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Let v be a (standardized) absolute norm on en. A matrix H in enn is called norm­
Hermitian jf the numerical range V(H) determined by v is real. Let :re be the set of all 
norm-Hermitians in en"' We determine an equivalence relation'" on {t, .•. , n} with 
the following property: Let HE en"' Then HE :re if and only if H is Hermitian and 
h,) = 0 if i + j. Let,l =.# + i:lC. Then.l is a subalgebra of en" and, for A e.1, 
Jl(A) equals the Euclidean numerical range and hence is convex. Let "f/" be the group 
of isometries for v, and let tpj = {exp(iH): H e2}. Then d/J is a nonnal subgroup 
of't" and 't" = dII~, where 9' is a group of permutation matrices. 

• For an operator, the concept of the numerical range (field of values) with 
respect to a norm on the under1ying space was introduced independently by 
Lumer [5] and Bauer [1]. By now there are many interesting applications 
(cf. Bonsall and Duncan [3]); some of the most fascinating concern nOrtn­

Hermitian operators-operators whose numerical range is real. In this paper 
we consider a special but not unimportant case: (1) OUf space will be Cn, 

the complex n-tuples-concretely given; and (2)' We shaH consider a norm 
v which depends only on the absolute values of the coordinates of x e en. 
Such norms are called absolute (cf. Bauer, Stoer, WitzgaIl [2], and Bauer 
[1]). For the sake of convenience we shall also standardize v so that v(e i) = 1, 
for all canonica1 basis vectors e' in C,.. 

OUf main results are these: 
We show that it is possible to determine an equivalence relation - .ou 

{I, ... , n} such that a matrix H in C,." is norm-Hermitian if and only jjf' 
H is Hermitian,! and hI) = 0 if i rlJ j (theorem (6.2)). If .tf is the set ~ 

t The research of one of the authors was supported in part by NSF Grant GP-J781i .. 
~ We shall always use the term Hermitian matrix H in the traditional sense: h'J= 'po 

i,j = 1 •.. '0 n. A matrix with real numerical range will be called norm-Hermitiaa df' 
v-Hermitian. 
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norm-Hermitian matrices and .I = JIf + IJIf, then .I is a subalgebra of 
C .. , and for each A e.l, the numerical range V(A) equals the Euclidean 
numerical range. Hence V(A) is convex for all A e .l (theorems (6.3) and 
(6.4» . Let VO be the operator norm associated with v. We also show that 
vO(A) = ;t'°(A), for all A e.l, where l. is the Euclidean norm on C, (6.5). 
It is well known that, for He JIf, exp(iH) is a v-isometry on C,. By use of our 
characterization of norm-Hermitian matrices, we show tbat the set d/! of all 
v-isometries of the form exp(iH), He JIf, forms a normal subgroup of the 
group 1'" of all v-isometries, and tbat 1"'1d/! is finite. More precisely. there is a 
group i?i' of v-isometries which are also permutation matrices such that for 
each Ve 1'" there exist unique Ued/!, Pef1J' such that V = UP (7.3, 7.7. 7.8). 

While the absoluteness of the norm v plays an essential role in our results. 
the standardization vee') = I, i = I • . .. , n is a matter of convenience. Thus. 
a simple modification of our results will make them applicable to all absolute 
norms. In the case of our main theorems, we give them also in this more 
general form. 

., 

NOTATIONS AND DEFINITIONS 

1.1 Coordinate subs paces 

Let C be tbe complex field. R tbe real field, R+ the set of nonnegative numbers. 
We put 

. C, = {x = (x" ... , x,): x, e C} 

and define R .. R: analogously. Bye'. i = 1, ... , n we denote the vector in 
C, (or R,) defined by el = I, e} = 0 otherwise. We call e' a unit vector. 
A coordinate subspace of C, (or R,) is the space. spanned by a set of unit 
vectors. 

1.2 Norms 

On C, (or on any coordinate subspace of C,), ;t' will denote the Euclidean 
norm 

l.(x) = (lx,I' + ... + Ix,I')t. 

If x e C .. then Ix l = (lx,l, ... , Ix,l) e R;t . 
A norm on C, is (as usual) a function v of C. into R+ such that 

i) vex) = 0 if and only if x = O. 
ii) vex + z) '" vex) + v(z) 

. iii) v(<U') = J "'lv(x). for", e C . 
. , , 

A norm v is called absolute if. in addition. 

• 
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iv) vex) = v(lxl), aU x e Cn, 

and standardized if 

v) vee') = 1, i = 1, ... , n. 

Unless otherwise stated, v wHI always denote a standardized absolute norm. 

11 

We also make the following conventions. If x e Crt, then x, is the ith 
coordinate of x. On the other hand, if Cn is split as the direct sum of co­
ordinate subspaces: Crt = El Ea ••• $ E" x(f) will denote the component of 
x in E,. If dim E, = m, then xCI) e Cm, and we therefore write 

x = X(l) (9 • • • E.9 x(r) 

(rather than X = X(I) + · .. + x(r»' 

1.3 Dual norms and numerical ranges of matrices 

For x, Y E en, we put 
(y, x) = YIXI + ... + y"xn' 

lfv is a norm on en, so is vD : 

D( ) I<y, x)1 
v Y = SUP.x;r:o v(x) • 

If v is absolute, so is vD (cf. [2]), and it is easy to see that if v is standardized 
absolute, so is VD. 

If X, Y e Cn, and 1 = (y, x) = vD(y)v(x), then Y is called dual to x; we 
write yllx. It is well known that for each x e en, x -:F 0, there is at least one 
y E Cn such that yllx, and for each y E en, Y ¥= 0, there is an x E Cn such that 
yllx. 

By eM we denote the set of all (n x n) matrices over C. The nwnerical 
range YeA) for A E e"" is defined by 

YeA) = {<y, Ax): x, y E en and Yllx}. 

If YeA) is real, then A is called norm-Hermitian or v-Hermitian. 

2 

2.1 

DBFlNmoN Let v be a standardized absolute norm Cn• On {I, 2, ... , n} we 
define a relation - thus: i - j if for all x, y e Cit such that 

Ix,1 2 + Ixl1 = IY~12 + lyJl2, and )xJ:1 = IYItI, for k -:F i,j, 

we have v{x) = v(y). 
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2.2 

LEMMA The relation ~ is an equivalence relation on {I, 2, •.. , n}. 

Proof Since v is absolute, i ~ i for ;." i = 1,2, ... , n. Clearly, i ~ j 
implies that j ~ i. Suppose that h, i, j are distinct integers with h ~ i and 
I ~ j. For x E C" define x by x. = x, = 0, x, = (lx.I' + Ix,I2 + Ix,12)! and 
x. = Ix.1 for k i' h, i,j. It is easy to see that v(x) = v(x). Now suppose that 
x, y E C., and Ix.12 + IxJi' = ly.1 2 + ly,12, and Ix.1 = Ihl for k i' h,j. 
Then Ix.I' + Ix,l' + Ix,I' = ly.I' + ly,I2 + Ihl' whence x = y. Thus 
v(x) = v(x) = v(ji) = v(y). It follows that h ~ j. 

