9j = (hi - hj)eitO; + 'li je-it9j + hjeit9J, 
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Since h;e-itBj + h;eitBj is real for t real, we can incorporate it into j(t) and 
consider a sum of exponentials in which the absolute values of all exponents 
are distinct. We shall show in this latter case that all coefficients are 
zero except for a possible constant term and show that the constant 
term is real. It will then follow that each difference hi - hi, above, is zero, 
and all parts of the conclusion will follow. 

Suppose then that we have a function 

where the gi are complex constants and the CPi are real with all values ICPil. 
distinct. Assuming r(t) is real for t in a neighborhood of zero, the derivatives 

will be real for such t. Taking the imaginary part at t = 0 we obtain 

m 

L Img;cp;4P = 0; 
;=1 

p = 1,2, ... , m. 

Since the determinant of the coefficients {cpj4P} is of Vandermonde type 
with distinct constants cp;4, we must have Img; = 0 for l' = 1,2, ... , m. 
Similarly, 

p = 0,1, ... , m - 1, 

yielding Regj = 0,for1 = 1,2, ... ,m. Theng; = Ofori = 1, ... ,mand 
go = r(t) which must then be real. The lemma is complete. 

Let 5 be a subspace of [Rn having a rational basis, with IE S. Define 
a relation on the integers {I, 2, ... , n} with respect to 5, setting i 1""-.1 i if, for 
every element (lh, . .. , An) in 5, Ai = A;. The relation is easily seen to be an 
equivalence relation. For a given 5 suppose there are -r equivalence 
classes, denoted by C1, C2, • .• , Ct. If Cm consists of a single integer we call 
Cm, and the integer it contains, a singleton. Otherwise we call Cm, and 
any integer it contains, multiple. 

As before, we use A = (Al> A2" .. , A'n) to denote a point in [Rn and a diagonal 
matrix in enn. 

Suppose rei} is the canonical basis for en and that {e/} is the algebraic 
dual basis. Given an e, 0 < e < I, we describe a collection of functionals 
L to be used in the construction of a norm. A functionall = L7=1 Yie/ 
belongs to L if and only if l satisfies: 
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There exists ir E Cn r = 1, 2, .. " T, and, if Cr is multiple, 
ir in Cn ir -# ir such that 

(1) Among the coefficients Yi r ' r = 1, 2, ... , T precisely 
one has the value 2 and the remaining T - 1 coefficients have (4.2) 
the value 1. 

(2) If Cr is multiple, Yir!Yir = ± 8 and Yt = 0 for t E Cn 

t -# in t -# ir' 

Note that the numbers ir, ir may be different for different elements of L. 
We let l stand for an arbitrary functional from the collection L. Later 
we will distinguish among the functionals with subscripts. We now define 

v(x) = sup I(l, ei.lx)1 
IEL 
.lES 

f h ""n '"'n h b f iA ""n i.l · or eac x = ~i=I ~iei III IG , were, as e are, e x = ~j=Ie 1 ~iei' 

LEMMA 4.4. v defined by (4.3) is a norm on en. 

(4.3) 

Proof. For each pair l ELand A E S, the map x ...... I(l, ei.lx) I is a semi­
norm and if x = ~7=I ~iei it is easily seen that 

n 

I(l, eiAx)1 < 2 ~ I~il· 
;=1 

Thus the semi-norms are uniformly bounded with respect to the II norm. 
Using Lemma 1.2 we see that v is a semi-norm, so one need only show 
that v(x) = 0 implies x = O. For this purpose we shall show that there 
exists a A = (AI, ' . . , An) from S such that i,.,., i implies Ai -# Ai' For each 
pair i, i such that i,.,., i, the set of A E S for which Ai = Ai is a proper 
subspace. Since S is not the union of a finite number of proper subspaces 
(d. [12J), there exists a A = (AI,' .. , An) E S which, after a renumbering of 
the basis vectors, satisfies 

(1) 

(2) 

i,.,., i => Ai -# Ai') 

i < i => Ai < Ai' 
(4.5) 

Let I. = (AI,' .. , An) satisfy (4.5) and let /-l1, /-l2, ' .. , /-It denote the distinct 
numbers occurring among the Ai' Then for any lEt, the quantity (l, eitAx) 
will be of the form s(t) = eitJ1. J/3I + ... + eitJ1.t/3t where /3i = (l, PiX) and 
piX is the projection ~jEC;(e/, x)ei' If v(x) = 0, then s(t) = 0 for all 
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real t and its derivatives at t = 0 will vanish. Then /31,' .. , /3t will provide 
a solution of 

/31 + /32 + ... + /3t = 0 

/-l1/31 + /-l2/32 + ... + /-It/3t = 0 
(4.6) 

However, the coefficient matrix of (4.6) is nonsingular, being a Vandermonde 
matrix with distinct /-li' and so (l, PiX) = /3 i = 0 for each i. But the span 
of the functions in L is all of en, so piX = 0 for each i, giving X = o. 

THEOREM 4.7. Let 5 be a subspace of ~n and suppose I E S. If the norm 
v is defined by (4.3) then H(v) = App(S). 

