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Let v be a (standardized) absolute norm on C,. A matrix H in C,, is called norm-
Hermitian if the numerical range V(H) determined by v is real, Let & be the set of all
norm-Hermitjans in C,,,,. We determine an equivalence relation ~ on {1, .. ., n} with
the following property: Let H e C,,,. Then H €  if and only if H is Hermitian and
hy=0if i+). Let # =5 + i, Then # is a subalgebra of C,, and, for 4 € 7,
V(A) equals the Euclidean numerical range and hence is convex. Let ¥ be the group
of isometries for v, and let % = {exp(iH): H €¢}. Then # is a normal subgroup
of ¥ and ¥ = %P, where 2 is a group of permutation matrices.

For an operator, the concept of the numerical range (field of values) with
respect to 2 norm on the underlying space was introduced independently by
Lumer [5] and Bauer [1]. By now there are many interesting applications
(cf. Bonsall and Duncan [3]); some of the most fascinating concern norm-
Hermitian operators—operators whose numerical range is real. In this paper
we consider a special but not unimportant case: (1) Our space will be C,,
the complex n-tuples—concretely given; and (2)' We shall consider a norm
v which depends only on the absolute values of the coordinates of x e C,.
Such norms are called absolute (cf. Bauer, Stoer, Witzgall [2], and Bauer
[1]). For the sake of convenience we shall also standardize v so that v(e®) = 1,
for all canonical basis vectors e’ in C,.

Our main results are these:

We show that it is possible to determine an equivalence relation ~ .on
{1,...,n} such that a matrix H in C,, is norm-Hermitian if and only if
H is Hermitian,} and A;; = 0 if i ~ j (theorem (6.2)). If 5# is the set of

+ The research of one of the authors was supported in part by NSF Grant GP—I"I-S!H;.._

1 We shall always use the term Hermitian matrix H in the traditional sense: h,,= #,,.
f,j=1,...,n. A matrix with real numerical range will be called norm-Hermitisn
v-Hermitian. :
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norm-Hermitian matrices and # = 5 + {5, then # is a subalgebra of
C.y and for each 4 & ¢, the numerical range ¥(A) equals the Euclidean
numerical range. Hence V(A) is convex for all 4 € ¢ (theorems (6.3) and
(6.4)). Let v° be the operator norm associated with v. We also show that
vo(4) = x%A), for all A€ ¥, where z is the Euclidean norm on C, (6.5).
1t is well known that, for H € 5, exp({H) is a v-isometry on C,. By use of our
characterization of norm-Hermitian matrices, we show that the set % of ali
v-isometries of the form exp(if), H € 5, forms a normal subgroup of the
group ¥ of all v-isometries, and that ¥"/% is finite. More precisely, there is a
group & of v-isometries which are also permutation matrices such that for
cach Ve ¥ there exist unique Ue %, Pe? such that V' = UP (7.3, 1.7, 7.8).

While the absoluteness of the norm v plays an essential role in our results,
the standardization v(e‘) = 1,7=1,...,nis a matter of convenience. Thus,
a simple modification of our results will make them applicable to all absolute
norms. In the case of our main theorems, we give them also in this more
general form,

NOTATIONS AND DEFINITIONS

1.1 Coordinate subspaces

Let C be the complex field, R the real field, R* the set of nonnegative numbers.
We put
C={x=&y..nx) x€C}

and define R,, R} analogously. By ¢!, i = I, ..., n we denote the vector in
C, (or R,) defined by ¢ = I, e} = 0 otherwise. We call e’ a unit vector.
A coordinate subspace of C, (or R,) is the space.spanned by a set of unit
vectors,

1.2 Norms

On C, (or on any coordinate subspace of C,), y will denote the Euclidean
norm
) = (e + <0+ PP

If xe C,, then |x| = {|x;], .., |x])e R}.
A norm on C, is (as usual) a function v of C, into R+ such that

i) v(x) =0 ifand onlyif x = 0Q,

i) v(x + 2) < w(x) + v(@)

ii) v(ex) = |alv(x), foroeC.
A norm v is called absolute if, in addition,
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iv) v(x) = v(|x]), allxeC,,
and standardized if
We=1, i=1,...,n
Unless otherwise stated, v will always denote a standardized absolute norm.
We also make the following conventions. If xe C,, then x; is the ith
coordinate of x. On the other hand, if C, is split as the direct sum of co-
ordinate subspaces: C, = E,; @ - - - @ E,, x;, will denote the component of
x in E,. If dim E; = m, then x,, € C,, and we therefore write
X=Xy @ O X
(rather than x = x(;y + * ** + X()-

1.3 Dual norms and numerical ranges of matrices

For x, ye C,, we put
<y5x> = .}71x1 +-- 4+ ynxn'
If v is a norm on C,, so is vP:

Ky,

vx)
If v is absolute, so is vP (cf. [2]), and it is easy to see that if v is standardized
absolute, so is v2,

If x,yeC,, and 1 = {3y, x) = v?(y)v(x), then y is called dual to x; we
write y|lx. It is well known that for each x € C,, x # 0, there is at least one
y e C, such that y|lx, and for each y e C,, y # 0, there is an x € C, such that

Ylx.
By C,, we denote the set of all (n x n) matrices over C. The numerical

range V(A) for A e C,, is defined by
V(A4) = {{y, Ax): x, y e C, and y||x}.

If V(A) is real, then A is called norm-Hermitian or v-Hermitian.

vO(y) = SUPy 20

2

2.1

DEFINITION Let v be a standardized absolute norm C,. On {1, 2, ..., n} we
define a relation ~ thus: i ~ j if for all x, y € C, such that

bed® + Ix)2 = pd2 + [pji% and x) =pld, fork #i,j,
we have v(x) = v().
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2.2
LemmA The relation ~ is an equivalence relationon {1, 2,. .., n}.