2.3 

LEMMA Let v be a standardized absolute norm on C •. Let Nlo .•. , N, be the 
equivalellce classes in {I, ... , II} given by ~. Let E. be the coordinate subspace 
spanned by the vectors e' with i EN., and write x E C. as x = x(.)e ... E9 x(", 
where x(') E E,.. Then there is a standardized absolute norm fJ on C, such that 
v(x) = fJ(X(x(.), ... , x(x(,,». 

Proof Let us suppose that N, = (I, ... , s) (to save writing). Put 
x(l) = 0 e X(2) e ... e XI')' Then 

v(x) = {,t. x,e' + x(.)) 

= V(lx.I' + Ix,I')!e' + ± x,e' + x(!)) ••• 
1-3 

= v(x(x(.)e' + x(l). 

After repetitions of this argument, we have 

v(x) = v(x(x(.)e" + ... + X(x(,)e"), 

where j, E N" I = I, . .. , r. So, for a E C" we define 

fJ(a) = v( t a.e") • . -, 
Then v(x) = fJ(X(x(.,), ... , X(x(,,». It is easily verified that fJ is a standardized 
absolute nOrm on C,. 

2.4 

COROLLARY Let U E Coo be a unitary matrix such that U" = 0 if i ... j. 
Then U is a v·/sometry (i.e., v(Ux) = v(x)for all x E C.). 

Proof We may write 
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-

U = UJ ffi .. • ffi U" where Ui is a unitary matrix on E" i = 1, ...• r. 

Since X(U,X(I») = X(x(l»)' i = 1, ... , r, we have 

vex) = Jl(x(x(1»)' ••• , X(X(r»)) = Jl(X(UtX(I», ••. , X(U,x(r») = v(Ux). 

2.5 

COROLLARY Ifi AJ j for all i,j E (1, .•. , n), then \I = x. 
Proof In this case X(J) = x E em and so by (2.3) and since Jl. is 

standardized, vex) = Jl(X(x» = x(x). 

3 

In this section we shall explore the geometric significance of the equivalence 
relation introduced in Section 2. We begin with a simple geometric lemma on 
real 2·space. 

If K is a convex body in R2 , denote its boundary by oK, and put 
K+ = KnRi. 

3.1 

LEMMA Let K be a convex body in R2 such: that 0 E K, (1,0) E oK alld 
(0, 1) E oK. Then there exists a P = (Xh Xl) E oK with Xl > 0, X2 > 0 such 
that the perpendicular I to OP throughP is a support line to K. 

Proof For each 8, 0 ~ 8 ~ n12, let r(8) E (cos 8, sin 6) E oK. Then r is 
nonzero and continuous in [0, nI2]. Hence r attains its maximum M and its 
minimum m in that interval, and 0 < m ~ 1 ~ M. 

We consider three cases (which overlap). 

Case 1 m = 1 = M. 
In this case K+ is a quarter circle. If P is any point on the boundary, the 

perpendicular I through P is a support line to K. 
Case 2 1 < M, say r(Oo) = M. Clearly 0 < 60 < n/2. Thus K+ is con .. 

tained in the circle center 0, radius M. If P = r(00)(c08 60 , sin 00), then 
I is a support line. 

Case 3 m < 1, say r(Ol) = In. Again 0 < 61 < n/2. Let 

P = r(OI)(coS Oh sin ( 1), 

and I the perpendicular to OP at P. We claim that I is the (only) support line 
to K at P. Suppose I is not a support line to K at P. Then there exists a 
support line I' at P, and [' is not perpendicular to OPe Since (1,0) e K, 
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(0, I) e K, and IOPI = m < 1, the slope of I' is negative. Hence the per­
pendicular to. l' from a meets l' is a point Q in the first quadrant. Clearly 
IOQI < IOPI .. Since Q is either On the boundary of K or in the exterior of K, 
there is a poin t R = r(O.)(cos 0., sin 8.), 0 < 0. < 11/2 on OQ which is on 
the boundary of K. Thus 

r(O.) = IORI ,,; IOQI < IOPI = m, 
a contradiction. 

The lemma is proved. 

3.2 
COROLLARY Let K be a standardized absolute norm on C •. Then there exists 
an x e Rt, with Xl > 0 and x. > 0 such that (x, x)-lxllx. 

Proof Let K = (x e R.: K(X) ,,; I}. Then K is convex and satisfies the 
conditions of (3.1). Let P = x, where Xl > 0, X. > 0, be a point such that 
the perpendicular I through P to OP is a support line to K. Tben for all 
z e Rt, we have (x, z) ,,; (x, X)K(Z). Since K is absolute, it follows that 
I(x, z)1 ,,; (x, X) K(Z) for all ze C •. Hence KD(X) = (x, x ) , and (x, x)-lxllx. 

3.3 

DEFINITIONS I) Let 1 ,,; i,j ,,; n; i "" j. In the rest of this section, we shall 
write E' = span(e',e'}, E' = span(e':k "" i,f}. For xeC .. lVe shall put 
x = x' (£) x', where x' e E', x ' e E'. Also x' = (XI> x,), and we shall identify 
x' and 0 (£) x ' , where 0 e E'. 

2) Let K = (xe C.: v(x) ,,; I}. Ifx' eE' andv(x,)"; I, weput 

K." = (x'eE':v(x'(£)x') ,,; I}. 
We call K •• a section of K. Suppose that x' e E' and v(x') ,,; I. Let K.· be 
the mapping of E' into R+ U (oo} defined by 

K •• (X') = in11X > 0: ~x' e K •• ) . 

(Thus KAx') = 00 if fJx' e K." and fJ ." 0 imply that fJ ~ 0.) 
3) We shall call K •• circular if there is!: "onnegatil'e r st!ch thaI 

K." = (XI> x,): Ix,I' + Ix,I' ,,; r'} . 

4) Let x = x' (£) x', y = y' (£) y' be elements of C •. We shall write ylx if 

a) y llx, 

and 

b) There·!S/ppositive d such thaI y' '= dx' . 
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3.4 

LEMMA Let x" E Eft with vex") ~ 1. Then 

1) K,," is a convex body in E' with 0 E KX"' 

2) x' E KX" if and only if Ix'i E K,,'" 
3) Ifv(x") < 1, then 0 e int Kx'" 
4) If v(x") < 1, then Kx" is an absolute norm on E' and is standardized if 

x" = o. 
Proof 1) Clearly 0 E KX" since v(O E9 x") ~ 1. If x', y' e Kx" and 

o ~ rx ~ I, then 

v(rxx' + (1 - rx)y' ffi Xl ~ <xv(x' E9 x") + (l - rx)V(y' E9 x") ~ I, 

when rxx' + (1 - ct)y' E KX"' Thus KX" is convex. 