Proof. Let h be a v-Hermitian matrix. We examine what the Hermitian 
condition implies about the elements hpq, of h, and begin with the case in 
which both p and q are multiple. 

Case mm: p E Cr, q E Cs, both multiple. We assume P =I q, but do 
not exclude r = s. We let A be an element of 5 satisfying conditions (4.5). 

Let II E L have ir = P and is = q if P ~ q; and let ir = is = p, jr = js = q 
if P "" q. Assume Yir/Yir = Yis/Yis = + 8 and that Yis = 2. Beyond these 
requirements, but maintaining condition 4.2, II can be arbitrarily chosen. 

Having 0 < 8 < t, we set r1 = (1 + 82)-1. Letting j = {slh:::;; Sl < I} 
and setting S2 = c 1(1 - Sl) one has Sl + 8S2 = 1 for Sl E J. Further 

8S1 + S2 < 8 + 8-1(1 - r1) 

and one then easily sees. that for Sl E j, each of the quantities ± 8Sl + S2, 
Sl - 8S2, Sl, ± 8S1, S2, and ± 8S2 has absolute value less than 1. By the 
continuity of addition and multiplication there is a neighborhood U of j 
in the complex plane such that for Zl E U, Z2 exists such that 

(1) Zl+8Z2=1, 1 
(2) the numbers ± 8Z1 + Z2, Zl - 8Z2, Zl' ± 8Zl, Z2, ± 8Z2J 

each has modulus less than 1. 

(4.8) 
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With II as fixed above and A, satisfying (4.5) we define 

and 

where t is real; Zl E U; Zl, Z2 satisfy (4.8); and 151, 152 satisfy 

(1) 

(2) 

(3) 

152 > 151 ;::: 0, 

151 + 2152 = 1, 

151 = 0, if P~J 
Suppose we choose any l' from L and any A,' from S. Then 

I(l', eiA'xt)1 ~ c511(l', ei(A'p-tAp)(Zlei, + Z2ej,)1 

+ c52 1(l', ei(A'q- tAq)(Zleis + Z2ej)I· 

(4.9) 

(4.11) 

Depending upon whether l' has a coefficient 2 associated with the class 
CT , with the class Cs' or with neither class, the expression I(l', eiA'xt)1 will 

be bounded by a quantity 2c5IIa11 + c521a21, c5IIa11 + 2c521a21, or c511a11 + 
c521a21, respectively, where each number ai (i = 1, 2) is either zero or one 
of the complex numbers listed in parts (1) and (2) of (4.8). In any case, 
using (4.11) we see that 

Thus, referring to (4.3), we conclude that Y(Xt) ~ 1. However, 

so y(xt) = 1 and yD(Yt) ;::: 1. Since, for arbitrary Z E en, 

I(Yt, z)1 = l(lI, eitAz) I ~ sup I(l', eiA'z)1 = y(z), 
/'eL 
i:eS 

we see that yD(Yt) = 1 and that YtliXt with respect to y for all real t. 
Consequently, (Yt, hxt) is real for all t. We can write the scalar product as 
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(4.12) 

where 

m = r or s. (4.13) 

Before pursuing (4.12) further we obtain corresponding expressions 
for the remaining cases. 

Case ms: p E Cr multiple; q E Cs, singleton. Let ir have ir = p, 
Yj,fYi, = + e and Yis = 2. Define Yt by (4.9) and let 

Again, YtliXt and the expression (4.12) is real, where now 

tkr = hki,Zl + hki,Z2,} 

tks - hkq • 

(4.15) 

Case sm: P E Cr, singleton; q E Cs, multiple. Let II E L have is = q, 
Yi.lYis = + e and Yis = 2. Define Yt by (4.9) and let 

(4.16) 

Again, (4.12) is real with 

(4.17) 

Case ss: P E Cr , q E C.,. both singletons. We require Yis = 2, define Yt 
by (4.9), and set 

(4.18) 

One finds that (4.12) is real with 

m = r or s. (4.19) 

We now return to examine (4.12). 
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Let q be in C 1. The first necessary condition we obtain is that h'1Jq = ° 
whenever p,.y q. For this purpose we take <51 = ° and maintain this 
assumption through formula (4.31). 

In Case mm, (4.12) yields the real expression 

" ~ eit(Ak-Aq>tks(ll ' ek), S = 1. (4.20) 
k=l 

Since q E C h the terms Ak - Aq are all non-negative and for k in a given 
class Cr, r > 1, all of the terms Ak - Aq are equal and positive. Moreover, 
if k E Cr and k' rf- Cr , then IAk' - Aql :f. IAk - Aql. By grouping the terms 
in (4.20) according to equivalence classes for the index k and applying 
Lemma 4.1, we can conclude that for r > 1, 

~ tk.(lv ek) = 0, S = 1, (4.21) 
kEC, 

or, evaluating (lv ek ), 

S = 1. (4.22) 

Were one to follow the same type of argument using a functional 
l2 E L, which differs from II only in having 8 replaced by - 8, then with 
Yt = e-itAl2 and 