Proof Since v is absolute, i ~ i for "' i=1,2,...,n Clearly, { ~j
implies that j ~ i. Suppose that 4, i, j are distinct integers with A ~ { and
i ~j, ForxeC, define by % = %, = 0, % = (Jx)* + |xJ* + |x;|*)* and
X = |xl for ke # I, i, j. 1t is easy to see that v(x} = w(%). Now suppose that
x,yeC, and |x® + [y? = |pl® + |y)% and |x ] = |yl for & # A, j
Then xpl? + (%12 + lx{® = |psl* + 1y + [»l® whence % =§. Thus
v(x) = v(%) = w(F) = v(y). It follows that A ~ ;.

23

LemMa  Let v be a standardized absolute norm on C,. Let Ny, ..., N, be the
equivalence classes in {1, . . ., n} given by ~. Let E, be the coordinate subspace
spanned by the vectors e' with i € N,, and writex € C,as x = X,® @ xgy,
where x, € Ey. Then there is a standardized absolute normn p on C, such that

V(x) = #(Z(x(l)): o x(x(r)))'
Proof Let us suppose that N, = {l,...,s5) (to save writing). Put
X =0@® X3P D xyy, Then

v(x) = v(:; xiet + x“))

3
v((|x,|2 + lxzHet + ¥ xel + x(”)
=3
= Wx(xaye' + x).
After repetitions of this argument, we have
v(x) = V(I(x(n)eh +oer + Z(x(r))e"),
where jie N, i = 1,...,r. So, for € C,, we define

ula) = v(i a,‘e’*) .

k=1

Then v(x) = u(x(xc1y)s + - o 2(x¢y)). It is easily verified that y is a standardized
absolute norm on C,.

2.4

CoroLLARY Let Ue C,, be a unitary matrix such that u; =0 {if [~ j.
Then U is a v-isometry (i.e., v(Ux) = v(x) forall x € C).

Proof We may write
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U=U @+ ® U, where U, is a unitary matrix on E,, i = 1,.. ot
Since y(Upxy) = x(xwy): i = 1,.. ., r, we have
v(x) = p(x(xqay)s - - 1)) = 2(Usxay)s -« s XUy = v(Ux).

25
COROLLARY Ifi~ jforalli,je(l,...,n), theny = y.

Proof In this case xy=x€eC,, and so by (2.3) and since u is
standardized, v(x) = p(x(x)) = x(x).

3

In this section we shall explore the geometric significance of the equivalence
relation introduced in Section 2, We begin with a simple geometric lemma on
real 2-space.

If K is a convex body in R,, denote its boundary by 0K, and put
K+ = KNR;}.

3.1

LeMMA Lef K be a convex body in R, such that Oe K, (1,0)edK and
(0, 1) e K. Then there exists a P = (x,, x,) € 0K with xy > 0, x, > 0 such
that the perpendicular I to OP through P is a support line to K.

Proof For each 6, 0 < 0 < w/2, let r(8) € (cos 8, sin 6) € K. Then r is
nonzero and continuous in [0, #/2]. Hence r attains its maximum M and its
minimum m in that interval, and0 < m < 1 < M.

We consider three cases (which overlap).

Casel m=1=M.

In this case Kt is a quarter circle. If P is any point on the boundary, the
perpendicular / through P is a support line to K.

Case 2 1 < M, say r(f;) = M. Clearly 0 < 8, < xf2. Thus X* is con-
tained in the circle center O, radius M. If P = r(0,)(cos By, sin 8,), then
1is a support line.

Case3 m < 1,sayr(6y) = m. Again0 < 0, < m/2. Let

P= r(@l)(cos 01, sin 0‘),
and / the perpendicular to OP at P, We claim that [ is the (only) support line
to X at P. Suppose ! is not a support line to K at P. Then there exists a
support line /' at P, and I’ is not perpendicular to OP. Since (1,0)e K,
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(0, De K, and |OP] = m < 1, the slope of I’ i3 negative. Hence the per-
pendicular to I’ from O meets I’ is a point @ in the first quadrant. Clearly
|CQ| < |OP|. Since Q is either on the boundary of K or in the exterior of X,
there is a point R = r(0,)(cos &, sin &,), 0 < 0, < /2 on OQ which is on
the boundary of K. Thus
r(0;) = |OR| < 00| < |OP] = m,

a contradiction.

The lemma is proved.

3.2

COROLLARY Let x be a standardized absolute norm on C,. Then there exists
an x € R}, with xy > 0 and x, > 0 such that {x, x)~1x|x.

Proof Let K = {xeR;:k(x) < 1}. Then K is convex and satisfies the
conditions of (3.1). Let P = x, where x; > 0, x, > 0, be a point such that
the perpendicular [ through P to OP is a support line to K. Then for all
z € R}, we have {x, z) € {x, x)k(z). Since x is absolute, it follows that
I<x, 25| < {x, xDpk(2) for all ze C,. Hence xP(x) = {x, x>, and {x, x>~ x|x.

3.3

DeriNITIONS 1) Let | € i, < n; i # J. In the rest of this section, we shall
write E' = span{e’, e/}, E" = span{e*: k # i,f}. For xeC,, we shall put
x =X @ x", where x' e E', x" e E". Also x’ = (x, x}), and we shall identify
x"and 0 @ x", where 0 e E'.

D LetK={xeCyiv(x) <1} If x"€ E" and W(x") < 1, we put
K= {x'eE:vx'®x0) <1}
We call K.+ a section of K. Suppose that x" € E” and v(x") < 1. Let k.~ be
the mapping of E' into R* U {o0} defined by

. 1
Ken(x') = mf(a >0 ax’ ek .) .
(Thus ke (x) = 0 if fix' e Kerand # = 0 imply that f§ = 0.)
3) Weshall call K - circtlar if therc is 4 nonnegative r such that
Kx" = {(xb xj): dez + Ilez Q rZ}.
NIetx=x"@x",y=y @) beelements of C,. We shall write y|x if

a) yilx,
and
b) Thereisapositlve d such that y' = dx’,
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3.4
LeMMA Letx" € E" withv(x”) < 1. Then

D K. is a convex body in E’ with 0 € K,

2) x' e K, if and only if |x'| € K.