2) Sincev(x' E9 x") = ,,(Ix'i $ Xl, 2) follows. 
3) Suppose v(x'!) < 1. Then for all x' E E' with vex') < 1 - v(x"), we have 

vex' E9 Xl ~ vex') + v(x") < 1, whence x' e Kx '" Hence 0 E jnt Kx'" 
4) Follows immediately from 1),2), and 3). 

3.5 
THEOREM Let v be a standardized absolute norm on Cn, and let 1 ~ i, j ~ n. 
Then i I'V j if and only if for all x" e E" with v(x") ~ 1, the section Kx~ is 
circular. 

Proof Suppose that i I"V j and let x" e E" with VeX} ~ 1. Let x', y' e E' 
and asswne that X(x') = X(y'). Then v(y' E9 x") = vex' €a x"), Hence x' E Kx" 
if and only if y' e K,,", Thus Kx" is circular. 

Conversely, suppose that Kx" is circular for all x" e E" with v(x") ~ l. 
Let x, y e E and assume that x =: x' ffi x", y = y' E9 y" where X(x') = X(y,) 
and Ix"l =: ly"l. If x' = 0, theny' = 0 or vex) = v(y). So suppose that x' =F 0, 
Thus y' :F O. Put u = x/vex), v = y/v(x) and observe that v(u) = 1. If 
u = u' Ea u", then v(u") ~ 1, since v is absolute (cf. [2]). Thus u' e Ku '" 

But if v = v' E9 v", then xCv') =: X(u'), and since Kg" is circular, we also have 
that v' e Xu'" Further Iv"l = lu"j. whence v(v) = v(v' E9 u") ~ 1. It follows 
Lhal -vex) ~ li{y). ReverSIng lhc roles of x and y. we obtain v(y) ~ v(x), 
whence vex) =: v{y). Thus i ~ j. 

3.6 
LEMMA If/or all x" e E" with v(x") < 1, the section K:it" is circular then KJC" 
is also circular iJxH e E" andv(x") = 1. 
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Proof Let x" E E" with v(x") = I. Let x', y' E E', x' E K." and x(y') = X(x'). 
We must show that y' E K.". 

Let 0 < e < I. Since vex' (j) x") .. 1 and v is absolute, vex' (j) (1 - e)x")" 1. 
But K(,-,)z" is circular, whence v(y' (j) (I - e)x") .. I. Hence also 

v(y' (j) x') .. I, 

and the desired result y' E K." follows. 

3.7 
LEMMA Let x = x' (j)x"ER;;, wherev(x") <vex) = 1. lfy=y'(j)y"ER;; 
and yllx then x' ¥ 0, c-' = I - (y", x") > 0 and cy'lIx' with respect to the 
norm K,,'" 

Proof Clearly x' ¥ O. Since vD(y') .. vD(y) .. I, I - (y", x") > O. 
Hence c = (I - (y", x'»-' > O. Clearly (y', x') = I - (y", x"). Let 
K.-(Z') = I. Then also KAI.'I) = I, whence v(lz'l (j) x') = I. Hence 

(y', 1%'1) + (y', x") .. 1 
whence 

I(y', %')1 .. (y', 1.'1) .. 1 - (y', x') 

Hence (K.-)D(y') = I - (y', x ' ) = c-' and cy' lIx', with respect to K.-. 

3.8 
LEMMA Let x" E E" n R;;_z, wherev(x") < I. Suppose thatforall x' E E' n Rt 
such that vex) = I, x = x' (j) x', there is ayE R;; such that ylx. Then the 
the section K .. is circular. 

Proof Let x' satisfy the hypotheses of the lemma. Let y E R.,+, y I lx, 
vD(y) = 1 and y' = dx', where d > O. By (3.7) there is a positive c such that 
cY'IIx' and hence cdx'lIx' with respect to the Dorm K.-. Applying Lemma (3.1) 
of Gries [51, we see that the corresponding norm body K.- n R, is circular. 
But by (2) of (3.4), it now follows that K." is circular in the complex space E'. 

3.9 
ThEOREM Let v be a standardized absolute no;m and let E', E' be defined as 
in (3.3). Suppose for all x E R;; with vex') < vex) = 1 there is ayE R;; such 
that ylx. Then i - j. 

Proof Let x' E E' n R;;_z, where v(x") < 1. By (3.8), K.- is circular. 
It follows from (2) of (3.4) that K.- is circular if x" E E' and vex') < 1. But 
now it follows from (3.6) that K." is circular for aU x' e E' such that v(x") .. 1. 
By (3.5), i - j. 

~: " 
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4 

4.1 

LEMMA Let E" i = 1, ... , r be coordinate subspaces of Cn such that 
en = E1 ffi ... ffi E,. Let J.. l be a standardized absolute norm on E" let p be 
a standardized absolute norm on C" and suppose 

V(X(l) Ef) ••• EB xCr») = p(A1 (XCl»), •• • ,)..,(x(,.»)) (4.1.1) 
where x(i) E Eit ; = 1, ... , r. Then 

1) v is a standardized absolute norm on ClI , 

2) VD(yCl) E9 •.. Ef) Y(I») = JlD(Ap(Y(I»)' ••• ) A~(Y(r»)) 

for Y(l) e Eh i = 1, •• " r. 
Further, let x = XCI) EB ••• $ xCr), x(i) E E" Y = YCI) $ · , . e YCr), Y(I)eE" 

andsupposethat A;(X(I») = ai' ;'P(y(J») = p,,; = 1,., .,j.Lela = (rxh"" a,), 
p =;; (ft It •• " P,), Then 

3) y IIx with respect to v if and ollly if 
a) /1 IIIX with respect to /1, and 
b) Pi'IY(I)II~i'IX(I) with respect to A" whenever Pia, > 0, i = 1, •.. , r. 

Proof 1) Let 

Thent 

x = X(l) E9 • • , 6:) XC,), 
z = Z(1) Ef) ••• e Z(r)' 

vex + z) = Il(AI(X(1) + z(1»)' , , ., A,(XC,) + z(,.»)) 
~ JLO"l(X(I») + A1(Z(I»)' , •• , A,(Xer») + ).,(z(r»)) 

~ JlO'l(X(l»), ••• , A,(X(,.»)) + ).t(AI (z(1»)' ••• , A.,.(z(r»)) 
= vex) + v(z). 

