Matrices Hermitian for an Absolute Norm

HANS SCHNEIDER and ROBERT E. L. TURNER t

Department of Mathematics, University of Wisconsin, Madison WI, 53706, U.S.A.

(Received January 6, 1972)

Let v be a (standardized) absolute norm on C_n . A matrix *H* in C_{nn} is called norm-Hermitian if the numerical range $V(H)$ determined by v is real. Let $\dddot{\mathcal{X}}$ be the set of all norm-Hermitians in C_{nn} . We determine an equivalence relation \sim on $\{1, \ldots, n\}$ with the following property: Let $H \in \mathcal{C}_{nn}$. Then $H \in \mathcal{X}$ if and only if H is Hermitian and $h_{ij} = 0$ if $i \neq j$. Let $j = M + iN$. Then j is a subalgebra of C_{nn} and, for $A \in \mathcal{J}$, $V(A)$ equals the Euclidean numerical range and hence is convex. Let V' be the group of isometries for *v*, and let $\mathcal{U} = \{ \exp(iH) : H \in \mathcal{H} \}$. Then \mathcal{U} is a normal subgroup of $\mathscr V$ and $\mathscr V = \mathscr{UD}$, where $\mathscr P$ is a group of permutation matrices.

• For an operator, the concept of the numerical range (field of values) with respect to a norm on the under1ying space was introduced independently by Lumer [5] and Bauer [1]. By now there are many interesting applications (cf. Bonsall and Duncan $[3]$); some of the most fascinating concern norm-Hermitian operators-operators whose numerical range is real. In this paper we consider a special but not unimportant case: (1) Our space will be C_n , the complex *n*-tuples-concretely given; and (2) We shall consider a norm v which depends only on the absolute values of the coordinates of $x \in C_n$. Such norms are called absolute (cf. Bauer, Stoer, WitzgaIl [2], and Bauer [1]). For the sake of convenience we shall also standardize v so that $v(e^i) = 1$, for all canonical basis vectors e^{t} in C_n .

Our main results are these:

We show that it is possible to determine an equivalence relation \sim on $\{1, \ldots, n\}$ such that a matrix *H* in C_{nn} is norm-Hermitian if and only if H is Hermitian,[†] and $h_{ij} = 0$ if $i \sim j$ (theorem (6.2)). If \mathcal{H} is the set of

t The research of one of the authors was supported in part by NSF Grant GP-17815.

 \ddagger We shall always use the term Hermitian matrix *H* in the traditional sense: $h_{ij} = \hbar_{jk}$, $i, j = 1, ..., n$. A matrix with real numerical range will be called norm-Hermitian of v-Hermitian.

norm-Hermitian matrices and $\mathcal{J} = \mathcal{H} + i\mathcal{H}$, then \mathcal{I} is a subalgebra of C_{max} and for each $A \in \mathcal{J}$, the numerical range $V(A)$ equals the Euclidean numerical range. Hence $V(A)$ is convex for all $A \in \mathcal{J}$ (theorems (6.3) and (6.4)). Let v^0 be the operator norm associated with v. We also show that $v^{\circ}(A) = \chi^{\circ}(A)$, for all $A \in \mathcal{J}$, where χ is the Euclidean norm on C_n (6.5). It is well known that, for $H \in \mathcal{H}$, exp(iH) is a v-isometry on C_n . By use of our characterization of norm-Hermitian matrices, we show that the set $\mathcal U$ of all v-isometries of the form $exp(iH)$, $H \in \mathcal{H}$, forms a normal subgroup of the group $\mathscr V$ of all v-isometries, and that $\mathscr V/\mathscr U$ is finite. More precisely, there is a group $\mathscr P$ of v-isometries which are also permutation matrices such that for each $V \in \mathscr{V}$ there exist unique $U \in \mathscr{U}$, $P \in \mathscr{P}$ such that $V = UP$ (7.3, 7.7, 7.8).

While the absoluteness of the norm v plays an essential role in our results, the standardization $v(e') = 1$, $i = 1, ..., n$ is a matter of convenience. Thus, a simple modification of our results will make them applicable to all absolute norms. In the case of our main theorems, we give them also in this more general form.

.,

•

NOTATIONS AND DEFINITIONS

1.1 Coordinate subspaces

Let C be the complex field, R the real field, $R⁺$ the set of nonnegative numbers. We put

$$
C_n = \{x = (x_1, \ldots, x_n): x_i \in C\}
$$

and define R_n , R_n^+ analogously. By e^i , $i = 1, ..., n$ we denote the vector in C_n (or R_n) defined by $e_i^i = 1$, $e_i^i = 0$ otherwise. We call e_i^i a unit vector. A coordinate subspace of C_n (or R_n) is the space spanned by a set of unit vectors.

1.2 Norms

On C_n (or on any coordinate subspace of C_n), χ will denote the Euclidean **norm**

$$
\chi(x) = (|x_1|^2 + \cdots + |x_n|^2)^{\frac{1}{2}}.
$$

If $x \in C_n$, then $|x| = (|x_1|, \ldots, |x_n|) \in R_n^+$. A norm on C_n is (as usual) a function ν of C_n into R^+ such that

i) $v(x) = 0$ if and only if $x = 0$,

- ii) $v(x + z) \le v(x) + v(z)$
- iii) $v(\alpha x) = |\alpha| v(x)$, for $\alpha \in C$.

A norm v is called *absolute* if. in addition.

iv) $v(x) = v(|x|)$, all $x \in C_n$,

and *standardized* if

v) $v(e^i) = 1, i = 1, ..., n$.

Unless otherwise stated, v will always denote a *standardized absolute* norm.

We also make the following conventions. If $x \in C_n$, then x_i is the *i*th coordinate of *x*. On the other hand, if C_n is split as the direct sum of coordinate subspaces: $C_n = E_1 \oplus \cdots \oplus E_r$, $x_{(i)}$ will denote the component of *x* in E_i . If dim $E_i = m$, then $x_{(i)} \in C_m$, and we therefore write

$$
x = x_{(1)} \oplus \cdots \oplus x_{(r)}
$$

(rather than $x = x_{(1)} + \cdots + x_{(r)}$).

1.3 Dual norms and numerical ranges of matrices

For $x, y \in C_n$, we put

$$
\langle y, x \rangle = \overline{y}_1 x_1 + \cdots + \overline{y}_n x_n.
$$

If ν is a norm on C_n , so is ν^p :

$$
v^{D}(y) = \sup_{x \neq 0} \frac{|\langle y, x \rangle|}{v(x)}.
$$

If v is absolute, so is v^D (cf. [2]), and it is easy to see that if v is standardized absolute, so is v^D .

If $x, y \in C_n$, and $1 = \langle y, x \rangle = y^p(y)y(x)$, then *y* is called dual to *x*; we write y||x. It is well known that for each $x \in C_n$, $x \neq 0$, there is at least one $y \in C_n$ such that $y||x$, and for each $y \in C_n$, $y \neq 0$, there is an $x \in C_n$ such that ν llx.

By C_{nn} we denote the set of all $(n \times n)$ matrices over C. The *numerical range* $V(A)$ *for* $A \in C_{nn}$ *is defined by*

$$
V(A) = \{\langle y, Ax \rangle : x, y \in C_n \text{ and } y || x \}.
$$

If $V(A)$ is real, then A is called *norm-Hermitian* or *v-Hermitian*.

2

2.1

I ·

DEFINITION Let *v* be a standardized absolute norm C_n , On $\{1, 2, ..., n\}$ we *define a relation* \sim *thus:* $i \sim j$ *if for all* $x, y \in C_n$ *such that*

 $|x_i|^2 + |x_j|^2 = |y_i|^2 + |y_j|^2$, and $|x_k| = |y_k|$, for $k \neq i, j$, we have $v(x) = v(y)$.

2.2

LEMMA *The relation* \sim *is an equivalence relation on* $\{1, 2, ..., n\}$.

Proof Since v is absolute, $i \sim i$ for $e^{i\theta}$ $i = 1, 2, ..., n$. Clearly, $i \sim j$ implies that $j \sim i$. Suppose that *h, i, j* are distinct integers with $h \sim i$ and $i \sim j$. For $x \in C_{\rm at}$ define \tilde{x} by $\tilde{x}_h = \tilde{x}_j = 0$, $\tilde{x}_t = (|x_h|^2 + |x_i|^2 + |x_i|^2)^{\frac{1}{2}}$ and $\tilde{x}_k = |x_k|$ for $k \neq h, i, j$. It is easy to see that $v(x) = v(\tilde{x})$. Now suppose that $x, y \in C_n$, and $|x_h|^2 + |x_i|^2 = |y_h|^2 + |y_i|^2$, and $|x_k| = |y_k|$ for $k \neq h, j$. Then $|x_h|^2 + |x_i|^2 + |x_i|^2 = |y_h|^2 + |y_i|^2 + |y_k|^2$ whence $\tilde{x} = \tilde{y}$. Thus $\nu(x) = \nu(\tilde{x}) = \nu(\tilde{y}) = \nu(y)$. It follows that $h \sim j$.