(4.23) 

one would arrive at 

( s - 8t~,s = 0, S = 1, (4.24) 

with 

(4.25) 

Adding (4.22) and (4.24) with the use of (4.13) and (4.25), one obtains 

S = 1, (4.26) 

or, noting (4.8), 

S = 1. (4.27) 

Since Zl can vary while maintaining conditions (4.8), Eq. (4.27) can hold 

only if h'1Jq = hi,i, = hj,j, = 0. 
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In Case ms we obtain (4.21) with tks as in (4.14), yielding 

(4.28) 

Using an l2 E L differing from II only in having e replaced by - e, setting 
Yt = e-; tAl2, and replacing Z2 by - Z2 in (4.14), with 01 = 0, one obtains 

or, from (4,28) and (4.29), h~pq = hi,q = O. 
• In Case sm, (4.12) provides 

(4.29) 

(4.30) 

from which hpq = hi,i
1 

= 0 follows, using (4.8) and the variability of Zl. 

In Case ss, (4.12) immediately yields h pq = 0 for p > 1, with the aid of 
Lemma 4.1. 

Thus, when q E Cl , we have shown that 

(4.31) 

when p,y q. 

If the matrix h is partitioned into blocks corresponding to the classes 
Cv C2, ... , C. one must then have all zero entries in the first column of 

_ blocks with the exception ofthe block in the upper left hand corner. We 
will later return to the diagonal blocks. First, however, we proceed to show 
that the other off-diagonal blocks must have entries equal to zero. 

Let 1 ~ p, q ~ n. We shall call the pair (P, q) non-degenerate if 

(4.32) 

Otherwise we call the pair (P, q) degenerate. (As we have already observed 
(P, q) is non-degenerate if q E C r-l We proceed by induction. Suppose we 
have shown that for some s ;:?: 2, q E Cs" s' ~ s - 1 and p,y q imply 
hpq = O. Let q be in Cs •• We shall show that hpq = 0, for p ,y q. If (P, q) 
is non-degenerate, then the arguments accompanying Eqs. (4.19) through 
(4.31) hold without the restriction s = 1. Hence hpq = 0 follows. 

Now let (P, q) be degenerate. Suppose we have shown that hpq = 0 for 
p E Cr with r < s. Let (P', q) be degenerate, where p' E Cr" r' > s. Then 
lAp, - Aql = lAp - Aql for some p E Cr , r < s. Again, the arguments. 
accompanying Eqs. (4.19) through (4.31) (withouttherestrictions = 1) show 
that hpq - lip ' q = O. But hpq = 0, so hp'q = O. It suffices, then, to show 
hpq = 0 for p E C r with r < s. 
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Assume P E Cr , r < s and that Cr , is the unique class such that P' E Cr , 

implies AI" - Aq = Aq - AI" 
Suppose we are in the Case mm. We now use expressions (4.9) and 

(4.1O) under conditions (4.8) and (4.11) with 151 > 0. Since, by our induc­
tive hypothesis, hki, = hki, = ° for k 1= Cr , the expression (4.12) contains 
the terms 

(4.33) 

together with terms having exponents unequal to ± it(Ap - Aq). The 
expression (4.12) is still real and Lemma 4.1 enables us to conclude that 

(ti,s + sti,s) - (ti,s + eli,s) = 0, (4.34) 

where the bar denotes the complex conjugate. 

Let l3 be a functional from L having Yi, = 2, Yi, = 2e, Yis = 1, Yis = e, 
and having its remaining coefficients equal to those of lv introduced for 
the case mm at the beginning of the proof. Let" Yt = eW 'l3 and let 

(4.35) 

which differs from (4.10) in having 151 and 152 interchanged. Repeating 
the type of argument given in the last paragraph, but using the quantities 

l3' Yt, and Xt just defined, one finds YtlIXt, and the reality of (Yt, hxt> yields 

2(ti,s + eti,s) - (ti,s + eti,s) = 0, (4.36) 

with tks still given by (4.13). Together, (4.34) and (4.36) lead to 

ti,s + eti,s = 0. (4.37) 

Assume lz (introduced after formula (4.22)) and l4 differ from II and ls, 
respectively, only in having e replaced by - e. Then with Yt = e-wli 
(i = 2, 4) and with an X t differing from (4.10) and (4.35), respectively, 
only in having - Zz where Zz stands, one can repeat the steps above to 
obtain equations differing from (4.34) and (4.36), respectively, only in 
having - e where e stands. From the new equations one obtains 

ti,s - eti,s = ° (4.38) 

in place of (4.37), which, together with (4.37) implies 

(4.39) 
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But we have already seen (d. (4.30)) that an equation of the type (4.39) 
can hold only if hiris = O. 

The argument just completed can be imitated in the Cases ms, sm, and 
ss. For Casems we refer back to definitions (4.14), (4.15) and the accompany­
ing discussion. Using (4.12) one obtains 

(4.40) 

Use of an l3 differing from II only in having Yir = 2 rather than Yis = 2 
together with an Xt, differing from (4.14) only in having 15 1, 152 interchanged, 
provides 

(4.41) 

Combining (4.40) and (4.41) we have tirs + tirS = O. Next, one uses l2 

and l4 differing from II and l3, respectively, only in having 10 replaced by 
- s. These, together with appropriate vectors Yt and Xt, supply the vanishing 
of tirs - stirS' Then tirs = 0, leading as before to hiris = O. 