~ere the first inequality follows from the absoluteness of /1, Similarly, 

v(rxx) = Irxlv(x), and v(lx!) = vex), 
since all of).t and)" are absolute. Clearly v(e~ = Ai!), for ~omej, 1 ~ j ~ r, 
and some unit vector f of Ej , whence v(e~ = 1. This proves 1). 

2) and 3) Suppose that IX and' p are defined as in the statement of the 
lemma. Let ye Cn• Then for any x with vex) = 1 we have Jt(r:t) = 1 and 

I(y, x)1 ~ I<Y(I)' x(1»1 + ' .. + I<Ye,), xc,»1 
~ /11rt1 + ... + /1,.rt,. 
~ p.~(fJ)J1(rt) = p.D(fJ). 

Hence vJ>(y) ~ pD(ft). 

t This argument also occurs in Ostrowski [13] p. 12, where it is merely assumed that I' is 
monotonic in R:. 

2 
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Suppose further that x is so chosen that {J II'" and that for i = I, ... , r, 
{J,ly(/, I1""IX(/" whenever (J,a./ > O. Since <Y(/" xIi»~ = 0 whenever (J,a./ = 0, 
it follows that 

<y, x> = <Y(I)' X(I» + . .. + <Y(')' xI"~> 
= {JI"'I + .. . + (J,rx, 
= flD(JI)fl(l1.) = 1. 

Hence vD(y) is given by 2), and if x satisfies the conditions of 3), then y llx. 
We must still prove that for all pairs, x, y e C, with Y I~, the conditions of 

3) are satisfied. So suppose that Yllx. Then 

I = <y, x> = vD(y)v(x) = flD(JI)fl("') 
and 

(0) <y, x> = <Y(l)' X(I» + ... + <Y(')' xI'»~ 
.. I<Y(I)' x(I»1 + ... + I<y(,), x(,»1 
.. {JI(1.1 + ... + (J,(1., 
.. flD(JI)fl«(1.). 

Hence all inequalities in (0) are equalities, and 

I = flD(JI)fl(l1.) = {JI(1.1 + ... + {J,I1.,. 
Thus {J1I(1. follows. 

Finally, suppose that (J,a./ > O. Since I<Y(/), x(/»I .. (J,a./ and since we have 
equalities in (0), we may deduce that 

<YII)' x(I» = I<y(/), x(/»I = P,a./. 

Hence I = <p, I YII)' (1., I X(/') = AP(fJ, IY(i,»),'«(1.i' lXI/I)' Thus Pi' Iy(/) 11oci' I X(/)' 

4.2 

Counterexample If we drop the condition that the A/ are absolute, then v will 
still be a norm on C •. But the condition that fl is absolute cannot be omitted. 
Consider the following counterexample. Let E" E. be the two one­
dimensional coordinate subspaces of C •. Let )'I(X;) = lXII, ) .. (x.) = Ix.l, 
and let fl«(1.1o (1.,) = max{I(1.1 - 11.,1,1(1., I}, and let V(X1o x,) = fl(),I(XI), ),,(x,). 
If x = (2, I), z = (I, -I), then x + z = (3, 0). Hence ' 

V(x) = fl(2, I) = I, 
v(z) = fl(I, I) = I , 

but 
v(X + z) = fl(3, 0) = 3. 

Thus v(x + z) > v(x) + v(z). 
We next slightly extend an important restilt due to Zengert [12]. (2.26). 

t See also S,o,,, and Witzgall (141. Theorim I. 
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4.3 

LEMMA Let Jt be an absolute norm on C,. Let y, ~ 0, "J 1 + 0 • 0 + "J, = 1. 
Then there exist IX, p e Crt such that p IIIX and p,IX, = Y l' 

Proof If all y, > 0, then the existence of such IXt 13 is guaranteed by 
Zenger's Lemma [12]. So suppose that, after reordering coordinates, "il > 0, 
i = 1, • 0 OJ S, "i, = 0, i = s + 1,0' ., r, where s < r. There exist rx', 13' e C. 
such that ,8'lJrl (with respect to the restriction of Jl. to C/J)t and PiIXI = )", 
i = 1, 0 0 0, r. Let ,8 = ,8' ffi 0, rx = rx' EJ) 0, where ° is zero vector of C,_ •. 
Since Jt is absolute, PUIX and clearly P,IX, = 'Vb i = 1, 0 •• , r. 

Remark Since,8 IIIX implies that ,l-1 P IIAIX, for ,l > 0, we may normalize 
Jt(rx) = J.I.D(JJ) = 1, jn the above lemma. 

4.4 
DEFINITION Let Lh .•• ,1:, be subsets of the complex plane. We define the­
convex sum of Lit 0 0 0, L, to be the set of all sums rx i O'l + 0 • 0 + rxr(J,J where 

r 

tT, e l:b 0 ~ IX, ~ 1, i = 1, ... , rand L rt, = 1. 
'=1 

Observe that the convex sum of sets need not be a convex set. 

4.5 

LEMMA Let E j t • 0 ., Er be coordinate subspaces of Cn, and let v be given as in 
(4.1). Let A = At Ee .•. ffi Art where A, is a matrix acting on E" i = 1, ... , r. 
Then the numerical range of A is the convex sum of Vi (A 1), 0 •• , Vr(A,), where 
V,(A J is the numerical range of A, with respect to the norm A,. 

, 
Proof Let 'Ve R:, 0', e V,(A,), i = 1,. 0 ., nand (1. = L "i,(Ji where 

, 1=1 

L 'V, = 1. 
1= 1 

Then there exist Yw, x(l> E Eit such that y,lIx, with respect to Ab 

Aj(XJ = AP(y,) = 1, and (y~,), A,x(I» = tT,. 
By (4.3) there exists IX, PERt such that /3 "IX with respect to It, and p,(f., = 'V,. 
Let 

x = (f.1X(1) E9 • 0 • e (f.,x(r), 

y = /31Y(1) E9 • • • $ fJ,Y(r)O 

By (4.1), y\lx with respect to v. But 
, , < 

(y, Ax) = L p,f1.'(Y(O' x(I) , 
1=1 
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, 
= L A.iO'I = U, 

,=( 
whence (J e V(A). 

Conversely, let (J e V(A), say (J = (y, Ax) where yllx with respect to 1'. 

Let us now wri te 
x = X(l) E!J •.• EB xC,) 

Y = Y(I) Ell ••• Ell Y(')' 

where we put 11., = l,(xio), p, = AP(Yio). Let us suppose that y, = P,a., > 0, 
i = I, ... , s .;; r, and y, = P;a, = 0, f = s + I, ... , r. Then putting 
xC') = 11.,-1:«0' y, = PCI/Y', i = I, ... , s, we have by (5.1) that PII'" with 
respect to Jl., and YCi)lIxcl) with respect to AI> i = I, ••• , s. Hence 

(J, = (yc/), A,xCi) e V,(A,), i = I, ... , s. 
, 

Buty,;' 0 and L y, = I, and so 
i=i 

, " 
(y, Ax) = L (YC')' A,x(i) = L y,(J, = L y,(J,. 