2.3

LEMMA *Let v be a standardized absolute norm on* C_n *. Let* N_1, \ldots, N_r be the *equivalence classes in* $\{1, \ldots, n\}$ *given by* \sim *. Let E_k be the coordinate subspace spanned by the vectors e^t with* $i \in N_k$, *and write* $x \in C_n$ *as* $x = x_{(1)} \oplus \cdots \oplus x_{(n)}$ *where* $x_{(k)} \in E_k$. *Then there is a standardized absolute norm* μ *on C_r such that* $v(x) = \mu(\chi(x_{(1)}), \ldots, \chi(x_{(r)})).$

Proof Let us suppose that $N_1 = \{1, ..., s\}$ (to save writing). Put $x^{(1)} = 0 \oplus x_{(2)} \oplus \cdots \oplus x_{(r)}$. Then

$$
v(x) = v\left(\sum_{i=1}^{3} x_i e^t + x^{(1)}\right)
$$

= $v\left((|x_1|^2 + |x_2|^2)^{\frac{1}{2}} e^1 + \sum_{i=3}^{3} x_i e^i + x^{(1)}\right) \cdots$
= $v(\chi(x_{(1)}) e^1 + x^{(1)})$.

After repetitions of this argument, we have

$$
v(x) = v(\chi(x_{(1)})e^{J_1} + \cdots + \chi(x_{(r)})e^{J_r}),
$$

where $j_i \in N_i$, $i = 1, ..., r$. So, for $\alpha \in C_r$, we define $\mu(\alpha) = \nu \left(\sum_{k=1}^r \alpha_k e^{J_k} \right)$.

$$
\mu(\alpha) = \nu \bigg(\sum_{k=1}^r \alpha_k e^{J_k} \bigg).
$$

Then $v(x) = \mu(\chi(x_{(1)}), \ldots, \chi(x_{(r)}))$. It is easily verified that μ is a standardized absolute norm on C_r .

2.4

COROLLARY Let $U \in C_{nn}$ be a unitary matrix such that $u_{ij} = 0$ if $i \sim j$. *Then U is a v-isometry* (i.e., $v(Ux) = v(x)$ for all $x \in C_n$).

Proof We may write

 $U = U_1 \oplus \cdots \oplus U_r$, where U_i is a unitary matrix on E_i , $i = 1, \ldots, r$. Since $\chi(U_i x_{(i)}) = \chi(x_{(i)})$, $i = 1, \ldots, r$, we have

$$
v(x) = \mu(\chi(x_{(1)}), \ldots, \chi(x_{(r)})) = \mu(\chi(U_1x_{(1)}), \ldots, \chi(U_rx_{(r)}) = v(Ux).
$$

2.5

 ϵ

COROLLARY *If* $i \sim j$ *for all* $i, j \in (1, ..., n)$, then $\nu = \chi$.

Proof In this case $x_{(1)} = x \in C_n$, and so by (2.3) and since μ is standardized, $v(x) = \mu(\gamma(x)) = \gamma(x)$.

3

In this section we shall explore the geometric significance of the equivalence relation introduced in Section 2. We begin with a simple geometric lemma on real 2·space.

If *K* is a convex body in R_2 , denote its boundary by ∂K , and put $K^+ = K \cap R_2^+$.

3.1

LEMMA *Let K be a convex body in R₂ such that* $0 \in K$, $(1, 0) \in \partial K$ and $(0, 1) \in \partial K$. Then there exists $a P = (x_1, x_2) \in \partial K$ with $x_1 > 0$, $x_2 > 0$ such *that the perpendicular I to OP throughP is a support line to K.*

Proof For each θ , $0 \le \theta \le \pi/2$, let $r(\theta) \in (\cos \theta, \sin \theta) \in \partial K$. Then *r* is nonzero and continuous in $[0, \pi/2]$. Hence r attains its maximum *M* and its minimum *m* in that interval, and $0 < m \leq 1 \leq M$.

We consider three cases (which overlap).

Case 1 $m = 1 = M$.

In this case K^+ is a quarter circle. If P is any point on the boundary, the perpendicular l through P is a support line to K .

Case 2 1 < *M*, say $r(\theta_0) = M$. Clearly $0 < \theta_0 < \pi/2$. Thus K^+ is contained in the circle center O, radius M. If $P = r(\theta_0)(\cos \theta_0, \sin \theta_0)$, then I is a support line.

Case 3 $m < 1$, say $r(\theta_1) = m$. Again $0 < \theta_1 < \pi/2$. Let

 $P = r(\theta_1)(\cos \theta_1, \sin \theta_1),$

and I the perpendicular to *OP* at *P.* We claim that I is the (only) support line to K at P. Suppose l is not a support line to K at P. Then there exists a support line *I'* at *P*, and *I'* is not perpendicular to *OP*. Since $(1, 0) \in K$, $(0, 1) \in K$, and $|OP| = m < 1$, the slope of *l'* is negative. Hence the perpendicular to ℓ' from $\mathcal O$ meets ℓ' is a point $\mathcal O$ in the first quadrant. Clearly $|OQ|$ < $|OP|$. Since Q is either on the boundary of K or in the exterior of K, there is a point $R = r(\theta_2)(\cos \theta_2, \sin \theta_2)$, $0 < \theta_2 < \pi/2$ on OQ which is on the boundary of K . Thus

$$
r(\theta_2)=|OR|\leqslant |OQ|<|OP|=m,
$$

a contradiction.

The lemma is proved.

3.2

COROLLARY Let κ be a standardized absolute norm on C_2 . Then there exists *an* $x \in R_7^+$, with $x_1 > 0$ *and* $x_2 > 0$ *such that* $\langle x, x \rangle^{-1}x ||x$.

Proof Let $K = \{x \in R_2 : \kappa(x) \leq 1\}$. Then *K* is convex and satisfies the conditions of (3.1). Let $P = x$, where $x_1 > 0$, $x_2 > 0$, be a point such that the perpendicular I through P to OP is a support line to K . Then for all $z \in R_2^+$, we have $\langle x, z \rangle \leq \langle x, x \rangle \kappa(z)$. Since κ is absolute, it follows that $|\langle x, z \rangle| \leq \langle x, x \rangle \kappa(z)$ for all $z \in C_2$. Hence $\kappa^p(x) = \langle x, x \rangle$, and $\langle x, x \rangle^{-1}x | x$.

3.3

DEFINITIONS 1) Let $1 \leq i, j \leq n$; $i \neq j$. In the rest of this section, we shall *write* $E' = \text{span}\{e^i, e^j\}$, $E'' = \text{span}\{e^k; k \neq i, j\}$. For $x \in C_n$, we shall put $x = x' \oplus x''$, where $x' \in E'$, $x'' \in E''$. Also $x' = (x_1, x_1)$, and we shall identify x'' and $0 \oplus x''$, where $0 \in E'$.

2) Let
$$
K = \{x \in C_n : v(x) \le 1\}
$$
, If $x'' \in E''$ and $v(x'') \le 1$, we put

$$
K_{x''} = \{x' \in E' : v(x' \oplus x'') \le 1\}.
$$

We call K_{r^{}} a section of K. Suppose that* $x'' \in E''$ *and* $v(x'') \le 1$. Let $\kappa_{x''}$ be *the mapping of E' into* $R^+ \cup \{\infty\}$ *defined by*

$$
\kappa_{x''}(x') = \inf \left(\alpha > 0; \frac{1}{\alpha} x' \in K_{x''} \right).
$$

(Thus $\kappa_{x''}(x') = \infty$ *if* $\beta x' \in K_{x''}$ *and* $\beta \geq 0$ *imply that* $\beta = 0$ *.)*

3) We shall call K_{τ} *^{<i>e*} circular *if there is a nonnegative r such that*

$$
K_{x''} = \{(x_i, x_j) : |x_i|^2 + |x_j|^2 \leq r^2\}.
$$

4) Let $x = x' \oplus x''$, $y = y' \oplus y''$ *be elements of* C_n . We shall write $y|x$ if a) $y \parallel x$,

and

b) *There is a positive d such that* $y' = dx'$.

 3.4

LEMMA Let $x'' \in E''$ with $v(x'') \leq 1$. Then

- 1) $K_{x''}$ is a convex body in E' with $0 \in K_{x''}$.
- 2) $x' \in K_{x''}$ if and only if $|x'| \in K_{x''}$.
- 3) If $v(x'')$ < 1, then $0 \in \text{int } K_{r''}$.
- 4) If $v(x'')$ < 1, then $\kappa_{x''}$ is an absolute norm on E' and is standardized if $x'' = 0.$

Proof 1) Clearly $0 \in K_{x''}$ since $v(0 \oplus x'') \le 1$. If $x', y' \in K_{x''}$ and $0 \leq \alpha \leq 1$, then

 $v(\alpha x' + (1 - \alpha)y' \oplus x'') \leq \alpha v(x' \oplus x'') + (1 - \alpha)v(y' \oplus x'') \leq 1$ when $\alpha x' + (1 - \alpha)y' \in K_{x''}$. Thus $K_{x''}$ is convex.

2) Since $v(x' \oplus x'') = v(|x'| \oplus x'')$, 2) follows.

3) Suppose $v(x'') < 1$. Then for all $x' \in E'$ with $v(x') < 1 - v(x'')$, we have $v(x' \oplus x'') \leq v(x') + v(x'') < 1$, whence $x' \in K_{x''}$. Hence $0 \in \text{int } K_{x''}$.

4) Follows immediately from 1), 2), and 3).

 3.5

THEOREM Let v be a standardized absolute norm on C_n , and let $1 \le i, j \le n$. Then $i \sim j$ if and only if for all $x'' \in E''$ with $v(x'') \le 1$, the section K_{x}^{π} is circular.