3) Ifv(x") < 1, then O eint K.

4) If v(x") < 1, then k.~ is an absolute norm on E’ and is standardized if

x" =0.

Proof 1) Clearly 0eK,» since v0@x)<1. If x,y eK,- and

0<a<l,then
vox' + (1 —a)y @xN<av(x ®@xN)+ (1 -y @x") < 1,

when ax’ + (I — )y’ € K. Thus K~ is convex.

2) Sincev(x’ @ x") = v(|x'| @ x"), 2) follows.

3) Suppose v(x¥) < 1. Then for all x’ € E’ with v(x") < 1 — v(x"), we have
v(x' @ x") < v(x") + v(x") < 1, whence x’ € K,». Hence 0 e int K.

4) Follows immediately from 1), 2), and 3).

3.5

THEOREM Let v be a standardized absolute norm on C,, andlet | < i,j < n.
Then i ~ j if and only if for all x" € E” with v(x") < 1, the section K.* is
circular.

Proof Suppose that i ~ j and let x" € E” with v(x") < 1. Let x', y' e E’
and assume that y(x) = x(»'). Then v(y’ & x") = v(x’ ® x"). Hence x' € K-
if and only if y’ € K_». Thus K~ is circular.

Conversely, suppose that K~ is circular for all x" € E” with v(x") < 1.
Let x, y € E and assume that x = x* @ x", y = y' © y" where y(x") = x(3")
and |x"| = |p"|. If x' = 0, then " = 0 or v(x) = v(»). So suppose that x’ # 0.
Thus y' # 0. Put u = x/v(x), v = y/v(x) and observe that v(x) = 1. If
u=u @u", then v(@u") < 1, since v is absolute (cf. [2]). Thus u'e€ K~
Butif v = v’ @ v”, then x(v") = x(#'), and since K,~ is circular, we also have
that v’ € K,». Further |o*| = |u"|, whence v(v) = v(v' @ u") < 1. It follows
that v(x) = ¥(3). Reversing the roles of x and y, we oblain v(3) = v(x),
whence v(x) = v(»). Thus i ~ j.

3.6

LemMAa  If for all X" e E” with v(x") < 1, the section K, is circular then K.
is also circular if x" € E" and v(x") = 1.
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Proof Letx”e E"withv(x") = 1.Letx', y € E',x" € K,»and x{)") = z(x).
We must show that y’ € K-

LetQ < ¢ < 1. Sincev(x’ @ x) < 1 and v is ahsolute, w(x' @ (1 —g)x") < L.
But Kij -« is circular, whence v(y’ @ (1 — ¢)x") < 1. Hence also

Wy @x)<l,
and the desired result )’ € K~ follows.

3.7 .
Lemma Let x = x' @ x" € RY, where v(x") < v(x) =1L If y=)'@y"eR}
and y||x then x' # 0, ¢ =1 — {y", x") > 0 and ¢y’ |Ix’ with respect to the
nOrnt Koo

Proof Clearly x' # 0. Since w2 <w() <1, 1 =0%xD >0
Hence ¢=(1— ¢y, xD)t >0, Clarly (x5 =1—-"x"). Let
x~(z) = 1. Then also k~(Jz']) = 1, whence v(|z'| @ x") = 1. Hence

G120+ QLD €1
whence
120 OLIED < 1= 05X

Hence (x,)°() = 1 — (", x> = ¢~! and ¢y’||x’, with respect to K~

3.8

LeMMA Letx" € E* N R} ,, wherev(x") < 1. Suppose that forall x' € E'N\ R3
such that v(x) = 1, x = x' @ x", there is a y€ R} such that y|x. Then the
the section K, » is circular.

Proof Let x' satisfy the hypotheses of the lemma., Let y e R}, ylix,
v2(y) = 1 and y’ = dx’, where d > 0. By (3.7) there is a positive ¢ such that
¢y'llx’ and hence cdx’ |lx’ with respect to the norm x,~. Applying Lemma (3.1)
of Gries [5], we see that the corresponding norm body X,» N R, is circular.
But by (2) of (3.4), it now follows that K.« is circular in the complex space £,

3.9

Turorem Let v be a standardized absolute norm and let E', E" be defined as
in (3.3). Suppose for all x € R} with v(x") < v(x) = 1 there is a y € R} such
that y|x. Then i ~ J. .

Proof let x" e E"N R}_,, where v(x") < 1, By (3.8), K,~ is circular,
It follows from (2) of (3.4) that X~ is circular if x"e E” and v(x") < 1, But
now it follows from (3.6) that K- is circular for all x” € E” such that w(x") < 1,
By (3.5),i ~ J.
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4

4.1

LeMMA Let E, i=1,...,r be coordinate subspaces of C, such that
C,=E, @ - ®E,. Let 2, be a standardized absolute norm on E,, let u be
a standardized absolute norm on C,, and suppose
VxXa, @ d x(r)) = ﬂ(‘ll(x(l))) .. ",Ar(x(r))) (4.1.1)
wherex, e E,i=1,...,r Then
1) v is a standardized absolute norm on C,,
) VP(yay @+ @ yiy) = (AR ay)s - - > AP Yery)
forygheE,i=1,..,r
Further,let x = X1y @ *** @ X4 Xy EEp Yy = Y1y @ * ** © Yy YnEE,
and suppose that A(xy) = o APy) = Bni=1,..,j Leta = (CT AR
B=(B1, .. B) Then
3) yllx with respect to v if and only if
a) Blle with respect to u, and
b) Brtywllai txy with respect to A, whenever oo, > 0,i=1,...,r
Proof 1) Let
X=Xy D" D X,
Z=24y@ " @® 2z,
Thent
Vx + 2) = p(Ai(ey + Z0y)s - - o A0y T+ 20)
< A () + Ay e (X)) + A(zZe))
< PR (xays « « o AL)) + BA1(Z1y)s -+« o A(Zry)
= ¥(x) + v(2).
Here the first inequality follows from the absoluteness of p. Similarly,
v(ox) = |alv(x), and ¥(|x]) = v(x),
since all of p and 2, are absolute. Clearly v(e®) = 1,(f), for some j, 1 < j < r,
and some unit vector f of E;, whence v(e®) = 1. This proves 1).