' - 1 l = 1 l=1 

The lemma is proved. 

Comment Thus. for a norm v satisfying v(x) = Jl.(AI(XCI»,' •• , l,(xC'»)' 
as in (4.1.1), and A "" A, Ell ... Ell A" the numerical range V(A) does not 
depend on Jl.. In particular, if v is any (standardized) absolute norm on C" 
and D = diag(d" ... , d.), then V(D) is the convex hull of dl , • •• , d .. 
cf. Gries [5]. 

If v is any norm on C .. then the corresponding operator norm 1'0 on C. 
is defined 

l'°(A) = sup{v(Ax): 1'(x) = I}. 

It is well known, and easy to prove, that 

1'O(A) = sup{l(y, Ax)!: 1'(x) = I, 1'~(y) = I}. 

4.6 

LEMMA Let EI> i = I, ... , r be coordinate subs paces of IV such that 
E, Ell •.• Ell E, = C •. Let A, beastandardized absolute norm on EI> i = I, •.• , r 
and Jl. a standardized absolute norm on C" and let v be given by (4.1.1). Let 
A e CM and ~suppose :that A = AI Ell' •• Ell A" where A, is a matrix on E,. 
Then 

1'O(A) = max{l?(A,): i = 1, ... , r}. 

Proof Let max {.!Y(A): i = I, ... , r} .= .!~(AJ, where I .;; k .;; n. Then 
using (4.1). we-obtain 
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vO(A) = sup{l(y, Ax)l: vex) = 1, vD(y) = 1} 

~ sup{ t I(Y(i)' A,X(l» I : ,t,(X(i)) = rx" ;'P(Y(t» = Pit p(rt.) = JlD(fJ) = I} 
1=1 

.;; sup{t, IP,l?(A,)IX,I: IX, PEE;;, /I(IX) = /ID(fJ) = I} 
~ ,t~(A,J( t Pll.,: rt., peR:, /l(rt.) = /lD(fJ) = 1) 

1=1 

~ ,t~(Ak)' 

On the other hand, let X(k), Y(k) e E" such that Ak(X(k») = Af(y(k» = 1, and 
).2(A,,) = (Y(k)' A"X(k».' If x(i> = Y(l) = 0, for i '# k, then vex) = /l(e~ = 1. 
vD(y) = JlD(ek) = 1, and (y, Ax) = (Y(k)' A~(,,» = Af(A,J. 

The lemma is proved. 
We comment that it is almost as easy to prove (4.6) directly from the 

definition VO(x) = sup {v(Ax): vex) = I}, without use of (4.1). When 
dim E; = 1, i = 1, ... , n, (4.6) reduces to the well known theorem that 
vO(D) = max{ldul, i = 1, ... , n} for a diagonal matrix D, cf. [2]. 

5 

5.1 

LEMMA Let n = {u e Cn: IUil = I}. Let Ke Cnn be a Hermitian matrix sues 
thalku = 0, i = 1, .. . ,n.lf(u,Ku) = Oforalluen, then K= O. 

Proof The proof is by induction on n. Evidently the result is true for 
n = 1. Suppose that it holds for n = r - 1, and let n = r. 

Setting u, = el8f , we have 

whence 

(u, Ku) = L k'je-;(Or(J,) 
1 ~'.j~r 

= 2 L Re(kijei(8 f -8J) 

1~i~J~r 

- Re« L k"e-iO')eIO,,) = Re( L kfje -i(Of-8J» 
1~i~,-1 l~t<J<r-l 

Since this holds for all (Jr' it follows that 

L k're- iO
, = O. 

1 ~'~r-l 

Againt this holds for all Olt ... , (Jr-l' 

We can choose (r - 1) linearly independent vectors 

(e-181 e-IO(,._I») e g .~ _ (;.~11 ;. .. 2" O)(r-l)3\ , • • a, ,.., IJ - UJ, \.oU , ••• , , ) 
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where ro is a primitive rth root of 1. Hence 
k", == k tr = 0, i == I, . . " r - 1. 

Now we obt~in that for all 0, 
l: klje- I(9r 9d = 0, 

l1'iI.J ~ ,-l 

whence by inductive assumption k,} = 0, i,j = I, ... , r - 1. Thus K = 0. 
The lemma follows by induction. 

5.2 

LEMMA Let 0= {u E C,: lu,l = I, i = I, .•. , n}. Let A E C,,, where all 
is real, i = I, ... , II. Iffor all u E 0, (u, Au) is real, then A is Hermitian. 

Proof Let A = H + iK, where H, K are Hermitian. Then k" = 0, 
i = I, ... , II. Since (u, Ku) = 0, for all u E 0, we obtain K = 0 by (5.1). 
Hence A = H. 

6 

6.1 

LEMMA Let v be a standardized absolute norm. Let N" E, be as in (2.3). If 
A E C .. is such that A = A I Ell ... Ell A" where A, Is a matrix on E" then 
V(A) = V,(A), where Vz(A) is the Eue/idean lIumerical range. 

Proof Let x = X(I) Ell ... Ell XC,), where xC') E E,. By (2.3) 

v(x) = 1'(x(X(I»), ••• , X(x(,»)), 

where I' is a standardized absolute norm on C,. By (4.5), therefore V(A) is 
the convex sum of the V,(A,), i = I, ... , r. But V.(A,) = V,(A,) since)., = X. 

Next, note that 
X(x) = X(X(X(l»)' ... , X(x(,»)) 

and recall the comment after (4.5) that V(A) does not depend on 1'. Thus 
V,(A) is also the convex sum of the V,(A,), i = 1, ... , n. Thus V(A) = V,(A). 

6.2 

THEOREM Let v be a standardized absolute norm on C,. Let the equivalence -
be defined as in (2.1). Then HE C .. Is norm·Hermitian if alld only if 

a) hI} = Ti}, for i - j, 
and 

b) hI} = 0 for i - j. 

Proof S~ppose H satisfies a) and b). If N" E" i = 1, ••. , r are defined as 
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in (2.3), then H = Hl E9 ... ffi H,., where H, is a Hermitian matrix on E j • 

Hence, by (6.1), VCR) = V,,(R), which is real. Thus H is norm-Hermitian. 
Conversely, suppose that H is norm-Hermitian. Since ei l1e i

, i = 1, . , ., n. 
it follows that hu = <e l

, He') is real. Suppose that x, Y E R:, yllx. Let 
K E Cnn be given by klj = y,h,jxj , i,j = 1, .. "n. Let n = {u E Cn: IUil = 1, 
i = 1, ... , n}. If we define v, WE Cn, by V, = UfX" Wi = U,YiJ then wllv. 
Hence <w, Hv) = <u, Xu) is real. But kll is real, i = I, ... , n. Hence, by 
(5.2), K is Hermitian. It fol1~ws that 

c) yii},X, = y,hljxJ' i,j = 1, .. 0, n for all y, x E R: with yUx. 