For Case sm we use (4.16) and then the vector obtained by interchanging 
151> 152 together with the appropriate II and l3' respectively, to obtain 

and hence ti,s = h1Jq = O. Finally, in the Case ss one uses functionals 
II and l3 to obtain h1Jq = O. This completes the argument showing that 
q E Cs and p,...,.., q imply hpq = O. By induction the assertion holds for 
1 ~ s ~ n. 

We now know that h can have non-zero entries only in blocks along 
the diagonal. The structure of a multiple block is obtained by further 
examining the Case mm, setting ir = is = P and ir = is = q. We use 
(4.9) and (4.10) under conditions (4.8) and (4.11) with 151 = 0 and t = o. 
Now, the fact that (4.12) is real means that 

(4.42) 

must be real. Using l2 (introduced earlier) and replacing Z2 ' by - Z2 in 
(4.9) one finds that 

(4.43) 

is real and, subtracting, that 

(4.44) 
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is real. Since Zl + eZ2 = 1, 

(4.45) 

is real. As Zl can vary in a complex open set we conclude that hpq is real and 

(4.46) 

But then 

(4.47) 

and since 0 < e < 1, hpQ = O. . 
If we add (4.42) and (4.43) we get the real expression 

(4.48) 

Again, as Zl can vary, we see that hQQ is real and hpp = hQQ . 
If P is a singleton, and ep is the unit vector having its pth coordinate 

equal to 1, then te p and any l E L with yp = 2 are easily seen to be dual 
vectors, forcing t(l, hep) = hpp to be real. 

We have shown that a necessary condition for h, represented by {hpQ} 
to be v-Hermitian is that its entries be real and 

(4.49) 

The elements A E 5, of course, satisfy (4.49), a fact that will also follow 
from the inclusion 5 C H(y). The inclusion, in turn, follows easily from 
the definition of the norm since 

y(eitl.x) = sup 1 (l, eil.' eitl.x ) 1 

IEL 
;.'ES 

= sup I(l, ei)·"x) 1 

lEI. 
.l"eS 

= y(x), (4.50) 

and any A generating an isometric group must be v-Hermitian. Since 
5 C H(y) and H(y) = D(y) by (4.49). it follows from Theorem 3.1 that 
App(5) C H(y). It remains to show that H(y) C App(5). We note that 
if 5 generates just one equivalence class then by (4.49) H(y) consists of real 
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multiples of the identity and thus H(y) C (S) C App(S). Accordingly, 
we can assume that the number 7:, of equivalence classes, is at least 2. We 
shall show that if h' ¢'. App(S) then h' ¢'. H(y). We may restrict attention 
to an h' satisfying (4.49), since if (4.49) fails, then h' ¢'. H(y). Thus let h' be 
the diagonal matrix (hI'" . . , hn ') where h/ = h;' if i "-' i . If h' ¢'. App(S), 
there exists a b > ° and atE R such that for any A E S, 

IIA - th'll ?:: b. (4.51) 

Since (4.51) cannot be satisfied with t = 0, if we show that h = th' ¢'. H(y), 
it will follow that h' ¢'. H(y). 

From each equivalence class Cr choose an integer ir and let 

Then for any A E S, 

and 

'I' (x) = sup I(l, e2"o.x)l. 
IEL 
AES 

(4 .52) 

(4.53) 

As was noted in the proof of Theorem 3.2, the norm of x will be unaffected 
by taking the supremum over those A E S having Ail = hil . 

If l = """ I y.e.' and y. = 1 then ~J= ~ l II 1 

I(l, e2niAx)1 ~ 27: + 2 + 7: - 2 = 37:, 

since Yi, = 2 for at most one class Cr with r =1= 1. However, if Yi
l 

= 2, then 
from the triangle inequality, 

So the norm y(x) can be determined by using only functionals in L with 
Yil = 2. Suppose l is within this restricted class and that A is an arbitrary 
element of S normalize<i so that Ail = hil · Since, in (4.53), I(Aik - hi k) mod 11 
?:: b for some k ?:: 2, I(l, e2niAx) I has the form 
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where 0 .:::;;; r .:::;;; 1, b .:::;;; 101 .:::;;; t and lail .:::;;; 1 for 3 .:::;;; i .:::;;;.. Hence, using 
the fact that (ex2 - /J)1I2 .:::;;; ex - /Jj(2ex) for positive ex and /J, we find 

l(l, e2"iAx )1 .:::;;; (16.2 + 8. cos 2nb + 1)112 + • - 2 

.:::;;; [(4. + 1)2 - 8.(1 - cos 2nb)Jl/2 + • - 2 

~ 4 1 8.(1 - cos 2nb) 2 
"" • + - 8. + 2 + • -
= 5 _ 1 _ 8.(1 - cos 2nb) 

• 8.+2 

and consequently y(x) is strictly less than 5. - 1. 
If h were y-Hermitian, theny(e21tiltx) would equal y(x). However, e2"iltx = 

2.ei 1 + ~;=2eir' soiflELhasYi, = 2 andYir = lforr?: 2, then I(l, e21tiltx) I = 
5. - 1 from whichitfollowsthat'J1(e2niltx) ?: 5. - 1. Consequently, h¢H(y) 
and the proof of Theorem 4.7 is complete. 