Proof Suppose that $i \sim j$ and let $x'' \in E''$ with $v(x'') \le 1$. Let $x', y' \in E'$ and assume that $\chi(x') = \chi(y')$. Then $v(y' \oplus x'') = v(x' \oplus x'')$. Hence $x' \in K_{x^*}$. if and only if $y' \in K_{x''}$. Thus $K_{x''}$ is circular.

Conversely, suppose that K_{x^*} is circular for all $x^* \in E^*$ with $v(x^*) \leq 1$. Let x, $y \in E$ and assume that $x = x' \oplus x''$, $y = y' \oplus y''$ where $\chi(x') = \chi(y')$ and $|x''| = |y''|$. If $x' = 0$, then $y' = 0$ or $v(x) = v(y)$. So suppose that $x' \neq 0$. Thus $y' \neq 0$. Put $u = x/v(x)$, $v = y/v(x)$ and observe that $v(u) = 1$. If $u = u' \oplus u''$, then $v(u'') \le 1$, since v is absolute (cf. [2]). Thus $u' \in K_{u''}$. But if $v = v' \oplus v''$, then $\chi(v') = \chi(u')$, and since $K_{u''}$ is circular, we also have that $v' \in K_{u''}$. Further $|v''| = |u''|$, whence $v(v) = v(v' \oplus u'') \le 1$. It follows that $v(x) \ge v(y)$. Reversing the roles of x and y, we obtain $v(y) \ge v(x)$, whence $v(x) = v(y)$. Thus $i \sim j$.

 3.6

LEMMA If for all $x'' \in E^*$ with $v(x'') < 1$, the section $K_{x''}$ is circular then $K_{x''}$ is also circular if $x'' \in E''$ and $v(x'') = 1$.

Proof Let $x'' \in E''$ with $v(x'') = 1$. Let $x', y' \in E', x' \in K_{x''}$ and $\chi(y') = \chi(x')$. We must show that $y' \in K_{x''}$.

Let $0 < \varepsilon < 1$. Since $v(x' \oplus x'') \le 1$ and v is absolute, $v(x' \oplus (1 - \varepsilon)x'') \le 1$. But $K_{(1-\epsilon)x''}$ is circular, whence $v(y' \oplus (1-\epsilon)x'') \leq 1$. Hence also

$$
y(y' \oplus x'') \leq 1,
$$

and the desired result $y' \in K_{x''}$ follows.

3.7

LEMMA *Let* $x = x' \oplus x'' \in R_n^+$, where $v(x'') < v(x) = 1$. If $y = y' \oplus y'' \in R_n^+$ *and y* $||x$ *then* $x' \neq 0$, $c^{-1} = 1 - \langle y'', x'' \rangle > 0$ *and cy'* $||x'$ *with respect to the* $norm$ K_r ^o.

~: "

 \cdot

Proof Clearly $x' \neq 0$. Since $v^p(v^r) \leq v^p(v) \leq 1$, $1 - \langle y'', x'' \rangle > 0$. Hence $c = (1 - \langle y'', x'' \rangle)^{-1} > 0$. Clearly $\langle y', x' \rangle = 1 - \langle y'', x'' \rangle$. Let $\kappa_{x^*}(z') = 1$. Then also $\kappa_{x^*}(z') = 1$, whence $v(|z'| \oplus x'') = 1$. Hence

$$
\langle y', |z'| \rangle + \langle y'', x'' \rangle \leq 1
$$

whence

$$
|\langle y', z' \rangle| \leq \langle y', |z'| \rangle \leq 1 - \langle y'', x'' \rangle
$$

Hence $(\kappa_{x''})^p(y') = 1 - \langle y'', x'' \rangle = c^{-1}$ and $cy'|x'$, with respect to $\kappa_{x''}$.

3.8

LEMMA *Let* $x'' \in E'' \cap R_{n-2}^+$, where $v(x'') < 1$. *Suppose that for all* $x' \in E' \cap R_2^+$ *such that* $v(x) = 1$, $x = x' \oplus x''$, there is a $y \in R_n^+$ such that $y|x$. Then the *the section K .. is circular.*

Proof Let *x'* satisfy the hypotheses of the lemma. Let $y \in R_n^+$, $y || x$, $y^{D}(y) = 1$ and $y' = dx'$, where $d > 0$. By (3.7) there is a positive *c* such that cv' $||x'$ and hence $cdx'||x'$ with respect to the norm $\kappa_{x''}$. Applying Lemma (3.1) of Gries [5], we see that the corresponding norm body $K_{x''} \cap R_2$ is circular. But by (2) of (3.4), it now follows that K_{x^*} is circular in the complex space E'.

3.9

THEOREM Let *v* be a standardized absolute norm and let E', E'' be defined as *in* (3.3). *Suppose for all* $x \in R_n^+$ *with* $v(x'') < v(x) = 1$ *there is a* $y \in R_n^+$ *such that* $y|x$ *. Then* $i \sim j$ *.*

Proof Let $x'' \in E'' \cap R_{n-2}^+$, where $v(x'') < 1$. By (3.8), $K_{x''}$ is circular. It follows from (2) of (3.4) that K_{x^*} is circular if $x^* \in E^*$ and $v(x^*) < 1$. But now it follows from (3.6) that $K_{x''}$ is circular for all $x'' \in E''$ such that $v(x'') \leq 1$. By (3.5) , $i \sim j$.

4

 4.1

LEMMA Let E_i , $i = 1, ..., r$ be coordinate subspaces of C_n such that $C_n = E_1 \oplus \cdots \oplus E_r$. Let λ_i be a standardized absolute norm on E_i , let μ be a standardized absolute norm on C,, and suppose

$$
\nu(x_{(1)} \oplus \cdots \oplus x_{(r)}) = \mu(\lambda_1(x_{(1)}), \ldots, \lambda_r(x_{(r)}))
$$
(4.1.1)

where $x_{(i)} \in E_i$, $i = 1, \ldots, r$. Then

1) v is a standardized absolute norm on C_n

$$
2) \ \nu^{D}(\mathcal{Y}_{(1)} \oplus \cdots \oplus \mathcal{Y}_{(r)}) = \mu^{D}(\lambda_{1}^{D}(\mathcal{Y}_{(1)}), \ldots, \lambda_{r}^{D}(\mathcal{Y}_{(r)}))
$$

for $y_{(i)} \in E_i$, $i = 1, ..., r$.

Further, let $x = x_{(1)} \oplus \cdots \oplus x_{(r)}$, $x_{(i)} \in E_i$, $y = y_{(1)} \oplus \cdots \oplus y_{(r)}$, $y_{(i)} \in E_i$, and suppose that $\lambda_i(x_{(i)}) = \alpha_i, \lambda_i^p(y_{(i)}) = \beta_i, i = 1, ..., j.$ Let $\alpha = (\alpha_1, ..., \alpha_r),$ $\beta = (\beta_1, \ldots, \beta_r)$. Then

3) $y||x$ with respect to v if and only if

a) β α with respect to u, and

b) $\beta_i^{-1} y_{(i)} || \alpha_i^{-1} x_{(i)}$ with respect to λ_i , whenever $\beta_i \alpha_i > 0$, $i = 1, \ldots, r$. Proof 1) Let

$$
x = x_{(1)} \oplus \cdots \oplus x_{(r)},
$$

$$
z = z_{(1)} \oplus \cdots \oplus z_{(r)}.
$$

Then†

$$
\nu(x + z) = \mu(\lambda_1(x_{(1)} + z_{(1)}), \dots, \lambda_r(x_{(r)} + z_{(r)}))
$$

\$\leq \mu(\lambda_1(x_{(1)}) + \lambda_1(z_{(1)}), \dots, \lambda_r(x_{(r)}) + \lambda_r(z_{(r)}))\$
\$\leq \mu(\lambda_1(x_{(1)}), \dots, \lambda_r(x_{(r)})) + \mu(\lambda_1(z_{(1)}), \dots, \lambda_r(z_{(r)}))\$
= $\nu(x) + \nu(z).$

Here the first inequality follows from the absoluteness of μ . Similarly,

$$
v(\alpha x) = |\alpha| v(x), \text{ and } v(|x|) = v(x),
$$

since all of μ and λ_i are absolute. Clearly $v(e^i) = \lambda_i(f)$, for some $i, 1 \le i \le r$, and some unit vector f of E_i , whence $v(e^i) = 1$. This proves 1).

2) and 3) Suppose that α and β are defined as in the statement of the lemma. Let $y \in C_n$. Then for any x with $v(x) = 1$ we have $\mu(\alpha) = 1$ and

$$
|\langle y, x \rangle| \le |\langle y_{(1)}, x_{(1)} \rangle| + \cdots + |\langle y_{(r)}, x_{(r)} \rangle|
$$

\n
$$
\le \beta_1 \alpha_1 + \cdots + \beta_r \alpha_r
$$

\n
$$
\le \mu_r^p(\beta) \mu(\alpha) = \mu^p(\beta).
$$

Hence $v^p(y) \leq \mu^p(\beta)$.

[†] This argument also occurs in Ostrowski [13] p. 12, where it is merely assumed that μ is monotonic in R_n^+ .