Now let i,j be two fixed integers in {I, 2, .. OJ n} such that hi) 1= O. We must 
prove that Ii)I = hi} and that i .- j. We shall use the notation of (3.3). Thus 
for x' E E', Ko(X') = vex' E9 0), where, by (3.4), "0 is a standardized absolute 
norm onE'. 

Hence, by (3.2) we can find an x' E E' n Rt such that both coordinates of 
x' are positive, Ko(X') = 1 and there is a positive c for which ex'lIx' with 
respect to "0' If x = x' E9 0 e en, y = ex' Ef) 0, then x, > 0, x] > 0, y, > 0, 
Y] > O. Further, y IIx with respect to v, since (y, x) = (f', x') = 1 and for 
any z = Z' E9 zIt, v{z) = 1. Since for this particular x and y, we have 
YjX, = YIX] ¥- 0, it follows from c) that 1i)1 = hi] ¥- O. 

We may now deduce from c) that 

d) YJx, = y,Xj, for all y, x E R: with yllx. 
Suppose that x E R;i and that v(x") < vex) = 1. Since v is absolute, there is 
aye R: such that Y IIx. Then by d), y' = d"x' where dx ~ O. But by (3.7), 
y' #- 0, whence dx > O. Thus ylx. It now follows by (3.9) that i t'V j, and the 
theorem is proved. 

6.3 
THEOREM Lei v be a standardized absolute norm on Cn. Let 

j = {H + iK: H, K are norm-Hermitian}. 
Then ; = Jit ffi •.. E9 .A, where .4, is the complete matrix algebra on 
E,. Further J is Q subalgebra of enll• 

Proof Since any matrix At on E, is of form Al = H, + iK" where HI, X, 
are Hermitian, it follows that A e J if and only if A = At Ef) • • • Ee A,., 
where A, is a matrix on E" The result foUows immediately. 

6.4 
THEOREM If A e ,I, then V(A) = Vz(A) and is convex. 

Proof" By (6.3), A = Al El) • 0 • EB Ar, where A, is a matrix on E,. Hence, 
by (6.1), V(A) = Vz(A), which is convex. 
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An important theorem due to Vidav [!O] and Palmer [9] (cf. Bonsall and 
Duncan [3], p. 65) is now stated in a slightly special case. Let V be a Banach 
space and let "'" be an algebra of operators on V (normed by the operator 
norm) such that for each A E""" A = H + iK where H, K are norm­
Hermitian. Define A' = H - iK. Then there exists a Hilbert space V' and 
an isomorphism of"'" onto an algebra of operators"",' on V' which preserves 
both the norm and the star operation. 

Given the dimension of V, the Vida v-Palmer theorem by itself gives no 
information on the dimension of V'. In our special case, the impact of our 
next theorem is that one may choose V' = V. 

6.5 
THEOREM Let A E,I. Then vOCAl = XO(A). 

Proof By (6.4), A = Al EEl .•• EEl A" where A, is a matrix on E,. Hence, 
by (2.3) and (4.6), vOCAl = max{xO(AJ: i = I, ... , r}. But 

x(x) = X(X(X(I,), ... , X(x,», 

whence again, by (4.6), XO(A) = max{xO(A,): i = I, . . . , r} . The theorem 
follows. 

There are, of course, many obvious corollaries to (6.2) and (6.5). We 
shall give some immediate applications to v-normal matrices. 

6.6 
DEPINlTlON A matrix A E C" is called v·normal if A = H + iK, where 
H, K are v-Hermitian and HK = KH. 

If v = X, a v·normal matrix is normal ill the traditional sense. 

6.7 
THEOREM Let v be a standardized absolute norm alld let A be in C". Then 

I) A is v-normal if and only if A is normal alld a'i = 0 for i '" j. If A is 
v-narmal, then 

2) VeAl = co(sp A) 
3) veAl = peA). 
4) v"(A) = peA). 

(Here co(sp A) is the convex hull of the spectrum of A, vCA) = sup{lJ.I : J.E V(A)}, 
the numerical radius of A, and peA) is the spectral radius of A.) 

Proof I) The matrix A is v-normal if and only if A = II + iK, where 
H, K are Hermitian and hI) = k'j = 0 for i '" j. . 
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2) By (6.3), V(A) = V~(A), and ViA) = co(sp A). 
3) Immediate. 

4) Since A E /, vO(A) = XO(A), by (6.6) and XO(A) = peA). 

For operators on a Banach space, 3) is known to be true (Palmer [81), and his 
proof is much less elementary. By Sinclair's theorem [3, p. 54], p(A) = vO(A), 
where A is a norm-Hermitian operator. However, Crabb [4] has given a 
counterexample to 4) for a non-absolute norm on C4 • 

7 

7.1 

DEFINITIONS Let v be a standardized absolute norm. 
i) The set of aI/norm-Hermitian H in Cn" will be denoted by .Ye. 

ii) Let d/l be the set of all U E Cn" such that U = exp(iJi) for some Ii E .it. 

iii) The set of all isometries V E Cn" will be denoted by "1/'. 

The following theorem is known (cr. Bonsall and Duncan [3, p. 46]) 
(where it is stated for Banach Algebras): A matrix II E en" is norm-Hermitian. 
if and only if exp(itH) is an isometry for all real t. Thus d/l f; "1/'. However, 
our special case is so simple that there is no need to appeal to the above 
theorem, and our conclusion is stronger than tJlJ ~ "f/'. We first state a lemma. 

7.2 

LEMMA Let v be a norm on CII' If V E "f/', and HE.it, then also V-I HV E.it. 

Proof Let Vv be defined by Vy(x) = v(Vx), for a11 x in CII • Since V E "1/', 
"v = v. Let Yllx, and put v = Vx, w = (V-l)*y. It follows from Lemma 1 of 
[7] that wllv. Hence (y, V- 1HVx) = (w, Hv) is real. 

Remark Ifv =1= x~ then there exists a nonsingular Z such that Z-l YfZ = :Yf 
where Z is not a scalar multiple of an isometry. For then we llave r classes 
Nh ... , N., for the equivalence relation ,...." where r ~ 2 (2.5). Let Ii be the 
identity on Eit and put Z = (XII1 ffi .•. ffi (X.,I'J where (Xi > 0, i = 1, ... , r 
and (Xl =1= IX.,. Ifv = X, then Z-IJ1tZ = J"e implies that Z is a scalar multiple 
of a unitary matrix. A simple proof uses the factorization Z = U D V, where 
U, V are unitary and D = diag(d1 , ••• , d,J, d, > 0, (essentially) the polar 
decomposition of Z. 