THEOREM 4.54. Let 5 be a subset of D. Then there exists a norm y on en 
such that 5 = H(y) if and only if IE 5 and 5 is a subspace of D with a 
rational basis. 

Proof. The "only if" portion is the same as that of Theorem 3.3. In 
the other direction, one obtains 5 = App 5 and the desired norm is that 
given in Theorem 4.7. 

While one does not need such an elaborate norm construction to obtain 
the following result, it follows immediately from Theorem 4.7. 

COROLLARY 4.55. For any positive n E 71.. There exists a norm y on 
en such that 

H(y) = {hlh = exI, ex real}. 

Proof. In Theorem 4.7 let 5 be the span of I. 

In the next section we will strengthen this last result. 

5. NORMS WITH TRIVIAL HERMITIANS 

Recalling that N 1 = N 1 (n) is a metric space of norms in en, we can 
strengthen Corollary 4.55 as follows: 
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THEOREM 5.1. For each positive n E 71., the norms in N1(n) which permit 
only real multiples of the identity as Hermitians are dense in N1(n). 

Proof. Since the result is clearly true for n = 1, we may suppose 
n ~ 2. Let 1] be a norm in N(n). By Theorem 1.7 there is a basis {ei} 
for en which is double dual with respect to 1], and we use this basis for 
the rest of the proof. Without loss of generality, we assume that the {ei } 

are the canonical unit vectors. 
Let Ve = iv/ where v/ denotes the norm (4.3) in the case that 5 is 

the span of I and 0 < 8 < t is the number entering in the description of 
the space L of functionals. Since A E 5 has the form r:J.' I for r:J. E R, the 
expression I(l, eiAx)1 equals I(l, x)1 and thus 

Vc(X) = isup I(l, x)l · (5.2) 
leL 

As 5 gives rise to just one equivalence class C1 consisting of the integers 

{I, 2, ... , n}, if x = ~;=l r:J.iei then 

Vc(x) = i sup 12r:J.i ± 28r:J.;1 
l~i,j:;::;n 

i"l'j 

= sup lr:J.i ± 8r:J.;1 · 
l~i,j~n 

i"l'j 

(5.3) 

If I' 100 denotes the loo norm with respect to the basis {ei}, then ve(x) ~ 
(1 + 8) Ixloo with equality occurring for x = el + e2' 

By Lemma 1.8, the norm 1] satisfies Ixloo ~ 1] (x) , where Ixloo is with 
respect to the double dual basis {ei}' Now we define the norm Pc by 

Since 

Pc(x) = sup(1](x), (1 + 8)V.(X)). 

1](X) ~ sup(1](x), (1 + 8)Ve (X)) 

~ sup(1](x), (1 + 8)2lxI00) 

~ sup(1](x), (1 + 8)21](X)) 

= (1 + 8)21](X), 

(5.4) 

we obtain 1](x)/ Pe(x) ~ 1 and Pe(x)/1](x) ~ (1 + 8)2 for all x, or, using the 
semi-metric introduced in Definition 1.9, 
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d ('I'] , Pel ~ 2 log(1 + s) ~ 2s. (5.5) 

If we now show that Pe allows only multiples of the identity as Hermitian 
elements, the density of such norms in N(n), and consequently in Nl(n), 
follows from (5.5). 

Since 'I'] (ei) = 'Ve(ei) = 1 for each basis vector ei, the norm (1 + s)'Ve in 
(5.4) is active at each basis vector (d. Definition 1.4). Then from Lemmas 
1.3 and 1.5 it follows that there is a Euclidean neighborhood U i of each 
basis vector ei so that if x E U i and y Ilx with respect to 'Ve (or equivalently 
(1 + s)'Ve) then yl Ix with respect to ,Lte' Butfor any pair of indices 1 ~ i, j ~ n, 
i '1= j, the neighborhood Ui contains vectors x± = zlei ± z2e; where Zl> Z2 
satisfy (4.8). As vector operations are continuous, Zl can be allowed to 
vary in an open subset U' C U, where U was described in connection with 
(4.8). But with II E L as described before (4.8), llllx+ with respect to 'Ve. 
Likewise l211x_ where l2 differs from II only in having s replaced by - s. 
Then the equations (4.42) through (4.48) are valid if h is ape-Hermitian 
matrix, forcing h to be a real multiple of the identity. 

The remainder of this section is aimed at showing the openness of the 
set of norms admitting only trivial Hermitians. 