Suppose further that *x* is so chosen that $\beta || \alpha$ and that for $i = 1, ..., r$, $\int_{0}^{1} \int_{t_1}^{t_2} |\alpha_i^{-1} x_{(i)}|$, whenever $\int_{0}^{t_1} \alpha_i > 0$. Since $\langle y_{(i)}, x_{(i)} \rangle = 0$ whenever $\int_{0}^{t_1} \alpha_i = 0$, it follows that

$$
\langle y, x \rangle = \langle y_{(1)}, x_{(1)} \rangle + \cdots + \langle y_{(r)}, x_{(r)} \rangle
$$

= $\beta_1 \alpha_1 + \cdots + \beta_r \alpha_r$
= $\mu^p(\beta) \mu(\alpha) = 1$.

Hence $v^D(y)$ is given by 2), and if x satisfies the conditions of 3), then $y||x$.

We must still prove that for all pairs, $x, y \in C_n$ with $y||x$, the conditions of 3) are satisfied. So suppose that $y||x$. Then

$$
1 = \langle y, x \rangle = v^p(y)v(x) = \mu^p(\beta)\mu(\alpha)
$$

and

$$
\langle y, x \rangle = \langle y_{(1)}, x_{(1)} \rangle + \cdots + \langle y_{(r)}, x_{(r)} \rangle
$$

\n
$$
\leq |\langle y_{(1)}, x_{(1)} \rangle| + \cdots + |\langle y_{(r)}, x_{(r)} \rangle|
$$

\n
$$
\leq \beta_1 \alpha_1 + \cdots + \beta_r \alpha_r
$$

\n
$$
\leq \mu^D(\beta) \mu(\alpha).
$$

Hence all inequalities in $(*)$ are equalities, and

$$
1 = \mu^{D}(\beta)\mu(\alpha) = \beta_1\alpha_1 + \cdots + \beta_r\alpha_r.
$$

Thus β lla follows.

Finally, suppose that $\beta_i \alpha_i > 0$. Since $|\langle y_{(i)}, x_{(i)} \rangle| \le \beta_i \alpha_i$ and since we have equalities in $(*)$, we may deduce that

$$
\langle y_{(i)}, x_{(i)} \rangle = |\langle y_{(i)}, x_{(i)} \rangle| = \beta_i \alpha_i.
$$

Hence $1 = \langle \beta_i^{-1} y_{(i)}, \alpha_i^{-1} x_{(i)} \rangle = \lambda_i^p (\beta_i^{-1} y_{(i)}) \lambda_i (\alpha_i^{-1} x_{(i)})$. Thus $\beta_i^{-1} y_{(i)} || \alpha_i^{-1} x_{(i)}$.

4.2

Counterexample If we drop the condition that the λ_i are absolute, then v will still be a norm on C_n . But the condition that μ is absolute cannot be omitted. Consider the following counterexample. Let E_1, E_2 be the two onedimensional coordinate subspaces of C_2 . Let $\lambda_1(x_1) = |x_1|, \lambda_2(x_2) = |x_2|,$ and let $\mu(\alpha_1, \alpha_2) = \max\{|\alpha_1 - \alpha_2|,|\alpha_2|\}$, and let $v(x_1, x_2) = \mu(\lambda_1(x_1), \lambda_2(x_2)).$ If $x = (2, 1)$, $z = (1, -1)$, then $x + z = (3, 0)$. Hence

$$
\nu(x) = \mu(2, 1) = 1, \nu(z) = \mu(1, 1) = 1,
$$

but

 $\nu(x + z) = \mu(3, 0) = 3.$

Thus $v(x + z) > v(x) + v(z)$.

We next slightly extend an important result due to Zengert [12], (2.26).

 $\ddot{\cdot}$

t See also Stoer and Witzgall [14]. Theorem 1.

LEMMA *Let* μ *be an absolute norm on C_r. Let* $\gamma_i \geq 0$, $\gamma_1 + \cdots + \gamma_r = 1$. *Then there exist* $\alpha, \beta \in C_r$, *such that* $\beta || \alpha$ and $\beta_i \alpha_i = \gamma_i$.

Proof If all $\gamma_i > 0$, then the existence of such α, β is guaranteed by Zenger's Lemma [12]. So suppose that, after reordering coordinates, $y_i > 0$, $i=1,\ldots,s, \gamma_i=0, i=s+1,\ldots,r$, where $s < r$. There exist $\alpha', \beta' \in C_s$. such that $\beta'||\alpha'$ (with respect to the restriction of μ to C_s), and $\beta'_i\alpha'_i = \gamma_i$, $i = 1, \ldots, r$. Let $\beta = \beta' \oplus 0$, $\alpha = \alpha' \oplus 0$, where 0 is zero vector of C_{r-x} . Since μ is absolute, $\beta || \alpha$ and clearly $\beta_i \alpha_i = \gamma_i$, $i = 1, \ldots, r$.

Remark Since β $\|\alpha\|$ implies that $\lambda^{-1}\beta\|\lambda\alpha\|$, for $\lambda > 0$, we may normalize $\mu(\alpha) = \mu^D(\beta) = 1$, in the above lemma.

4.4

DEFINITION Let $\Sigma_1, \ldots, \Sigma_r$ be *subsets of the complex plane. We define theconvex sum of* $\Sigma_1, \ldots, \Sigma_r$ *to be the set of all sums* $\alpha_1 \sigma_1 + \cdots + \alpha_r \sigma_r$ *, where*

$$
\sigma_i \in \Sigma_i, 0 \leq \alpha_i \leq 1, i = 1, ..., r \text{ and } \sum_{i=1}^r \alpha_i = 1.
$$

Observe that the convex sum of sets need not be a convex set.

4.5

÷

LEMMA *Let* E_1, \ldots, E_r *be coordinate subspaces of* C_n , *and let v be given as in* (4.1) *. Let* $A = A_1 \oplus \cdots \oplus A_r$ *, where* A_i *is a matrix acting on* E_i *, i = 1, ..., r. Then the numerical range of A is the convex sum of* $V_1(A_1), \ldots, V_r(A_r)$, where $V_i(A_i)$ *is the numerical range of* A_i *with respect to the norm* λ_i .

, *Proof* Let $\gamma \in R_r^+$, $\sigma_i \in V_i(A_i)$, $i = 1, ..., n$ and $\sigma = \sum_{i=1}^r \gamma_i \sigma_i$ where $\sum_{i=1}^{6} \gamma_i = 1.$

Then there exist $y_{(i)}, x_{(i)} \in E_i$, such that $y_i ||x_i$ with respect to λ_i ,

$$
\lambda_i(x_i) = \lambda_i^p(y_i) = 1, \text{ and } \langle y_{(i)}, A_i x_{(i)} \rangle = \sigma_i.
$$

By (4.3) there exists $\alpha, \beta \in \mathbb{R}_1^+$ such that $\beta \| \alpha$ with respect to μ , and $\beta_i \alpha_i = \gamma_i$. Let

$$
x = \alpha_1 x_{(1)} \oplus \cdots \oplus \alpha_r x_{(r)},
$$

$$
y = \beta_1 y_{(1)} \oplus \cdots \oplus \beta_r y_{(r)}.
$$

By (4.1), $y\|x$ with respect to v. But

$$
\langle y, Ax \rangle = \sum_{i=1}^r \beta_i \alpha_i \langle y_{(i)}, x_{(i)} \rangle.
$$

$$
=\sum_{i=1}^r \lambda_i \sigma_i=\sigma,
$$

whence $\sigma \in V(A)$.

Conversely, let $\sigma \in V(A)$, say $\sigma = \langle y, Ax \rangle$ where $y || x$ with respect to v. Let us now write

$$
x = x'_{(1)} \oplus \cdots \oplus x'_{(r)}
$$

$$
y = y'_{(1)} \oplus \cdots \oplus y'_{(r)},
$$

where we put $\alpha_i = \lambda_i(x_{(i)}), \beta_i = \lambda_i^p(y_{(i)}).$ Let us suppose that $y_i = \beta_i \alpha_i > 0$, $i = 1, \ldots, s \le r$, and $\gamma_i = \beta_i \alpha_i = 0$, $i = s + 1, \ldots, r$. Then putting $x_{(i)} = \alpha_i^{-1} x_{(i)}'$, $y_i = \beta_{(i)}^{-1} y'$, $i = 1, ..., s$, we have by (5.1) that $\beta ||\alpha$ with respect to μ , and $y_{(i)}||x_{(i)}$ with respect to λ_i , $i = 1, ..., s$. Hence

$$
\sigma_i = \langle y_{(i)}, A_i x_{(i)} \rangle \in V_i(A_i), \quad i = 1, \ldots, s.
$$

But $\gamma_i \geq 0$ and $\sum_{i=1}^r \gamma_i = 1$, and so

$$
\langle y, Ax \rangle = \sum_{i=1}^r \langle y_{(i)}, A_i x_{(i)} \rangle = \sum_{i=1}^s \gamma_i \sigma_i = \sum_{i=1}^r \gamma_i \sigma_i
$$

The lemma is proved.

Comment Thus, for a norm v satisfying $v(x) = \mu(\lambda_1(x_{(1)}), \ldots, \lambda_r(x_{(r)})),$ as in (4.1.1), and $A = A_1 \oplus \cdots \oplus A_n$, the numerical range $V(A)$ does not depend on μ . In particular, if v is any (standardized) absolute norm on C_n , and $D = diag(d_1, ..., d_n)$, then $V(D)$ is the convex hull of $d_1, ..., d_n$, cf. Gries [5].