2) and 3) Suppose that « and f are defined as in the statement of the
lemma. Let y € C,. Then for any x with v(x) = 1 we have u(x) = 1 and
[ 201 < I<peays Xl + ¢ =+ 1y Xy
< By + v+ B,
< p2(B)u(e) = pP(B).
Hence v2(y) < uP(B).

1 This argument also occurs in Ostrowski [13] p. 12, where it is merely assumed that p is
monotonic in R,
2
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Suppose further that x is so chosen that 8|« and that for i=1,...,r,
ﬁ[— xy“)”a‘_ 1x“], whenever p;dl > 0, Since (}’“), .x“J> =0 whenever ﬂﬂ; = 0,
it follows that

O x> = Yy Xy + 2 F Gy XD
=ﬁ1al+“'+ﬂrar
= uP(Bufx) = L.
Hence vP(y)} is given by 2), and if x salisfies the conditions of 3), then y||x.

We must still prove that for all pairs, x, y € C, with y|lx, the conditions of

3) are satisfied. So suppose that y|lx. Then
1= x> = vPOv(x) = u®(Bulx)
and

™ XD = Yoy X2 + 0 F i XD

< IK<yap Xl + -« + [{Pirys X(ry?)
gﬁlal + o +ﬂrar
< #P(Bju(a).
Hence all inequalities in (*) are equalities, and
| = pP(Bufe) = oy + -+ + B,
Thus gl follows.

Finally, suppose that f,a; > 0. Since |{y, Xy»| < B, and since we have

equalities in (*), we may deduce that

e Xy = I()’U): x(!))l = B,
Hence I = {7y, ai "Xy = PG Ly)hidear 1xg). Thus Br iy ey Lxgs.

4,2

Counterexample If we drop the condition that the A, are absolute, then v will
still be a norm on C,. But the condition that u is absolute cannot be omitted.
Consider the following counterexample. Let E;, E, be the two one-
dimensicnal coordinate subspaces of C,. Let A,{x,) = [x,[, A20x3) = [x3,
and let u(xy, az) = max{loa, — agl,Jaz|}, and let vixy, xz) = u(A,(x), 1;0x2)).
Ifx=(21),z=/{,—1), then x + z = (3, 0). Hence

vxy = u(2, 1) =1,

viz) = u(l, 1) = 1,
but

V(x + 2) = p(3,0) = 3.
Thus v(x + z) > ¥{x) + v(z).
We next slightly extend an important. result due to Zengert [12], (2.26).

t See also Stoer and Witzgall [14], Theorem 1.
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4.3
LeMMA Let p be an absolute norm on C,. Let y, 2 0,9, + +-- +7y,= 1.
Then there exist a, f € C,, such that f|la and B0, = y,;.

Proof 1If all y;, > 0, then the existence of such «, # is guaranteed by
Zenger's Lemma [12]. So suppose that, after reordering coordinates, ¥, > 0,
i=1..,87=0i=s+1,...,r where s < r. There exist o, '€ C,
such that f’fla’ (with respect to the restriction of u to C,), and B} = vy,
i=l..,rnlet f=4 @0, a=0ao @0, where 0 is zero vector of C,_,.
Since p is absolute, f(le and clearly o, =y, i=1,.. ., r.

Remark Since ffl« implies that A-!#) A, for 1 > 0, we may normalize
1) = pP(B) == 1, in the above lemma.

44

DeriNiTion  Let T 1s + - - =, be subsets of the complex plane. We define the-
convex sum of Iy, . . ., I, to be the set of all sums a,6, + - - - + a,0,, where

r
6,€X,0< oy <Li=1..,rad ) o,=1
=1

Observe that the convex sum of sets need not be a convex set.

4.5

LeMMa LetE,, ... E, be coordinate subspaces of C,, and let v be given as in
4.1). Let A = A, GD - @ A,, where A, is amatrix acting on E,, i=1..,r
Then the numerical range of A is the convex sum of Vi(A,), ..., V, (A,) where
V(A)) is the numerical range of A; with respect to the norm 2,.

Proof Let yeRY, o,eV(4), i=1,..,n and o= 121 7.0; where
Then there exist y(;), X € E;, such that y,x, with respect to 4,,
Ax) = APy) =1, and Oupy Axgy) = o4
By (4.3) there exists &, § € R such that f|ja with respect to u, and fa, = y;.
Let
. X=a1x(l)@"'®arx(r),

Y=Ly, ® @ ﬁr}’(r)-
By (4.1), y|lx with respect tov. But

(}’. Ax) = Z ﬂt“t()’(os x(n))
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= ) Aoy =0,
i=1

whence ¢ ¢ V(A).
Conversely, let ¢ € F(A4), say 0 = {y, Ax) where y|x with respect to v.

Let us now write

X =Xy @ @ xpy

Y=Yu® @ Yy
where we put o, = A,(x{n), f; = APO/p). Let us suppose that y, = fjo; > 0,
i=1,..,5s<r and y=p00,=0, {=s+1,...,r. Then putting
Xy = o7 'xin, ¥ = B@'¥s i=1,.. .5, we have by (5.1) that flla with
respect to g, and y,|lx, with respect to 4, i = 1,..., 5. Hence

o, = <y(f), A,xw> e Vi(Af), I= I, v aag Je

Buty, > 0and } y, =1, andso
=1

r L r
(O, Axy = 'Zl ()’(1); Axpyy = ‘Zl Y0y = 121 AT

The lemma is proved.

Comment Thus, for a norm v satisfying v(x) = p(d,(xcy)s « « o A:(Xy))s
asin (4.1.1), and 4 = 4, &+ - @ A,, the numerical range V{4) does not
depend on u. In particular, if v is any (standardized) absolute norm on C,,
and D = diag(dy, ... d,), then V(D) is the convex hull of 4,,...d,
cf, Gries [5].