7.3 
THEOREM Let" be a standardized absolute norm on CII' Let "Y and f1/I be 
defined as in (7.1). 
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I) A matrix V e "II if and only if V is unitary alld U'j = 0 for j "" j . 

2) i/' is a group and"ll is a normal subgroup ofi/'. 

Proof Ij i Let .tt' be the set of all norm-Hermitian matrices. Define 
E .. k = I, ... , r as usual, and let .tt'. be the set of (traditional) Hermitian 
matrices on E,. Then, by Theorem (6.2) • .tt' =.tt', EB'" EB.tt',. Thus 
Ve"ll if and only if V = V, EB ... EB V" where V, = exp(iH,). H, e.tt',. 
But exp(i.tt',) is well known (and easily seen) to be the set of all unitary 
matrices "II, on E,. Hence "II = "II, EB ... EB "II .. which is the assertion I). 

2) Since "II. is the group of all unitary matrices on E •• k = I, ...• r. it 
follows from I): "II = "II, EB ... EB "II .. that "II is a group. By Lemma (2.4). 
"II £ i/'. 

If V" V2 e i/'. so is V, Vi'. whence i/' is a subgroup of the group of non­
singular matrices. 

Let Vei/'. Ve"ll, say V = exp(iH). with He.tt'. By (7.2). V-'HVe.tt'. 
and exp(iV- 'HV) = V-' exp(iH)V = V-'VV. Thus V-'VVe"ll. and so "II 
is a normal subgroup of i/'. 

Remark For an arbitrary norm v on C •• we do not know if "II is a group. 

7.4 
DEFINITIONS AND REMARKS I) Let {N, •. .. , N,) be the equivalence classes 
for ~ in {I. 2 •... , n). 

Denote the symmetric group on {I •.. . , n) by S,. Let x be a pef/nutation in 
S,. We cal/x a block permutation if 

a) For each k. k = I, ... ; r tlzere is an I such that x(N.) = N" 

b) Ifl.jeN.andi <j.thenx(i) < xU),fork = I •...• r. 

2) If xeS, is a block permutation. then there is a unique permutation peS, 
such that x(N.) = N,(." k = I •...• r. Further. IN,(.)I = IN.I where IN.I is 
the number of elements in N •. 

3) If x e SO' let p, be the permutation matrix defined by P,e' = eKe'). 
i = I, ... , n. If x is a block permutation, then p, will be called a block 
permutation matrix. 

4) The set of all block permutation mo.trices form a group Q under multi­
plication. 

5) A block permutation which is also an isometry will be called a block 
isometry. • 

6) The set of block isometries form a subgroup fP of Q under multiplication . 
• 

7) It is easy to prove that IQI = n t, " r1 where t, is the maximum of 
\_', 1.r:::11 

1 and the Ilurpber of N, with IN,I = i. 
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7.5 
LEMMA Let V be an absolute norm, and let P = P t/ be a permutation matrix 
which is also an isometry. If i '" j, then a(i) IV aU). 

Proof Let E' = span{e l , ell, E" = span{ek : k ::j::. i,)}, E; = span{etJ(i}, 
" n 

etJ(J)}, E; = span{etJ(k): k::j::. i,)}. Let x = L x,e', y = L y,e', where 
J=l i=l 

IXt/(i)1 2 + Ixa(})1 2 = IYa(I}I:! +.IYa(j)2, and IXa(k)I = IYa(k)l, k ::j:. i,j. We wish 
to prove that vex) = v(y). 

Let ~ = p-1x, ~ = P-i y. Then ~k = Xt/(k), ~k = ya(k), k = 1, ... , n. Hence 
li,I 2 + l~jl2 = 1~112 + l~jI2, likl = I~kl, k ~ i,). Since i I"toJ j, we have 
v(~) = v(~). But P is an isometry, and so vex) = v(y). 

7.6 

COROLLARY If Pa is both a permutation matrix and an isometry, then 
Ptl = P~Pn, where Pp E 0lJ and Pn E 9. 

Proof Let I ~ k ~ r. By (7.5), there is an I such that PtI(E,J S; E,. 
Hence (f(Nk ) ~ .NJ• But the sets NIe, k = 1, ... , r are finite, and u is 1 - I 
and onto {I, ... , n}. Hence there is a permutation tin Sr such that u(NIc) = 
Nr.(k), k = 1, ... , r. Let n be the corresponding block permutation in S". 
Clearly (f(N,J = n(N,J. Then there is a permutation p in Sn such that 
p(N,J = Nb k = 1, ... , nand (f = p7t. It follows that Pa = PpPn where 
Pn E Q. Further, Pp is a direct sum of permutation matrices on Eit each of 
which is unitary on E i• Hence Pp e ~/. Thus P"" = P;lPtI is an isometry 
whence P 1C E f!}. 

7.7 

THEOREM Let v be a standardized absolute norm on C", and let V E Cn" be an 
isometry on Cn- Then there exist unique U E ~l and P E &' such that V = UP. 

Proof Let Del), i = 1, •.. , n be the diagonal matrix with dli = 1, dkk = 0 
for k =F i. Let K<'> = VD(l)y-l, i = 1, ... , n. Since D<'> e.tf, also K<f) e.tf, 
i = 1, ... , n, by (7.2). Hence K<f> = K~) EB - •• ffi KP), where K~i) is Hermi­
tian on Ek • But DU>' ... , D(n) commute in pairs, hence so do KU), •• _, K(n). 

Thus there exist unitary matrices WIc on Ek such that W/cKko Wk 1 is a real 
diagonal matrix. Set W = Wi Ef) ••• EB Wk' Then WE 0lJ, and 

Gct) = WK(l)W-l = WYD(f)y-l W- 1 

is a real diagonal matrix for i = 1, ..• , n. But the G(I), like the DO), are 
projections summing to I, and G(l>G(}) = 0, for i =F j. Hence G<') =. D(ff- IO», 
i = 1, ... , n, forsorne permutation (f of {I, ... , n}, and so G<I) = P;lD(l)Pff• 
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X= WVP •. 
Then G'" = WVD"'V-1 W-l = X- IG"'X, for i = I, ... , n. We may now 
deduce that X is diagonal, say X = diag(x., ... , x,). Hence 

WVe",(I) = xp;te/J(I) = Xc' = x,e', i = 1, ... , n 

Since WV is an isometry, it follows that 

1 = v(WVe·(I)) = v(x,e') = Ix,lv(e') = Ixcl, i = 1, ... , n. 