If v is any norm on C_n , then the corresponding operator norm v^0 on C_n is defined

$$
v^0(A) = \sup \{v(Ax): v(x) = 1\}.
$$

It is well known, and easy to prove, that

$$
v^{0}(A) = \sup\{|\langle y, Ax \rangle|: v(x) = 1, v^{0}_{\alpha}(y) = 1\}.
$$

4.6

LEMMA Let E_i , $i = 1, ..., r$ be coordinate subspaces of |V such that $E_1 \oplus \cdots \oplus E_r = C_n$. Let λ_i be a standardized absolute norm on E_i , $i = 1, ..., r$ and μ a standardized absolute norm on C_r , and let v be given by (4.1.1). Let $A \in C_{nn}$ and suppose that $A = A_1 \oplus \cdots \oplus A_n$, where A_i is a matrix on E_i . Then

$$
\nu^0(A)=\max\{\lambda_i^0(A_i)\colon\qquad i=1,\ldots,r\}.
$$

Proof Let $\max\{\lambda_i^0(A): i = 1, ..., r\} = \lambda_k^0(A_k)$, where $1 \le k \le n$. Then using (4.1) , we obtain

$$
v^{0}(A) = \sup\{|\langle y, Ax \rangle|: v(x) = 1, v^{D}(y) = 1\}
$$

\n
$$
\leq \sup\left\{\sum_{i=1}^{r} |\langle y_{(i)}, A_{i}x_{(i)} \rangle|: \lambda_{i}(x_{(i)}) = \alpha_{i}, \lambda_{i}^{D}(y_{(i)}) = \beta_{i}, \mu(\alpha) = \mu^{D}(\beta) = 1\right\}
$$

\n
$$
\leq \sup\left\{\sum_{i=1}^{r} |\beta_{i}\lambda_{i}^{0}(A_{i})\alpha_{i}|: \alpha, \beta \in E_{n}^{+}, \mu(\alpha) = \mu^{D}(\beta) = 1\right\}
$$

\n
$$
\leq \lambda_{k}^{0}(A_{k}) \Big(\sum_{i=1}^{r} \beta_{i}\alpha_{i}: \alpha, \beta \in R_{r}^{+}, \mu(\alpha) = \mu^{D}(\beta) = 1\Big)
$$

\n
$$
\leq \lambda_{k}^{0}(A_{k}).
$$

On the other hand, let $x_{(k)}$, $y_{(k)} \in E_k$ such that $\lambda_k(x_{(k)}) = \lambda_k^p(y_{(k)}) = 1$, and $\lambda_k^0(A_k) = \langle y_{(k)}, A_k x_{(k)} \rangle$. If $x_{(i)} = y_{(i)} = 0$, for $i \neq k$, then $v(x) = \mu(e^k) = 1$, $v^{D}(y) = \mu^{D}(e^{k}) = 1$, and $\langle y, Ax \rangle = \langle y_{(k)}, A_{k}x_{(k)} \rangle = \lambda_{k}^{0}(A_{k}).$

The lemma is proved.

We comment that it is almost as easy to prove (4.6) directly from the definition $v^0(x) = \sup\{v(Ax): v(x) = 1\}$, without use of (4.1). When dim $E_i = 1$, $i = 1, ..., n$, (4.6) reduces to the well known theorem that $v^{0}(D) = \max\{|d_{ij}|, i = 1, ..., n\}$ for a diagonal matrix *D*, cf. [2].

5

5.1

LEMMA *Let* $\Omega = \{u \in C_n : |u_i| = 1\}$. Let $K \in C_{nn}$ be a Hermitian matrix such *that* $k_{ii} = 0$, $i = 1, ..., n$. If $\langle u, Ku \rangle = 0$ for all $u \in \Omega$, then $K = 0$.

Proof The proof is by induction on *n.* Evidently the result is true for $n = 1$. Suppose that it holds for $n = r - 1$, and let $n = r$.

Setting $u_i = e^{i\theta_i}$, we have

$$
\langle u, Ku \rangle = \sum_{1 \le i, j \le r} k_{ij} e^{-i(\theta_j - \theta_i)}
$$

= $2 \sum_{1 \le i \le j \le r} \text{Re}(k_{ij} e^{i(\theta_i - \theta_j)})$

whence

$$
-\mathrm{Re}((\sum_{1\leq i\leq r-1}k_{i},e^{-i\theta_{i}})e^{i\theta_{r}})=\mathrm{Re}(\sum_{1\leq i\leq j\leq r-1}k_{ij}e^{-i(\theta_{i}-\theta_{j})})
$$

Since this holds for all θ_r , it follows that

$$
\sum_{1\leq i\leq r-1}k_{ir}e^{-i\theta_i}=0.
$$

Again, this holds for all $\theta_1, \ldots, \theta_{r-1}$.

We can choose $(r - 1)$ linearly independent vectors

$$
(e^{-1\theta_1}, \ldots, e^{-1\theta(r-1)}),
$$
 e.g., $v^s = (\omega^s, \omega^{2s}, \ldots, \omega^{(r-1)s})$

where ω is a primitive rth root of 1. Hence

 $k_{ri} = k_{ir} = 0, \quad i = 1, ..., r-1.$ Now we obtain that for all θ_t $\sum_{1 \leq i,j \leq r-1} k_{ij} e^{-i(\theta_j - \theta_i)} = 0,$

whence by inductive assumption $k_{ij} = 0$, $i, j = 1, ..., r - 1$. Thus $K = 0$. The lemma follows by induction.

5.2

LEMMA Let $\Omega = \{u \in C_n : |u_i| = 1, i = 1, ..., n\}$. Let $A \in C_{nn}$, where a_{ii} is real, $i = 1, ..., n$. If for all $u \in \Omega$, $\langle u, Au \rangle$ is real, then A is Hermitian.

Proof Let $A = H + iK$, where H, K are Hermitian. Then $k_u = 0$, $i = 1, ..., n$. Since $\langle u, Ku \rangle = 0$, for all $u \in \Omega$, we obtain $K = 0$ by (5.1). Hence $A = H$.

6

6.1

LEMMA Let v be a standardized absolute norm. Let N_i , E_i be as in (2.3). If $A \in C_{nn}$ is such that $A = A_1 \oplus \cdots \oplus A_n$, where A_i is a matrix on E_i , then $V(A) = V_{\chi}(A)$, where $V_{\chi}(A)$ is the Euclidean numerical range.

Proof Let
$$
x = x_{(1)} \oplus \cdots \oplus x_{(r)}
$$
, where $x_{(1)} \in E_i$. By (2.3)

$$
v(x) = \mu(\chi(x_{(1)}), \ldots, \chi(x_{(r)})),
$$

where μ is a standardized absolute norm on C,. By (4.5), therefore $V(A)$ is the convex sum of the $V_i(A_i)$, $i = 1, ..., r$. But $V_i(A_i) = V_i(A_i)$ since $\lambda_i = \gamma$.

Next, note that

 $\chi(x) = \chi(\chi(x_{(1)}), \ldots, \chi(x_{(n)}))$

and recall the comment after (4.5) that $V(A)$ does not depend on μ . Thus $V_{\mathbf{X}}(A)$ is also the convex sum of the $V_{\mathbf{X}}(A_i)$, $i = 1, ..., n$. Thus $V(A) = V_{\mathbf{X}}(A)$.

6.2

THEOREM Let v be a standardized absolute norm on C_n . Let the equivalence \sim be defined as in (2.1). Then $H \in C_{nn}$ is norm-Hermitian if and only if

a) $h_{ii} = \overline{h}_{ii}$ for $i \sim j$,

and

b) $h_{ij} = 0$ for $i \sim j$.

Proof Suppose H satisfies a) and b). If N_i , E_i , $i = 1, \ldots, r$ are defined as

in (2.3), then $H = H_1 \oplus \cdots \oplus H_r$, where H_i is a Hermitian matrix on E_i . Hence, by (6.1), $V(H) = V_x(H)$, which is real. Thus *H* is norm-Hermitian.

Conversely, suppose that *H* is norm-Hermitian. Since $e^{i}||e^{i}$, $i = 1, ..., n$, it follows that $h_{tt} = \langle e^t, He^t \rangle$ is real. Suppose that $x, y \in R_n^+$, $y \| x$. Let $K \in C_{nn}$ be given by $k_{ij} = y_i h_{ij} x_j$, $i, j = 1, ..., n$. Let $\Omega = \{u \in C_n : |u_i| = 1,$ $i=1,\ldots,n$. If we define $v, w \in C_n$, by $v_i = u_i x_i$, $w_i = u_i y_i$, then $w||v_i$. Hence $\langle w, Hv \rangle = \langle u, Ku \rangle$ is real. But k_{ij} is real, $i = 1, ..., n$. Hence, by (5.2) , K is Hermitian. It follows that

c) $y_i \bar{h}_{i1} x_i = y_i h_{i1} x_i, \quad i, j = 1, ..., n$ for all $y, x \in R_n^+$ with $y || x$.

Now let *i*, *j* be two fixed integers in {1, 2, . . ., *n*} such that $h_{ij} \neq 0$. We must prove that $\overline{h}_{ii} = h_{ii}$ and that $i \sim j$. We shall use the notation of (3.3). Thus for $x' \in E'$, $\kappa_0(x') = v(x' \oplus 0)$, where, by (3.4), κ_0 is a standardized absolute norm on E' .