If v is any norm on C,, then the corresponding operator norm v° on C,
is defined

. 10(A4) = sup{v(4x): v(x) = 1}.
It is well known, and easy to prove, that
v(A) = sup{[¢{y, AxD|: v(x) = 1, v2(y) = 1}.
4.6
LesMMa Let E, i=1,... r be coordinate subspaces of |V such that
L, @& - @E, = C, Let }, beastandardized absohutenormon E;, i = 1,...,r
and u a standardized absolute norm on C,, and let v be given by (4.1.1). Let
A e C,, and 'suppose 'that A = A, @ +++ @ A,, where A, is a mairix on E,.
Then )
v0(4) = max{A{(4): i=1,..,r}

Proof Let max{if(A): i=1,...,r} = A4y, where 1 < k < n. Then
using (4.1), we obtain
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vo(4) = sup{|[<y, AxD|: v(x) = 1,v’(y) = 1}
< sup § K700 Ao M) = 0 200) = B ) = 12(B) = 1}

< sup{ig A Adul: 2, Be E, ule) = p°(B) = 1}

< 1040 5, powi o B RE L u0) = 1P = 1)
=1
< (A
On the other hand, let Xy Yxy € Ek such that }.k(x«‘)) = A’I?(y(k)) = 1, and

2240 = Quy Ay If x4y = yy = 0, for i # k, then v(x) = p(e*) = 1,
V(y) = pP(e") = 1, and <, Ax) = (gyr Ak = A2(AD.

The lemma is proved.

We comment that it is almost as easy to prove (4.6) directly from the
definition v°(x) = sup{v(4x):v(x) = 1}, without use of (4.1). When
dimE;=1,i=1,...,n (4.6) reduces to the well known theorem that
v(D) = max{|d,l, i = 1,...,n} for a diagonal matrix D, cf. [2].

5

5.1
Lemma  Let Q = {ue C,: lu}| = 1}. Let K € C,, be a Hermitian matrix such
thatk; =0,i=1,..,n If{u, Ku) = 0 forallueQ, then K = 0.

Proof The proof is by induction on n. Evidently the result is true for
n = 1. Suppose that it holds forn = r — 1, and let n = r.
Setting #; = €', we have

<u, Ku) = z kue-i(o"—ol)
1
= 2 Re(k;jei(o'_e’)

whence
—Re(( ¥ kT ™% =Re( Y kye -0
1< 1

1<i<r-1 1<J<r=
Since this holds for all 8,, it follows that

k}'e_lol = 0.
1<isr—1

Again, this holds for all 8,, . . ., ,_;.
We can choose (r — 1) linearly independent vectors

(7, ..., e =) ep, v = (%%, ...,
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where @ is a primitive rth root of 1, Hence
ky=k,=0, i=1,..,r—1
Now we obtain that for all 8,
kue—’(gf—aﬂ — O,

1%0,/<r—1
whence by inductive assuraption 4;; =0, i,j=1,...,r — 1, Thus X = 0.
The lemma follows by induction.

5.2
LemMma Let Q= {ueCy|ul =1, i=1,..,n}. Let AeC,, where a,
isreal, 1 = 1,...,n Iffor allu e Q, {u, Au> is real, then A is Hermitian.

Proof Let A =H + iK, where H, X are Hermitian. Then & = 0,
i=1,...,n Since {u, Ku) = 0, for all ueQ, we obtain K = 0 by (5.1).
Hence A = H,

6

6.1

Lemma Let v be a standardized absolute norm. Let N, E, be as in (2.3). If
AeC, is such that A = A, @ ---® A, where A, Is a matrix on E,, then
V(A) = V (A), where V,(4) is the Euclidean numerical range.

Proof Letx = X, @ ' -+ @ X, where x;, € E;. By (2.3)
v(x) = n(x(x<1>), sy Z(X(r)))-
where g is a standardized absolute norm on C,. By (4.5), therefore V(4) is
the convex sum of the V((4,),f = 1,.. ., r. But Vi(4)) = V,(4)since 4, = x.
MNext, note that
x(x) = S!(X(xu)), oo X))
and recali the comment afier (4.5) that ¥(4) does not depend on . Thus
V(A) is also the convex sum of the V,(4)), f = 1, ..., 7 Thus ¥(4) = V,(4).

6.2

THEOREM Le! v be a standardized absolute norm on C,,. Let the equivalence ~
be defined as in (2.1). Then H € C,, is norm-Hermitian if and only if

a) hy, = hy fori~j
and
b) hy=0 forinj
Proof Suppose H satisfies a) and b). If N, E,, i = 1,., ., r are defined as
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in (2.3), then H=H, ® - - - ® H,, where H, is a Hermitian matrix on E;.
Hence, by (6.1), V(H) = V (H), which is real. Thus H is norm-Hermitian.

Conversely, suppose that H is norm-Hermitian. Since e'lle’, i = 1,...,n,
it follows that h, = (e', He') is real. Suppose that x,ye R}, y|x. Let
KeC,begivenby kyy=yhyx;, i,j=1,..,nLet Q= {ueC,:lyl =1,
i=1,...,n}. If we define v, weC,, by v, = uyx;, w; = u;y;, then wip.
Hence {w, Hv) = {u, Ku) is real. But k; is real, i = 1, ..., n. Hence, by
(5.2), K is Hermitian. It follows that

Q) yilbyxy = yhyx, B j=1,...,n forally, xe R} with yilx.