Thus XE"II. We now obtain that V= W-1XP;I. By (7.6),P;1 =P.-. = 
PpP, where Pp E "II, P E fl'. Let U = W-l XPp. Then U E "II, and V = UP. 

To prove uniqueness, suppose that V = UP = U'P', where also U' E "II, 
P' E fl', then A = U'-1 U = P'P-l E"II n fl'. But A is then block permutation 
matrix, say A = P" with e(N.) = N., k = I, ... , r. Hence 8 is the identity 
permutation and A = 1. TIlus U' = U, P' = P and the decomposition is 
unique. The theorem is proved. 

Let a be a group, b and It subgroups of 0 with n normal in Q. If 
It n b = (I) and nb = Q, tllen a is called a semi·direct product of It and h. 

7.8 

COROLLARY 1/' is a semi·direct product "II and fl' alld 1/' /"11 ~ fl'. 
Proof Sinee "IIfl' = 1/', and "II is normal in 1/', the results are immediate 

by (7.7). 

Comment It is also clear that the connected components of 1/' are 
precisely the sets "liP, for P E fl'. 

Remark Similarly, every V E j/' can be represented uniquely as V = P' U', 
where P' E fl' and U' E "II. Indeed, if P'U' = V = UP, then P(P-lUP) = V, 
and p_l UP E "II. Hence P' = P and U' = p_l UP. 

7.9 

Examples I) if v is an Ip·norm, v(x) = Ctl IX,I')I/P where p ;;. I and 

p ~ 2, then the equivalence classes for ~ are singletons. Hence "II consists of 
all diagonal matrices U = diag(u., ... , u,), with lu,1 = I, i = 1, ... , n. 
The group fl' consists of all permutation matrices. 

2) Let v be any standardized absolute norm on C, and suppose there is 
a Z E C, with v(Z., z,) ~ l'(Z" ZI)' Then "II consists of all diagonal matrices 
U = diag(lI., II,) with lu,l = 111,1 = I, and fl' of the identity matrix. Hence 
1/' = "II. 
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In this section we shall restate Ollr main results for an absolute norm VI on 
Cn which is not necessarily standardized by vlCe') = It i = I, ' .. , n. Theorem 
(h.2), will correspond to Theorem (6.2), etc. 

Let v1(e'):::: d" i = 1, ' , .,11, and let D = diag(dh ... , dn). Define 
vex) = vI(D-IX), for an x E Cn• Then v is a standardized absolute norm. Now 
define the equivalence relati<;>n '" in terms of v, and let N, and EJ be as before. 
Explicitly, we now have: 

and 

i "" j if and only jf for x, Y E Cn, 

dllxll l + djlxj l2 = d;IY11 2 + d1IYj\2, 

k =F i,j 

imply that Vl(X) = Vt(Y). 

(2.1)' 

Define YeA), .J'f, .i, d/t, "Y as before for the standardized norm \I, and let 
VI (A), JIf 1, ;1, d// h "Y 1 be defined correspondingly for v I' The basic results 
translating theorems for v into theorems for VI are that vY(A) = vO(DAD- 1

) 

and "Y leA) = V(DAD-l) (Nirsch] and Schneider [7]). Hence K e.tf 1 if and 
only if DKD-l eJlf. Thus:Yf 1 = D- 1J1f D. Explicitly: 

6.2' 

THEOREM Let v be an absolute norm on CrI, and suppose that v( e i) = d j • 

i = 1, .. ,,11. Let D = diag(dh ' , ., dn). Then K E Cmt is norm·Hermitian if 
and only if DKD-l is Hermitian and kl} = 0 ifi ,.,., j. 

Theorems (6.5) and (6.7) become 

(6.5)' Let Xl(X) = X(Dx) = (rdllxiI2)t, for x E CII , Then, for all A E.I, 
v?(A) = X~(A) = (p(DAD- 2 A* D))f. 

(6.7)' If A is vrnormal, then DAD-l is normal, and 

v~(A) = X?(A) = vl(A) = peA), 

where v1(A) is the numerical radius for VI' 

Finally, dill = exp(i.J'f 1) = D-1d/.1 D, and 

(7.8), The group of all isometries "fI'1 is a semidirect product of dJi 1 and 
flh where fit = D-l&'D is finite. 

9 

In [11], Tam presents several results whiQh, restricted to em are the 
special cases of some of our results when the norm is invariant under every 
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permutation matrix.t We shall show that it is possible to obtain the con­
clusions of [Ill, Theorems 2 and 3 (restricted to C,) under a somewhat weaker 
hypothesis. 

Let G be a subgroup of S •. Then G is called doubly-transitive if for all 
ordered pairs (i,j), i -F j, and all ordered pairs (k,l), k -F I, { i, j , k,l) !; 
{I, . •. , n), there exists a permutation" e G such that ,,(I) = k and u(j) = I. 

9.1 

THEOREM Let v be aJ' absolute norm on C. with v(e1) = I, and let G be the 
subgroup of S. defined by " e G, if P. is an isometry. If G is doubly transitive, 
then either 

or 
a) v = x, 

b) i) ft' consists of all real diagonal matrices and, for Heft', 
VO(H) = max{lh"l: I = I , ... , n). 

ii) IfIJ consists of all diagonal matrices U with lulIl = I, i = I, . .. , n. 
iii) !P consists of all P., "e G. 

proof Since vee') = I and G is (doubly) transitive, it follows that 
vee') = (P.e'), for suitable" e G, i = 1, •.• , n. Hence v is standardized. 

Case (a) There exist distinct i,j in {I , .• . , n) such that I ~ j . 
By (7.5) and the double-transitivity of G, k ~ 1 for all k, l, with k -F I, and 

k,le {I, • . . , n). Hence, by (2.3), v = X. 

Case (b) Suppose all equivalence classes for ~ are singletons. Then 
(i) follows from (6.2) and (6.5) and (ii) from (7.3). For (iii), observe that 
every permutation matrix which is an isometrY is a block isometrY. 

9.2 
Example Let n ~ 3 and I = a, > a2 > " ' .> a, .. O. In C., set 

• 
J1{x) = :E a,lx,l and vex) = sup{Jl(P aX) : "e A,), ,-, 

where A. is the alternating group on {l, ... , n). (If n ~ 4, then A, is doubly 
transitive.) Then v is a standardized absolute norm on C .. and if G is defined 
as in Theorem (9.1), then A. !; G. Let x = (a" ... , aJ, z = (a2, a" a., . •• , aJ. 
Then by a result found in Hardy, Littlewood and Polya ("Inequalities," , 
(10.2)), it follows that vex) ~ :E af > v(z). Hence G -F S .. and so G - A •. 

,~, 

t We are indebted to lohn Duncan tor pointing this out to us, This section was written 
aner the rest or (1)1. paper was oompleled. 
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