Hence, by (3.2) we can find an $x' \in E' \cap R_2^+$ such that both coordinates of x' are positive, $\kappa_0(x') = 1$ and there is a positive c for which $cx'|x'$ with respect to κ_0 . If $x = x' \oplus 0 \in C_n$, $y = cx' \oplus 0$, then $x_i > 0$, $x_i > 0$, $y_i > 0$, $y_i > 0$. Further, $y||x$ with respect to v, since $\langle y, x \rangle = \langle y', x' \rangle = 1$ and for any $z = z' \oplus z''$, $v(z) = 1$. Since for this particular x and y, we have $y_i x_i = y_i x_j \neq 0$, it follows from c) that $\overline{h}_{1i} = h_{ij} \neq 0$.

We may now deduce from c) that

d) $y_i x_i = y_i x_i$, for *all* $y_i x_i \in R_n^+$ with $y || x$.

Suppose that $x \in R_n^+$ and that $v(x'') < v(x) = 1$. Since v is absolute, there is a $y \in R_{n}^{+}$ such that $y || x$. Then by d), $y' = d_{x}x'$ where $d_{x} \ge 0$. But by (3.7), $y' \neq 0$, whence $d_x > 0$. Thus $y|x$. It now follows by (3.9) that $i \sim j$, and the theorem is proved.

6.3

THEOREM Let v *be a standardized absolute norm on* C_n . Let $\mathcal{J} = \{H + iK : H, K$ are norm-Hermitian $\}$.

Then $\mathcal{J} = \mathcal{M}_1 \oplus \cdots \oplus \mathcal{M}_n$, where \mathcal{M}_1 is the complete matrix algebra on E_i . Further $\mathcal J$ *is a subalgebra of* C_{nn} .

Proof Since any matrix A_i on E_i is of form $A_i = H_i + iK_i$, where H_i, K_i are Hermitian, it follows that $A \in \mathcal{J}$ if and only if $A = A_1 \oplus \cdots \oplus A_n$. where A_i is a matrix on E_i . The result follows immediately.

6.4

THEOREM *If* $A \in \mathcal{J}$, then $V(A) = V_{\mathcal{I}}(A)$ and is convex.

Proof By (6.3), $A = A_1 \oplus \cdots \oplus A_r$, where A_i is a matrix on E_i . Hence, by (6.1), $V(A) = V_x(A)$, which is convex.

An important theorem due to Vidav [!O] and Palmer [9] (cf. Bonsall and Duncan [3], p. 65) is now stated in a slightly special case. Let *V* be a Banach space and let $\mathscr A$ be an algebra of operators on V (normed by the operator norm) such that for each $A \in \mathcal{A}$, $A = H + iK$ where *H*, *K* are norm-Hermitian. Define $A^* = H - iK$. Then there exists a Hilbert space V' and an isomorphism of $\mathcal A$ onto an algebra of operators $\mathcal A'$ on V' which preserves both the norm and the star operation.

Given the dimension of V , the Vidav-Palmer theorem by itself gives no information on the dimension of *V'.* In our special case, the impact of our next theorem is that one may choose $V' = V$.

6.5

THEOREM Let $A \in \mathcal{J}$. Then $v^0(A) = \chi^0(A)$.

Proof By (6.4), $A = A_1 \oplus \cdots \oplus A_n$, where A_i is a matrix on E_i . Hence, by (2.3) and (4.6), $v^0(A) = \max\{\chi^0(A): i = 1, ..., r\}$. But

 $\chi(x) = \chi(\chi(x_{(1)}), \ldots, \chi(x_{n})),$

whence again, by (4.6), $\chi^0(A) = \max{\chi^0(A_i): i = 1, ..., r}$. The theorem follows.

There are, of course, many obvious corollaries to (6.2) and (6.5). We shall give some immediate applications to v-normal matrices.

6.6

DEPINITION *A matrix* $A \in \mathbb{C}_{\text{nn}}$ *is called v-normal if* $A = H + iK$ *, where H*, *K* are *v*-*Hermitian and HK* = KH .

If $v = \chi$, a v-normal matrix is normal in the traditional sense.

6.7

THEOREM Let *v* be a standardized absolute norm and let A be in C_{nn} . Then

1) *A* is v-normal if and only if *A* is normal and $a_{ij} = 0$ for $i \sim j$. If *A* is *v-narmal, then*

- 2) $V(A) = \cos(\operatorname{sp} A)$
- *3*) $v(A) = \rho(A)$.
- *4*) $v^0(A) = \rho(A)$.

(Here co(sp A) is the convex hull of the spectrum of A, $v(A) = \sup\{| \lambda | : \lambda \in V(A) \}$ *, the numerical radius of A, and* $p(A)$ *is the spectral radius of A.*)

Proof 1) The matrix *A* is v-normal if and only if $A = H + iK$, where *H*, *K* are Hermitian and $h_{ij} = k_{ij} = 0$ for $i \sim j$.

2) By (6.3), $V(A) = V_x(A)$, and $V_x(A) = \cos(\text{sp } A)$.

3) Immediate.

4) Since $A \in \mathcal{J}$, $v^0(A) = \chi^0(A)$, by (6.6) and $\chi^0(A) = \rho(A)$.

For operators on a Banach space, 3) is known to be true (Palmer [8]), and his proof is much less elementary. By Sinclair's theorem [3, p. 54], $\rho(A) = v^0(A)$, where *A* is a norm-Hermitian operator. However, Crabb [4] has given a counterexample to 4) for a non-absolute norm on *C4 •*

7

7.1

DEFINITIONS *Let* v *be a standardized absolute norm.*

- i) The set of all norm-Hermitian H in C_{nn} will be denoted by \mathcal{H} .
- ii) Let $\mathscr U$ be the set of all $U \in C_{nn}$ such that $U = \exp(iH)$ for some $H \in \mathscr H$.
- iii) The set of all isometries $V \in C_{nn}$ will be denoted by $\mathscr V$.

The following theorem is known (cf. Bonsall and Duncan [3, p. 46]) (where it is stated for Banach Algebras): A matrix $H \in C_{nn}$ is norm-Hermitian, if and only if $exp(itH)$ is an isometry for all real *t*. Thus $\mathcal{U} \subseteq \mathcal{V}$. However, our special case is so simple that there is no need to appeal to the above theorem, and our conclusion is stronger than $\mathcal{U} \subseteq \mathcal{V}$. We first state a lemma.

7.2

LEMMA Let *v be a norm on* C_n . If $V \in \mathcal{V}$, and $H \in \mathcal{H}$, then also $V^{-1}HV \in \mathcal{H}$.

Proof Let v_V be defined by $v_V(x) = v(Vx)$, for all x in C_n . Since $V \in \mathcal{V}$, $v_V = v$. Let *y*||x, and put $v = Vx$, $w = (V^{-1})^*v$. It follows from Lemma 1 of [7] that *w* ||*v*. Hence $\langle y, V^{-1}HVx \rangle = \langle w, Hv \rangle$ is real.

Remark If $v \neq \gamma$, then there exists a nonsingular Z such that $Z^{-1} \mathcal{H}Z = \mathcal{H}$ where Z is not a scalar multiple of an isometry. For then we have r classes N_1, \ldots, N_r for the equivalence relation \sim , where $r \geq 2$ (2.5). Let I_i be the identity on E_i , and put $Z = \alpha_1 I_1 \oplus \cdots \oplus \alpha_r I_r$, where $\alpha_i > 0$, $i = 1, \ldots, r$ and $\alpha_1 \neq \alpha_r$. If $\nu = \chi$, then $Z^{-1} \mathcal{H}Z = \mathcal{H}$ implies that Z is a scalar multiple of a unitary matrix. A simple proof uses the factorization $Z = U D V$, where U, V are unitary and $D = diag(d_1, ..., d_n)$, $d_i > 0$, (essentially) the polar decomposition of Z.

7.3

THEOREM Let v be a standardized absolute norm on C_n . Let $\mathcal V$ and $\mathcal U$ be *defined as in (7.1).*

1) A matrix $U \in \mathcal{U}$ if and only if U is unitary and $u_{11} = 0$ for $i \sim j$.

2) $\mathcal V$ is a group and $\mathcal U$ is a normal subaroup of $\mathcal V$.

Proof $1)^{\frac{1}{2}}$ Let \mathcal{H} be the set of all norm-Hermitian matrices. Define E_k , $k = 1, ..., r$ as usual, and let \mathcal{H}_k be the set of (traditional) Hermitian matrices on E_i . Then, by Theorem (6.2), $\mathcal{H} = \mathcal{H}_1 \oplus \cdots \oplus \mathcal{H}_r$. Thus $U \in \mathcal{U}$ if and only if $U = U_1 \oplus \cdots \oplus U_n$, where $U_i = \exp(iH_i)$, $H_i \in \mathcal{H}_i$. But $exp(i\mathcal{H}_{r})$ is well known (and easily seen) to be the set of all unitary matrices \mathscr{U}_i on E_i . Hence $\mathscr{U} = \mathscr{U}_1 \oplus \cdots \oplus \mathscr{U}_r$, which is the assertion 1).

2) Since \mathscr{U}_k is the group of all unitary matrices on E_k , $k = 1, \ldots, r$, it follows from 1): $\mathcal{U} = \mathcal{U}_1 \oplus \cdots \oplus \mathcal{U}_n$, that \mathcal{U} is a group. By Lemma (2.4), $\mathscr{U} \subseteq \mathscr{V}$.