Now let i, j be two fixed integers in {1, 2, . . ., n} such that A;; # 0. We must
prove that hy, = h;; and that i ~ j. We shall use the notation of (3.3). Thus
for x' € E', io(x") = v(x’' @ 0), where, by (3.4), 1, is a standardized absolute
norm on E’,

Hence, by (3.2) we can find an x’ ¢ E’ N RS such that both coordinates of
x' are positive, 1(x") = 1 and there is a positive ¢ for which cx’||x’ with
respect to k. If x = X' @ 0eC,,y = cx' ® 0, thenx; > 0, x; > 0, y, > 0,
¥; > 0. Further, y|lx with respect to v, since {y, x) = {}’, x’> = 1 and for
any z=2@ 2", v(z) = 1. Since for this particular x and y, we have
yix; = px; # 0, it follows from c) that hy, = h;; # 0.

We may now deduce from c) that

d) y;x; = yix;, for all y, xe Ry with y|ix.

Suppose that x € R} and that v(x") < v(x) = 1. Since v is absolute, there is
a y € R} such that y|x. Then by d), y' = d,x" where d, > 0. But by (3.7),
y' # 0, whence d, > 0. Thus y|x. It now follows by (3.9) that i ~ j, and the
theorem is proved.

6.3
THEOREM Let v be a standardized absolute norm on C,. Let
F = {H + iK: H, K are norm-Hermitian}.
Then § = M, @ @ M, where M, is the complete matrix algebra on
E,. Further ¢ is a subalgebra of C,,.

Proof Since any matrix 4, on E is of form 4; = H; + iK,, where H,;, K;
are Hermitian, it follows that Ae #F if and oply if A = A4, &+ @ A4,,
where 4, is a matrix on E;. The result follows immediately.

6.4
THEOREM If 4 € #, then V(A) = V,(A) and is convex.

Proof ' By (6.3), 4 = A, @ -+ + ® A,, where 4, is a matrix on E,. Hence,
by (6.1), V(A4) = V,(A), which is convex.



24 HANS SCHNEIDER AND ROBDERT E. L. TURNER

An important theorem due to Vidav [10] and Palmer [9] (cf. Bonsall and
Durcan [3], p. 65) is now stated in a slightly special case. Let V' be a Banach
space and let / be an algebra of operators on V (normed by the operator
norm) such that for each Ae.wf, A = H + iK where H, K are norm-
Hermitian. Define A* = H — iK. Then there exists a Hilbert space V' and
an isomorphism of s onto an algebra of operators &' on ¥’ which preserves
both the norm and the star operation.

Given the dimension of ¥V, the Vidav—Palmer theorem by itself gives no
information on the dimension of ¥’. In our special case, the impact of our
next theorem is that one may choose V' = V,

6.5
THEOREM Let A € #. Then vO(A4) = x°(A).
Proof By (6.4), A=A, @® - @ A,, where 4, is a matrix on E;. Hence,
by (2.3) and (4.6), v°(4) = max{3°(4):i=1,...,r} But
2 = x(x(xqy)s - - o 20x,))s
whence again, by (4.6), y°(A4) = max{x°(4): i=1,...,r}. The theorem
follows,

There are, of course, many obvious corollaries to (6.2) and (6.5), We
shall give some immediate applications to v-normal matrices.

6.6 '

DEFINITION A matrix Ae C,, is called v-normal if A = H + (K, where
H, K are v-Hermitian and HK = KH,
If v = y, a v-normal matrix is normal in the traditional sense,

6.7
THEOREM Let v be a standardized absolute norm and let A be in C,,. Then

1) A is v-normal if and only if 4 is normal and a;; = 0 for i ~ j. If A s
v-rormal, then

2) V(A) = co(sp A)

3) v(4) = p(A).

4) v(4) = p(A4).
(Here co(sp A) s the convex hull of the spectrumof A, v(A) = sup{|A}: Ae V(A4)},
the numerical radius of A, and p(A) is the spectral radius of A.)

Progf 1) The matrix A is v-normal if and oaly if A = H + iK, where
H, K are Hermitian and /;; = k;; = 0 for i ~ /.
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2) By (6.3), V(A4) = V,(A), and V,(4) = co(sp A).

3) Immediate.

4) Since 4 € £, v°(4) = x°(4), by {6.6) and x°(4) = p(A4).
For operators on a Banach space, 3) is known to be true (Palmer [8]), and his
proof is much less elementary. By Sinclair’s theorem [3, p. 54], p(4) = v°(4),
where A is a norm-Hermitian operator. However, Crabb [4] has given a
counterexample to 4) for a non-absolute norm on Cy.

7

7.1

DEFNITIONS  Let v be a standardized absolute norm.
i) The set of all norm-Hermitian H in C,, will be denoted by J#.

ity Let % be the set of all U € C,, such that U = exp(iH) for some H e .
iil) The set of all isometries V & C,, will be denoted by V.

The following theorem is known (cf, Bonsall and Duncan [3, p. 46])
(where it is stated for Banach Algebras): A matrix H € C,, is norm-Hermitian,
if and only if exp(itH) is an isometry for all real ¢, Thus < ¥". However,
our special case is so simple that there is no need to appeal to the above
theorem, and our conclusion is stronger than % < . We first state a lemma.

7.2

LemMMA LetvbeanormonC,. If Ve, and He 3, then also V:'HV € #.

Proof Let vy, be defined by vy (x) = v(¥Vx), for all x in C,. Since Ve ¥,
vy = v. Let yllx, and put v = Vx, w = (V-1)*p. It follows from Lemma 1 of
[7] that w|jv. Hence {y, V-*HVx) = {(w, Hv) is real.

Remark Ifv # y, then there exists a nonsingular Z such that Z-1#Z = ¢
where Z is not a scalar multiple of an isometry. For then we have r classes
Ny, ..., N, for the equivalence relation ~, where r > 2 (2.5). Let I; be the
identity on E;, and pwt Z = oy, @ - @ af,, where o; > 0, i=1,...,r
and o, # o, If v = x, then Z-1#Z = 5 implies that Z is a scalar multiple
of a unitary matrix. A simple proof uses the factorization Z = UDV, where
U, V are unitary and D = diag(dy, ..., d,), d, > 0, (essentially) the polar
decomposition of Z.