Remarks on Convexity 5.6. If y is a linear functional and c is a real 
number the set 

A = {x E enIRe(y, x) = c} 

is an affine hyperplane. If en is regarded as a 2n-dimensionallinear space 
over the real numbers, then A has co dimension one. If K is a convex set 
III en one says that A is a supporting hyperplane for K at Xo if 

(1) Re(y, xo) = c 

and either 

(2) x E K ~ Re(y, x) ~ c 

or 

(2') xEK ~ Re(y, x) ~ c 

are satisfied. Suppose K is a convex set which is balanced; that is, has the 
property that x E K implies ei8x E K for all real e. Then if K is supported 
by a hyperplane A at Xo (in the sense of (1) and (2) above) the condition 
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Re(y, xo) = c implies (y, xo) = c. 
Re(y, ei6xO) > c for a suitable e. 

Otherwise one could obtain 

If p is a norm on en we let 

Kp = {x E Plp(x) ~ I}. 

Clearly Kp is balanced and from the foregoing discussion one easily derives 
the known result that given x with /-t(x) = 1, one has Yllx with respect 
to p if and only if {xIRe(y, x) = I} is a supporting hyperplane for Kp at x. 

LEMMA 5.7. Let Po be a norm and suppose Yollxo with respect to Po. 
Then, given E. > 0, there is a a> Osuch that if p is a norm and d(p, /-to) < a, 
there are vectors x, y satisfying X(x - xo) < e, X(y - Yo) < e, and yllx with 
respect to p. 

Recall that X is the Euclidean norm. 

Proof. We use the canonical basis {ei} for en so that with x = 
L rxiei and y = L fJh (y, x) = L rxJ3i and (x, x) = X2(x). 

Suppose that Yollxo with respect to po and that po(xo) = POD(yO) = 1. 
We let 

where 0 ~ W < WI < 1 and WI is chosen so that the ball B "'1 does not contain 
x = O. Since Yo is dual to Xo, we have Re(yo, x) ~ 1 for each x in the 
unit ball Kpo' Ifx E Kpo n B", and we write x = Xo + e, then Re(yo, e) ~ O. 
Since X(x - Xo - Yo) ~ (1 + w)X(Yo), we have 

yielding 

or 

(1 + W)2X2(yO) ~ X2(x - Xo - Yo) 

= (e - Yo, e - Yo) 

= (e, e) - 2 Re(yo, e) + (Yo, Yo) 

~ x2(e) + X2(yo), 

(5.8) 
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Since 0 ~ B"'l' an intermediate value theorem allows one to choose 0 < 
~ < 1 so that, letting Xl = (1 - ~)xo, the equality X(XI - Xo - Yo) = 

(1 + WI)X(YO) holds and hence, Xl E B"'l' Now, with 0 < 0 < ~!2 we let p 
be any norm satisfyingd(p, Po) < o with p normalized so that sup Poly)! p(y) 
= 1. Recalling the definition of d(p, Po), we see that p(x) ~ e6 Po(x) for any 
X and consequently 

P(XI) = p((1 - ~)xo) 

~ e6po((1 - ~)xo) 

~ e~/2(1 - ~) 

~l. 

We now have Xl E K" n B"'l and we have normalized p so that K" c:::; K"o' 
As a consequence of inequality (5.8) with W = 0, one sees that the Euclidean 
distance from Xo + Yo to the set K"o is precisely the distance from Xo + Yo 
to xo; that is, X(Yo). Since K" c:::; K"o' the distance from Xo + Yo to K" 
must be (1 + W2)X(YO) for some 0 ~ W2 ~ WI and it is a standard result 
that the minimum distance is achieved at a unique point which we call 
X2' It is known (d. [15, p. 98J) that there is a hyperplane which is support­
ing for both B"" and K" at their common point X2' Since the ball B"" has 
a unique supporting hyperplane at X2: 

with YI = Xo + Yo - X2 and c = Re(Yl> X2), it must be a supporting 
hyperplane for K". Denoting C-IYI by Y2 we have P(X2) = 1, (Y2, X2) = 

Re(Y2' X2) = 1 and pD(Y2) = 1, so Y2 and X2 are dual with respect to p. 
It remains to be seen how far they are from Yo and Xo, respectively. 

Recall that 0 depended upon ~, and ~, in tum, upon WI' Since X2 is in 
B"" n K"o' X(X2 - xo) < (3W)I/2X(Yol. using (5.8). In terms of X2 - Xo we 
have 

X(Y2 - Yo) = X (! YI - yo) 

=X(! ((xo+YO)-X2)-YO) 

= X (Re(yo _ (X2 _ X:), (X2 _ xo) + xo) (Yo - (X2 - xo)) - Yo). 
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Since Re(yo, xo) = 1, one easily sees that by choosing WI> 0 sufficiently 
small one can make X(X2 - xo) < e and X(Y2 - Yo) < e. The value () arising 
from the choice of WI, and the dual vectors x = X2 and Y = Y2 then serve 
for the conclusion of the lemma. 

DEFINITION 5.9. Let (X, d) be a metric space and let !I' be the collection 
of subspaces of a normed linear space V. We say that a map m from X to !I' 
is upper semi-continuous if the two conditions 

(1) Xk E X (k = 1,2, ... ) and Xk converges to x, 
(2) Vk E V, Vk E m(xk)' and Vk converges to v, 

imply that v E m(x). 