If $V_1, V_2 \in \mathcal{V}$, so is $V_1 V_2^{-1}$, whence \mathcal{V} is a subgroup of the group of nonsingular matrices.

Let $V \in \mathscr{V}$, $U \in \mathscr{U}$, say $U = \exp(iH)$, with $H \in \mathscr{H}$. By (7.2), $V^{-1}HV \in \mathscr{H}$, and $\exp(iV^{-1}HV) = V^{-1} \exp(iH)V = V^{-1}UV$. Thus $V^{-1}UV \in \mathcal{U}$, and so \mathcal{U} is a normal subgroup of \mathcal{V} .

Remark For an arbitrary norm ν on C_n , we do not know if $\mathscr U$ is a group.

7.4

DEFINITIONS AND REMARKS 1) Let $\{N_1, \ldots, N_r\}$ be the equivalence classes for \sim in {1, 2, ..., n}.

Denote the symmetric group on $\{1, \ldots, n\}$ by S_n . Let π be a permutation in S_n , We call π a block permutation if

a) For each k, $k = 1, \ldots, r$ there is an l such that $\pi(N_k) = N_i$,

b) If $l, j \in N_k$ and $i < j$, then $\pi(i) < \pi(j)$, for $k = 1, \ldots, r$.

2) If $\pi \in S_n$ is a block permutation, then there is a unique permutation $\rho \in S_n$ such that $\pi(N_k) = N_{\rho(k)}, k = 1, \ldots, r$. Further, $|N_{\rho(k)}| = |N_k|$ where $|N_k|$ is the number of elements in N_k .

3) If $\pi \in S_n$, let P_{π} be the permutation matrix defined by $P_{\pi}e^t = e^{\pi(t)}$, $i = 1, ..., n$. If π is a block permutation, then P_{π} will be called a block permutation matrix.

4) The set of all block permutation matrices form a group Q under multiplication.

5) A block permutation which is also an isometry will be called a block isometry.

6) The set of block isometries form a subgroup $\mathcal P$ of Q under multiplication.

7) It is easy to prove that $|Q| = \prod_{i=1}^n t_i \le r!$ where t_i is the maximum of 1 and the number of N_k with $|N_k| = i$.

.

LEMMA *Let v be an absolute norm, and let* $P = P_{\sigma}$ *be a permutation matrix which is also an isometry. If* $i \sim j$ *, then* $\sigma(i) \sim \sigma(j)$.

Proof Let $E' = \text{span}\{e^i, e^j\}$, $E'' = \text{span}\{e^k : k \neq i, j\}$, $E'_\sigma = \text{span}\{e^{\sigma(i)},$ $e^{\sigma(j)}$, $E''_{\sigma} = \text{span}\{e^{\sigma(k)}: k \neq i, j\}.$ Let $x = \sum_{i=1}^{n} x_i e^i$, $y = \sum_{i=1}^{n} y_i e^i$, where $|x_{\sigma(i)}|^2 + |x_{\sigma(j)}|^2 = |y_{\sigma(i)}|^2 + |y_{\sigma(j)}^2$, and $|x_{\sigma(k)}| = |y_{\sigma(k)}|$, $k \neq i, j$. We wish to prove that $v(x) = v(y)$.

Let $\hat{x} = P^{-1}x$, $\hat{y} = P^{-1}y$. Then $\hat{x}_k = x_{\sigma(k)}, \hat{y}_k = y_{\sigma(k)}, k = 1, ..., n$. Hence $|\hat{x}_i|^2 + |\hat{x}_i|^2 = |\hat{y}_i|^2 + |\hat{y}_i|^2$, $|\hat{x}_k| = |\hat{y}_k|$, $k \neq i, j$. Since $i \sim j$, we have $v(x) = v(y)$. But P is an isometry, and so $v(x) = v(y)$.

7.6

COROLLARY If *Pa is both a permutation matrix and an isometry, then* $P_{\sigma} = P_{\rho} P_{\pi}$, *where P_p* $\in \mathcal{U}$ *and P_n* $\in \mathcal{P}$.

Proof Let $1 \le k \le r$. By (7.5), there is an *l* such that $P_{\sigma}(E_k) \subseteq E_l$. Hence $\sigma(N_k) \subseteq N_1$. But the sets N_k , $k = 1, ..., r$ are finite, and σ is $1 - 1$ and onto $\{1, \ldots, n\}$. Hence there is a permutation τ in S_r such that $\sigma(N_k) =$ $N_{r(k)}$, $k = 1, \ldots, r$. Let π be the corresponding block permutation in S_n . Clearly $\sigma(N_k) = \pi(N_k)$. Then there is a permutation ρ in S_n such that $p(N_k) = N_k$, $k = 1, ..., n$ and $\sigma = \rho \pi$. It follows that $P_{\sigma} = P_{\rho}P_{\pi}$ where $P_{\pi} \in Q$. Further, P_{ρ} is a direct sum of permutation matrices on E_i , each of which is unitary on E_i . Hence $P_{\rho} \in \mathcal{U}$. Thus $P_{\pi} = P_{\rho}^{-1} P_{\sigma}$ is an isometry whence $P_n \in \mathscr{P}$.

7.7

THEOREM Let *v* be a standardized absolute norm on C_n , and let $V \in C_{nn}$ be an *isometry on C_n. Then there exist unique* $U \in \mathcal{U}$ *and* $P \in \mathcal{P}$ *such that* $V = UP$ *.*

Proof Let $D^{(i)}$, $i = 1, ..., n$ be the diagonal matrix with $d_{ii} = 1, d_{kk} = 0$ for $k \neq i$. Let $K^{(i)} = V D^{(i)} V^{-1}$, $i = 1, ..., n$. Since $D^{(i)} \in \mathcal{H}$, also $K^{(i)} \in \mathcal{H}$, $i=1,\ldots,n$, by (7.2). Hence $K^{(i)}=K^{(i)}_1\oplus\cdots\oplus K^{(i)}_r$, where $K^{(i)}_k$ is Hermitian on E_k . But $D^{(1)}$, ..., $D^{(n)}$ commute in pairs, hence so do $K^{(1)}$, ..., $K^{(n)}$. Thus there exist unitary matrices W_k on E_k such that $W_k K_k^{(1)} W_k^{-1}$ is a real diagonal matrix. Set $W = W_1 \oplus \cdots \oplus W_k$. Then $W \in \mathcal{U}$, and $G^{(i)} = W K^{(i)} W^{-1} = W V D^{(i)} V^{-1} W^{-1}$

is a real diagonal matrix for $i = 1, ..., n$. But the $G^{(i)}$, like the $D^{(i)}$, are projections summing to I, and $G^{(1)}G^{(1)} = 0$, for $i \neq j$. Hence $G^{(1)} = D^{(q-1(i))}$, $i = 1, \ldots, n$, for some permutation σ of $\{1, \ldots, n\}$, and so $G^{(i)} = P_{\sigma}^{-1} D^{(i)} P_{\sigma}$. Put

 $X = WVP_{\sigma}$

Then $G^{(i)} = WVD^{(i)}V^{-1}W^{-1} = X^{-1}G^{(i)}X$, for $i = 1, ..., n$. We may now deduce that X is diagonal, say $X = diag(x_1, ..., x_n)$. Hence

$$
WVe^{\sigma(i)} = XP_{\sigma}^{-1}e^{\sigma(i)} = Xe^{i} = x_{i}e^{i}, \qquad i = 1, ..., n
$$

Since WV is an isometry, it follows that

$$
1 = v(WVe^{\sigma(i)}) = v(x_ie^i) = |x_i|v(e^i) = |x_i|, \qquad i = 1, ..., n.
$$

Thus $X \in \mathcal{U}$. We now obtain that $V = W^{-1} X P_d^{-1}$. By (7.6), $P_d^{-1} = P_d^{-1} =$ $P_{\rho}P$, where $P_{\rho} \in \mathcal{U}$, $P \in \mathcal{P}$. Let $U = W^{-1}XP_{\rho}$. Then $U \in \mathcal{U}$, and $V = UP$.

To prove uniqueness, suppose that $V = UP = UP'$, where also $U' \in \mathcal{U}$, $P' \in \mathcal{P}$, then $A = U'^{-1}U = P'P^{-1} \in \mathcal{U} \cap \mathcal{P}$. But A is then block permutation matrix, say $A = P_6$, with $\varepsilon(N_k) = N_k$, $k = 1, ..., r$. Hence ε is the identity permutation and $A = I$. Thus $U' = U$, $P' = P$ and the decomposition is unique. The theorem is proved.

Let α be a group, δ and it subgroups of α with n normal in α . If $\mathfrak{n} \cap \mathfrak{b} = (1)$ and $\mathfrak{n} \mathfrak{b} = \mathfrak{a}$, then a is called a semi-direct product of \mathfrak{n} and \mathfrak{b} .

7.8

COROLLARY $\mathscr V$ is a semi-direct product $\mathscr U$ and $\mathscr P$ and $\mathscr V/\mathscr U \cong \mathscr P$.

Proof Since $\mathscr{UD} = \mathscr{V}$, and \mathscr{U} is normal in \mathscr{V} , the results are immediate by (7.7) .

Comment It is also clear that the connected components of $\mathcal V$ are precisely the sets $\mathscr{U}P$, for $P \in \mathscr{P}$.