7.3

TueoreM Let v be a standardized absolute norm on C,. Let v and % be
defined as in (1.1).
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1) A matrix Ue % if and only if Uis unitary and uyy = 0 for i ~ j.

2) ¥ isagroup and % is a normal subgroup of ¥,

Proof 1)"Let o be the set of all norm-Hermitian matrices. Define
E, k=1,...,ras usual, and let 5, be the set of (traditional) Hermitian
matrices on £E;. Then, by Theorem (6.2), of =, @ -- Ps¥,. Thus
Ue# ifand only if U= U; @ -+ ® U,, where U, = exp(iH)), H e #,
But exp(is#,) is well known (and easily secn) to be the set of all unitary
matrices %, on E,. Hence % = %, @ - - - @ %,, which is the assertion 1).

2) Since %, is the group of all unitary matrices on E, k= 1,...,r, it
follows from 1): % = %, ® - -+ & %,, that ¥ is a group. By Lemma (2.4),
=

If V, V,e¥,s0is Vy¥51, whence ¥ is a subgroup of the group of non-
singular matrices.

Lot Ve¥, Ue®, say U = exp(iH), with Hex. By (1.2), V-'HV e,
and exp(fV1HV) = V-1exp(iH)V = V-'UV. Thus V-'UVe %, and so ¥
is a norma| subgroup of ¥".

Remark For an arbitrary norm v on C,, we do not know if % is a group.

74
DEFINITIONS AND ReMARKs 1) Let {N,, ..., N,} be the equivalence classes
for ~in{1,2,...,n}.

Denote the spmmetric group on {1, ..., n} by S,. Let n be a perinutation in
S,. We calln a block permutation if

a) Foreachk,k = 1,..., rthereisan lsuch that n(N,) = N,

b) Ifl,je N, and i < j, then n(¥) < n(j), fork =1,...,r.

2) If ne S, isablock permutation, then there {s a unigue permutation p ¢ S,
such that (N} = Nowy, k =1, ..., r. Further, |Nyuo| = |N| where |N,| is
the number of elements in N,.

3} If €S, let Pr be the perinutation mairix defined by P.e' = e™®,
i=1,..,n If nis a block permutation, then P, will be called a block
permutation matrix.

4) The set of all block permutation matrices form a group Q under multi-
plication.

5) A block permutation which is also an isometry will be called a block
isometry. - .

6) The set of block isometries form a subgroup P of Q under multiplicatlon.

n
T} It is easy to prove that |Q| = ,H ty < rl where t, is the maximum of
: L1

1 and the m;iz_:_ber of Ny with [Ny| = i.
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7.5

LeMMA Let v be an absolute norm, and let P = P, be a permutation matrix
which is also an isometry. If i ~ j, then 6(i) ~ o(j). '

Proof Let E' = span{e, ¢!}, E" = span{e*: k +# i,j}, Ej = span{e’®,
n n

e}, Ey=span{e®®: k #i,j}. Let x= ) xe', y= Y ye', where
i=1 i=1

[Xe}? + Xopl® = [Yo]® +.|Yen®s and Ixo| = Yol k # i,j. We wish
to prove that v(x) = v(»). : B

Let £ = P-'x, 9 = P~1y. Then £, = Xoaxy P = Yoy & = 1, ..., n. Hence
202 + 217 = 194> + 19,1% 1% =19, &k #1i,j. Since i~j, we have
v(8) = v(9). But P is an isometry, and so v(x) = v(p).

7.6

COROLLARY If P, is both a permutation matrix and an isometry, then
P, = PyPy, where P, € % and P, € 2.

Proof Let 1 <k <r. By (1.5, there is an / such that P,(E) < E,.
Hence o(&,) = N,. But the sets Ny, k = 1,...,r are finite, and ¢ is 1 — 1
and onto {1, ..., n}. Hence there is a permutation 7 in S, such that a(N,) =
Nigys k= 1,...,r. Let = be the corresponding block permutation in S,.
Clearly o(N,) = n(¥V,). Then there is a permutation p in S, such that
pN) =Ny, k=1,..,n and ¢ = pzn. It follows that P, = P,P, where
P, € Q. Further, P, is a direct sum of permutation matrices on E;, each of
which is unitary on E; Hence P, e %. Thus P, = P;'P, is an isometry
whence P, € 2.

7.7

THEOREM Let v be a standardized absolute norm on C,, and let V e C,, be an
isometry on C,. Then there exist unique U € % and P € P such that V = UP.

Proof Let D™, i=1,...,nbe the diagonal matrix with d;; = 1, dj, = 0
for k # i. Let K = VDWOY-1 i=1,..., n Since DV e, also KD e 2,
i=1,...,nby(72). Hence K® = KP @ - -+ ® KD, where K is Hermi-
tian on E,. But D, , .., D' commute in pairs, hence so do KW, ., ., K™,
Thus there exist unitary matrices W, on E, such that W,KPW; 1 is a real
diagonal matrix. Set W= W, @ --- @ W,. Then We %, and

GY = WKOW-1 = wyDhy-ty-1
is a real diagonal matrix for i = 1,..., n. But the GV, like the D'V, are
projections summing to I, and GG = 0, for i # j. Hence G = D=,
t=1,...,n,for some permutation g of {1, . . ., n}, and so G» = P;1D"P,,
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Put
X = WWVP,.
Then G = WV DWOY-1p-t = X~'GVX, for i = |,..., n. We may now
deduce that X is diagonal, say X = diag(x,, ..., x,). Hence
WVe') = XxP "W = Yo' = x,¢, f=1,,..,n
Since W'V is an isometry, it follows that
1 = v(WVe ™) = v(x,e") = |x]v(e) = |x], i=1,...n

Thus X € %. We now obtain that ¥V = W-1XP;L By (7.6), P;! = P,-1 =
P,P, where P, e %, Pe . Let U = W-'XP,. Then Ue %, and V = UP.