In the following we identify the space ICnn of n X n complex matrices 
with the Euclidean space ICn' and let !I' be the collection of subspaces of ICnn. 

THEOREM 5.10. The map H on NI taking a norm v to H(v) C ICnn is 
upper semi-continuous. 

Proof. Suppose pdk = 1, 2, ... ) is a sequence of norms converging 
to p, that hk is Hermitian with respect to Pk, and that hk converges to 
hE ICnn. We must show that hE H(p) . We have a continuous map of 
ICn X ICnn X ICn (with the product topology) into IC defined by taking 
(y, g, x) to (y, gx). Given hE IC"", from above, and Yollxo with respect 
to p, let (Yo, hxo) = z. If, for some dual pair (Yo, xo), z is not real, then 
there exists an ~ > 0 so that the disc D~ = {w E Cllw - zl < ~} contains 
no real number. By the continuity of the expression (y, gx), there is an 
e > 0 so that X(Y - Yo) < e, X(x - xo) < e, and X(g - h) < e imply 
(y, gx) E D~. But using the hypotheses of the theorem together with the 
previous lemma, we can find an integer k and vectors Yk, Xk so that 
X(hk - h) < e, X(Xk - xo) < e, X(Yk - Yo) < e, and Ykllxk with respect to 
Pk' Then (Yk' h~k) E D~ and is also real, a contradiction. Hence z is real 
for each dual pair (Yo, xo) and h is in H(p). 

THEOREM 5.11. The set 

c = {p E N I I3h E H(p), h :f rd, IX E ~} 

is closed in N l' 

Proof. Suppose that Pm E C (m = 1, 2, ... ) and that d(Pm' p) -70 as 
m -700 for some p E N I . By hypothesis, each space H(Pm) contains a 
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Hermitian element hm which is not a real multiple of I. With (', .) 
denoting the en' inner product we may assume that (hm' I) = 0 and 
(hm' hm) = X2(hm) = 1. Let 

T = {g E ennlx(g - rx.J) < t, for some IX E /R} 

and 

B = {g E ennlx(g) ~ 2}. 

The set B - T contains hm for each integer m and, as B - T is compact, 
we may assume without loss of generality that the matrices hm converge 
as m ->- 00 to some hE B - T. Using Theorem 5.10 we see that hE H(p), 
and as h ¢= T it follows that p E C. 

THEOREM 5.12. The set 01 norms 

is a dense, open subset 01 N l ' 

Prool. The result is immediate from Theorem 5.1 and Theorem 5.11. 

APPENDIX 

We use the notation introduced in Section 2 and in addition let /Rnm 
and 7l.nm denote the spaces of matrices having real and integral entries, 
respectively, and having n rows and m columns. If L E /Rnp and M E /Rnm, 
then [L, MJ will denote the element of /Rn,m+p obtained by situating 
L to the left of M. Similarly, if L E /Rpm and M E /Rnm then we denote by 

[~J the element of /Rn+p,m obtained by situating Labove M . 

The four theorems stated below are all concerned with simultaneous 
diophantine approximation. The first three can be found in the references 
cited, but it is the fourth version we require and, while the result may be 
known to workers in number theory, we could find no reference for it. 
We thought it would be worthwhile to give all four theorems and show 
how each can be obtained starting with a restatement of the Perron result. 
(Perron states the result in terms of the rank and rational rank of the 
matrix M.) By /Rn we denote both the space of row and column n-tuples 
with real elements; the context indicates which is intended. 
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THEOREM I (Perron [11, Theorem 63, p. 153, 1st edition, or Theorem 
64, p. 159, 4th editionJ). The following two statemen.ts are equivalent for a 
given a E [Rn and M E [Rnm: 

AI. For each 6> 0 there is a q E z.m such that IMq - al oo < 6. 
Bl. For any fJ E [Rn, 

(1) fJM = 0 E [Rm =;> fJa = 0 E R 

and 

(2) fJM E 7l.m =;> fJa E 7l.. 

THEOREM II (Cassels [5, p . 53J, Koksma [9, p. 83J). Given a E [Rn and 
M E [Rnm the following are equivalent: 

A2. For each 6 > 0 there is a q E 7l.m such that 11M q - all < 6. 
B2. For any fJ E 7l.n , fJM E 7l.m =;> fJa E 7l.. 

Proof. (Assuming Theorem I). 
A2 =;> B2. Suppose fJ E 7l.n and fJM E 7l.m . Statement A2 says that for 

any given 6 > 0 there is a q E 7l.m , a vector z E 7l.n , and a vector p E [Rn with 

Iploo < 6 such that 

Mq = a + p + z. 
Then 

fJM q = fJa + fJp + fJz. 

Since the terms fJMq and fJz are integers and since IfJploo < IfJloon6, we 
can make IfJploo arbitrarily small by choosing 6 > 0 small. Thus the 
number fJa, which is independent of 6, must be an integer. 