Remark Similarly, every $V \in \mathcal{V}$ can be represented uniquely as $V = P'U'$. where $P' \in \mathcal{P}$ and $U' \in \mathcal{U}$. Indeed, if $P'U' = V = UP$, then $P(P^{-1}UP) = V$. and $P^{-1}UP \in \mathcal{U}$. Hence $P' = P$ and $U' = P^{-1}UP$.

7.9

Examples 1) if v is an l_p -norm, $v(x) = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ where $p \ge 1$ and $p \neq 2$, then the equivalence classes for \sim are singletons. Hence *U* consists of all diagonal matrices $U = diag(u_1, \ldots, u_n)$, with $|u_i| = 1$, $i = 1, \ldots, n$. The group $\mathscr P$ consists of all permutation matrices.

2) Let ν be any standardized absolute norm on C_2 and suppose there is a $z \in C_2$ with $v(z_1, z_2) \neq v(z_2, z_1)$. Then $\mathcal U$ consists of all diagonal matrices $U = \text{diag}(u_1, u_2)$ with $|u_1| = |u_2| = 1$, and \mathcal{P} of the identity matrix. Hence $V = U$.

f.

In this section we shall restate our main results for an absolute norm v_1 on C_n which is not necessarily standardized by $v_1(e^t) = 1, i = 1, \ldots, n$. Theorem (6.2) ' will correspond to Theorem (6.2) , etc.

Let $v_1(e^i) = d_i$, $i = 1, ..., n$, and let $D = \text{diag}(d_1, ..., d_n)$. Define $v(x) = v_1(D^{-1}x)$, for all $x \in C_n$. Then v is a standardized absolute norm. Now define the equivalence relation \sim in terms of *v*, and let N_i and E_i be as before. Explicitly, we now have:

$$
i \sim j
$$
 if and only if for $x, y \in C_n$,
\n
$$
d_i^2 |x_i|^2 + d_j^2 |x_j|^2 = d_i^2 |y_i|^2 + d_j^2 |y_j|^2,
$$
\n
$$
|x_i| = |y_i|, \quad k \neq i, j
$$
\n(2.1)

and

 $k \neq i,j$

imply that $v_1(x) = v_1(y)$.

Define $V(A)$, \mathcal{H} , \mathcal{I} , \mathcal{U} , \mathcal{V}' as before for the standardized norm v , and let $V_1(A),$ \mathcal{H}_1 , \mathcal{J}_1 , \mathcal{V}_1 , \mathcal{V}_2 be defined correspondingly for v_1 . The basic results translating theorems for v into theorems for v_1 are that $v_1^0(A) = v^0(DAD^{-1})$ and $\mathcal{V}_1(A) = V(DAD^{-1})$ (Nirschl and Schneider [7]). Hence $K \in \mathcal{H}$, if and only if $DKD^{-1} \in \mathcal{H}$. Thus $\mathcal{H}_1 = D^{-1} \mathcal{H} D$. Explicitly:

6.2'

THEOREM Let *v* be an absolute norm on C_n , and suppose that $v(e^i) = d_i$, $i=1, \ldots, n$. Let $D = \text{diag}(d_1, \ldots, d_n)$. Then $K \in C_{nn}$ is norm-Hermitian if *and only if DKD⁻¹ is Hermitian and* $k_{ij} = 0$ *if i* $\sim j$.

Theorems (6.5) and (6.7) become

(6.5)' Let $\chi_1(x) = \chi(Dx) = (\Sigma d_i^2 |x_i|^2)^{\frac{1}{2}}$, for $x \in C_n$. Then, for all $A \in \mathcal{J}$, $v_1^0(A) = \gamma_1^0(A) = (\rho(DAD^{-2}A^*D))^{\frac{1}{2}}.$

 $(6.7)'$ If *A* is v₁-normal, then DAD^{-1} is normal, and

$$
\nu_1^0(A) = \chi_1^0(A) = \nu_1(A) = \rho(A),
$$

where $v_1(A)$ is the numerical radius for v_1 .

Finally, $\mathscr{U}_1 = \exp(i\mathscr{H}_1) = D^{-1}\mathscr{U}D$, and

(7.8)^{\prime} The group of all isometries \mathcal{V}_1 is a semidirect product of \mathcal{U}_1 and \mathscr{P}_1 , where $\mathscr{P}_1 = D^{-1} \mathscr{P} D$ is finite.

9

In [11], Tam presents several results which, restricted to C_n , are the special cases of some of our results when the norm is invariant under every permutation matrix.[†] We shall show that it is possible to obtain the conclusions of [11], Theorems 2 and 3 (restricted to C_n) under a somewhat weaker hypothesis.

Let *G* be a subgroup of S_n . Then *G* is called doubly-transitive if for all ordered pairs (i, j) , $i \neq j$, and all ordered pairs (k, l) , $k \neq l$, $\{i, j, k, l\} \subseteq$ $\{1, \ldots, n\}$, there exists a permutation $\sigma \in G$ such that $\sigma(i) = k$ and $\sigma(j) = l$.

9.1

THEOREM Let *v* be an absolute norm on C_n with $v(e^1) = 1$, and let G be the $subgroup$ of S_n defined by $\sigma \in G$, if P_σ is an isometry. If G is doubly transitive, *then either*

a) $v = \chi$,

or

b) i) $\mathcal H$ consists of all real diagonal matrices and, for $H \in \mathcal H$,

 $v^0(H) = \max\{|h_{ii}|: i = 1, \ldots, n\}.$

ii) *U* consists of all diagonal matrices U with $|u_{ij}| = 1$, $i = 1, \ldots, n$.

iii) $\mathscr P$ consists of all P_σ , $\sigma \in G$.

Proof Since $v(e^1) = 1$ and *G* is (doubly) transitive, it follows that $v(e') = (P_{\sigma}e^{i})$, for suitable $\sigma \in G$, $i=1, \ldots, n$. Hence v is standardized.

Case (a) There exist distinct *i*, *j* in $\{1, \ldots, n\}$ such that $i \sim j$.

By (7.5) and the double-transitivity of G, $k \sim l$ for all k, l, with $k \neq l$, and $k, l \in \{1, ..., n\}$. Hence, by (2.3), $v = \chi$.

Case (b) Suppose all equivalence classes for \sim are singletons. Then (i) follows from (6.2) and (6.5) and (ii) from (7.3) . For (iii) , observe that every permutation matrix which is an isometry is a block isometry.

9.2

Example Let $n \geq 3$ and $1 = a_1 > a_2 > \cdots > a_n \geq 0$. In C_n , set

$$
\mu(x) = \sum_{i=1}^n a_i |x_i| \quad \text{and} \quad v(x) = \sup \{ \mu(P_\sigma x) : \sigma \in A_n \},
$$

where A_n is the alternating group on $\{1, \ldots, n\}$. (If $n \geq 4$, then A_n is doubly transitive.) Then ν is a standardized absolute norm on C_n , and if *G* is defined as in Theorem (9.1), then $A_n \subseteq G$. Let $x = (a_1, ..., a_n)$, $z = (a_2, a_1, a_3, ..., a_n)$. Then by a result found in Hardy, Littlewood and Polya ("Inequalities,"

(10.2)), it follows that
$$
v(x) = \sum_{i=1}^{n} a_i^2 > v(z)
$$
. Hence $G \neq S_n$, and so $G = A_n$.

t We are indebted to John Duncan for pointing this out to us. This section was written after the rest of this paper was completed.

References

- [1) F. L. Bauer, On the field of values subordinate to a norm, *Numer. Math.* 4 (1962); 103-113.
- [2] F. L. Bauer, J. Stoer, and C. Witzgall, Absolute and Monotonic Norms! *Numer. Math.* 3 (1961),257-264. :
- [3) F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces. and· of Elements of Normed Algebras, *London Math. Soc. Lecture Note Series 2* (1971).
- [4] M. J. Crabb, Some results on the numerical range of an operator, J. *London Math. Soc . .* (2) 2 (1970), 741-745.
- [5] D. Gries, Characterizations of certain classes of norms, *Numer, Math.* **10** (1967), 30–41.
- [6] A Lumer, Semi-inner product spaces, *Trans. Amer. Math. Soc.* 100 (1961), 29-43.
- [7] N. Nirschl and H. Schneider) The Bauer Fields of Values of a Matrix, *Numer.* Maih. $6(1964)$, $355-364$.
- [8) T. W. Palmer, Unbounded operators on Banach spaces, *Trans. American Math. Soc.* $133 (1968), 385-414.$ \blacksquare
- [9] T. W. Palmer, Characterizations of C·-algebras, *Bull. American Math. Soc. 74(1968),* 11 W. Tabler, Charles Charles & C angles as, 2011 Theorem, 1241. 2001 / (1900),
- [10] I. Vidav, Eine metrische Kennzeichnung der selbstadjungierten, *Operatoren. Math. Zeit. 66* (1956), 121–128.
- [II] K. W. Tam, Isometries of certain function sp~, *Pacific* J. *Math.* 31 (1969), 233-246.
- [12) C. Zenger. On the convexity properties of the!Bauer field of values of a matrix. *Numer. Math. 21* (1968). 121–128.
 Math. 31 (1969), 233–24

[11] K. W. Tam, Isometries of certain function spaces, *Pacific J. Math.* 31 (1969), 233–24

[12] C. Zenger, On the convexity properties of the Bauer field of values
-
- [14] J. Stoer and C. Witzgall. Transformations by diagonal matrices in a normal space. *Numer. Math. 4 (1962), 158-171.*

÷

t