To prove uniqueness, suppose that ¥ = UP = U'P’, where also U'e %,
Ped thend = U-tU = PPt e¥ NP But 4 is then block permutation
matrix, say A = P, with &(N,) = N, k = 1,...,r. Hence ¢ is the identity
permutation and 4 = 7. Thus U’ = U, P’ = P and the decomposition is
unique. The theorem is proved.

Let o be a group, b and 1 subgroups of a with n normal in a. If
wNDh = (1) aud nb = a, then a is called a semi-direct product of n and 5.

7.8
COROLLARY ¥ is a semi-direct product % and P and ¥V |% = P,

Proof Sinee %P = ¥, and % is normal in ¥, the results are immediate
by (7.7).

Comment 1t is also clear that the connected components of ¥ are
precisely the sets %P, for Pe 2.

Remark Similarly, every ¥ € ¥” can be represented uniquely as V = P'UJ’,
where P'e 2 and U’ e %. Indeed, if P'U’' = V = UP, then P(P'UP) = ¥,
and P-*UP e %. Hence P' = Pand U’ = P-'UP.

7.9

n
Examples 1) il v is an [y-norm, v(x) = (Z lx,[")‘“’ where 7 = | and
i=1

p # 2, then the equivalence classes for ~ are singletons. Hence % comsists of
all diagonal matrices U = diag(uy, ..., %), with |Ju| =1, i=1,...,n.
The group £ consists of all permutation matrices.

2) Let v be any standardized absolute norm on C, and suppose there is
a z e Cy with w(z,, z5) # v(z,, ;). Then % consists of all diagonal matrices
U = diag(uy, 1) with |u,] = |u,y] = 1, and 2 of the identity matrix. Hence
vV o= U.

1
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8

In this section we shall restate our main results for an absolute norm v, on
C, which is not necessarily standardized by v,(¢') = 1,i = 1, ..., n. Theorem
(6.2)" will correspond to Theorem (6.2), etc.

Let vy(e)=d, i=1,...,n and let D = diag(d,,...,d). Define
v(x) = v,(D~*x), for all x € C,. Then v is a standardized absolute norm. Now
define the equivalence relation ~ in terms of v, and let N, and E, be as before.
Explicitly, we now have:

i ~j ifandounlyif for x,ye C, .1y
d7lx,|* + d31x112 = dily|* + d?‘[}’jlz,
and
|xk| = |yk|! k # )

imply that v,(x) = v,(»).
Define V(A), o, #, U, ¥ as before for the standardized norm v, and let
Vi(A), #,y, £, Uy, ¥, be defined correspondingly for v,. The basic results
translating theorems for v into theorems for v, are that v§(4) = v¥(DAD-)
and 7" ,(4) = V(DAD*) (Nirschl and Schneider [7]). Hence K € 5, if and
only if DKD-* e . Thus 5, = D-'s¢ D. Explicitly:

6.2°

THEOREM Let v be an absolute norm on C,, and suppose that W(e') = d,,
i=1,...,n Let D= diag(d,, ..., d,). Then KeC,, is norm-Hermitian if
and only if DKD~* is Hermitian andk; = 0 if i ~ j.

Theorems (6.5) and (6.7) become .
(6.5 Let x,(x) = x(Dx) = (Zd?|x;|*)%, for xe C,. Then, for all 4¢ 2,
W(4) = x3(4) = (p(DAD->A*D))*
(6.7 If A is vy-normal, then DAD-! is normal, and

v{(4) = x3(A4) = v4(4) = p(4),

where v, (4) is the numerical radius for v,.

Finally, %, = exp(is#,) = D~'#D, and

{7.8)' The group of all isometries ¥"( is a semidirect product of %, and
2P,, where 2, = D=2 D is finite.

9

In [11], Tam presents several results which, restricted to C,, are the
special cases of some of our results when the norm is invariant under every
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permutation matrix.t We shall show that it is possible to obtain the con-
clusions of [11], Theorems 2 and 3 (restricted to C,) under a somewhat weaker
hypothesis.

Let G be a subgroup of §,. Then G is called doubly-transitive if for all
ordered pairs (4,/), i # j, and all ordered pairs (k,/), k # I, {i,/. k,1} =
{1, ..., n}, there exists a permutation ¢ € G such that ¢({) = k and o(j) = /,

9.1

THEOREM Let v be an absolute norm on C, with v(e') = 1, and let G be the
subgroup of S, defined by a € G, if P, is an isometry. If G is doubly transitive,
then either
a)v=y,
or
b) 1) # consists of all real diagonal matrices and, for H € o,
VO(H) = max{|hyl:i=1,..., n}.
il) ¥ consists of all diagonal matrices U with [uyl = 1,i=1,...,n
i) @ consists of all P, 0 € G.

Progf Since v(e') =1 and G is (doubly) transitive, it follows that
ve") = (Pse"), for suitable ¢ G, i = 1, ..., n. Hence v is standardized.

Case (a) There exist distinct #, jin {1, ..., n} such that i ~ j.

By (7.5) and the double-transitivity of G, k ~ Ifor all k, [, with k& # /, and
k,le{l,..., n}. Hence, by (2.3), v = 1.

Case (b) Suppose all equivalence classes for ~ arc singletons. Then

(i) follows from (6.2) and (6.5) and (ii) from (7.3). For (iii), observe that
every permutation matrix which is an isometry is a block isometry.

8.2
Example Letn>3andl =a, >a, > ->a, 2 0.InC,, set

w(x) = IZ'I ajx,| and v(x) = sup{p(P,x):ceA,},

where A4, is the alternating group on {1, ..., n}. (If n > 4, then A4, is doubly
transitive.) Then v is a standardized absolute norm on C,, and if G is defined
asin Theorem (9.1), then 4, € G. Let x = (a4, ...,a,), 2 = (G2, A1, A3y - + 15 Gy).

Then by a result found in Hardy, Littlewood and Polya (*“Inequalities,”

(10.2)), it follows that v(x) = ) af > v(z). Hence G # S,, and 50 G = A,
I=1

t We are indebted to John Duncan for pointing this out to us. This section was written
after the rest of this paper was completed.,
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