B2 =;> A2. Now suppose that B2 is satisfied and let [1, MJ = K be 
in [Rn.m+n. Clearly fJK = 0 only if fJ = 0, so BI, Part (1) is satisfied. If 
fJ E [Rn and .fJK E 7l.m +n , then fJ E 7l.n and fJM E 7l. m which, by B2, implies 
fJa E 7l.. We have verified BI and hence Al holds. That is, there is a 
q E 7l. m +n such that IKq - al oo < 6. Otherwise stated, Mq = a + p - q 
where Iploo < 6. But then IIMq - all < 6, showing that A2 is satisfied. 

THEOREM III (Koksma [9, p. 83J). Given a E [Rn and ME [Rnm, the 
following are equivalent: 

A3. For each 6> 0 there is an x E [Rm such that IIMx - all < 6. 
B3. For any fJ E lLn , fJM = 0 E 7l.m =;> fJa E 7l.. 
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Proof. (Using Theorem II). 
A3 =:> B3. The proof is similar to that above, except that in this 

case fJMx is the integer O. 
B3 =:> A3. Suppose that B3 holds and that M has the special form 

M = [n 
where I is m X m and L is in IRn-m.m (note that in this case n ~ m). Write 

IX in the form [::] where IXI E [Rm and 1X2 E [Rn-m. Let y be in 7L n- m and 

suppose yL E 7L m . Let fJ = [- yL, yJ be the n-tuple having its first m 
entries equal to those of - yL and the last n - m equal to those of y. By 
assumption, fJ E 7Ln and fJM = - yLI + yL = 0 E 7L m . Since we are 
assuming B3, we must have fJlX = - yL1X1 + YIX2 E 7L. Now, assuming 
that y E 7Ln - m and that yL E 7L m we have shown that Y(1X2 - LIXI) E 7L. Thus 
B2 holds for the matrix L and the vector 1X2 - LIXI E IRn-m. Hence A2 
holds for the same pair. That is, for each 8 > 0 there is a q E 7Lm such that 
IILq - (1X2 - LIXI) II < 8 or letting x = q + lXI, IILx - 1X211 < 8. But 
IIIx - IXIII = Ilq + IXI - IXIII = O. Hence IIMx - IXII < 8. This completes 
the proof in the case that 

Suppose that M has rank m (and so n ~ m). Then by reordering rows, 
if necessary one can assume that 

where Ml is a nonsingular m X m matrix and M z is (n - m) X m. Write 

M as [~] MI where L = MzMI-I. We are supposing that fJ E 7L n and 

fJM = 0 E 7L m together imply fJlX = O. If fJ E 7L n and 

then fJM = 0 and hence fJlX = O. According to what was proved in the 
special case above, given 8 > 0, there is ayE [Rm such that 
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II[~] y - all < s. 

Letting x = M 1-ly one has IIMx - all < s. This completes the proof 
in the case that rank M = m. 

Finally suppose M has rank k < m (this includes the case n < m). 
By a permutation of rows and columns, if necessary, we can assume M is 
partitioned as 

M = [Mu M12] 
M21 M22 

where Mll is a k X k nonsingular matrix. We can then write 

M = [Mll O]'M 
M21 0 

where M E ~mm is nonsingular. Suppose that fJ E lL.n and 

fJ[Mll] =0. 
M21 

Then fJM = 0 E lL. m and, as we are assuming B3, fJa E lL.. Then from the 
previously established case, there is a WI E ~k such that 

We let w be the vector in ~m having its first k entries those of wI and the 
remaining ones zero. Then 

and letting x = M-IW we have IIMx - all < s. 

THEOREM IV. Given a E ~n and M E ~nm, the following are equivalent: 
A4. For each s > 0 and each real t, there is an x E ~m such that 

IIMx - tall < s. 
B4. For any fJ E IOn, fJM = 0 in lL.m ~ fJa = O. 

Proof. (Using Theorem III). 
A4 ~ B4. Suppose A4 holds, and for a fixed fJ E Qm, fJM = O. Then 

for some integer p, PfJ E lL.m and PfJM = O. Choose a non-zero t so that 
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Ip,8tlXl < l Then given B such that 0 < 2Pnl,8looB < 1, there is an x such 
that Mx = tlX + Z +,u where Z E 71. n and l,ul oo < B. Hence 0 = p,8Mx = 
P,8tlX + p,8z + p,8,u, and so /P,8zl ~ Ip,8tIXl + Ip,8,u1 ~ i + pnl,8looB < l. 
Since p,8z E 71., we obtain p,8z = O. Thus IP,8tlXl = Ip,8,u1 ~ pnl,8looB. Since 
B can be chosen arbitrarily small, it follows that ,81X = O. 

B4 ~ A4. Assuming B4, we see that ,8 E 71. m and,8M = 0 E 71. m together 
imply that ,8tlX = 0 E 71.; for every t E R Hence B3 holds with IX replaced 
by tlX, for t E IR.. The implication (B3 ~ A3) now yields A4. 

We wish to thank B. D. Saunders for his comments on a draft of this 
paper. 
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