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1. The classical Perron—Frobenius theory for matrices has been extended
by many authors, in the context of both finite- and infinite-dimensional
spaces. The principal results of this paper concern the existence of “positive”
eigenvectors of order preserving maps in a Banach space with a partial order
induced by a cone. While the resolvent is a powerful tool for linear maps and
fixed point theorems, for continuous ones, we assume neither linearity nor
continuity and hence must rely heavily on order preservation. The type of
proof we give can be traced to the work of H, Wielandt [1] on matrix prob-
lems. As an application we prove the existence of a positive eigenvector of a
discontinuous Sturm-Liouville problem.

In addition to the existence theorems we present a new proof that the
spectral radius is in the spectrum of a positive linear operator and extend
comparison theorems for “spectral radii” to maps in a Banach space.

2. Welet X denote a real Banach space with norm|| - || and K, a cone in X,
i.e., a closed convex set in X with the property that x,y € Kimpliesx + ye K
and ax € K for « > 0. We assume that K is normal; that is, there exists a
8 > 0 such that for &, ye K, ||x + y|| =8| x||., We also assume K is
reproducing which means that each z € X can be written in the formz = x — y
with x, ye K,

Lemma 2.1, If K is a veproducing cone in X, then there is a constant 4 > 0
such that each x e X has a representation x = a2, — x5, %,,%, € K with
Nedl <mllxll, 2=1,2.

Proof. 'This follows from the fact that the map d: K x K — K taking
¥,y to x — ¥ is onto and hence open. A proof of the ‘‘open-mapping theorem”
for d is contained in Ref. [2, Chap. II, Section 1].

One can use the cone X to introduce a partial order in X and we write
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x<<Lyory>«ifand only if y — x € K, If 4 and B are linear maps, we
write A < B if and only if B — A4 maps K into K,

DerinrrioN. A cone FC K is called a face of K if and only if, whenever
xeF,yeK, and x > y, then y € FV. (This is equivalent to the definition of
Vandergraff [3] in E#, though he excludes K as a face.)

The set

Flx)={yeK|Ia>02ay <x}

is a face and is called the face generated by . If in a cone K every chain
O0CF, L F, < - of faces ends with K after a finite number of steps, we say K
satisfies the finite chain condition. For example, if H is a Hilbert space, the
cone K = {x | |(x, x,)| = a| x|l -{| x|} for fixed x¢ and 0 < & < 1, satisfies
the condition with the maximum length being three.

We denote the Banach space interior of K by K°. It may be empty, e.g.
S = 0in L?[0, 1]. We say that x is in the order interior of K, denoted K,
if and only if F(x) = K. If x € K°, then x — K contains a neighborhood of 0
and for each y € K, ry is in this neighborhood for some « > 0. Thus K°C K.
That K may be strictly larger can easily be seen for an incomplete normed
space, say C[0, 1] with L?[0, 1] norm, but may also occur in a complete space.
To see this let X = C[0, 1] with the usual “sup” norm and let / be an
unbounded linear functional defined on all of X with /(1) = 1. Let

K={feC[0,1]|f>=0and I(f) > 0}

Then K is a normal, reproducing cone. Since / is unbounded the function 1
is not in K° but is in K?°,

The set of bounded linear functionals & in the dual of X satisfying
{x’, x) > 0 for all x € K is called the dual cone to K and is denoted by X".
By the spectrum o(4) of a linear map A in X, we mean the spectrum of the
extension of A to the complexification of X (cf., [4, p. 31]). The following
theorem about the spectrum is central to the linear theory and we believe
our proof is new:

TheorEM 2.2. Let A be a bounded linear map of X into X taking a cone K
into itself. Let A have spectral radius 1. Then A =1 is in o{A).

Proof. If 1 ¢ o(4), then the spectral radius of 7 -+ A is strictly less than 2,
Thus for some 5 > 0,

I=g—Ay'=Q2—3—-(I+A)7

a+ap
~L ot
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exists and maps K into X, Since

4 N Ak AN+ 7 A
(I_"")'—A) =kzo(l__n)k+1+(l__n)N+l( —n— ) 3
Ak

O<W<(l—n—14)"1

for all &, Since K is normal,

[ S| <5 M= — )
for x = 0, from which it follows that || 4*[| < 871¢(1 — %)%, for some con-

stant ¢, using Lemma 2.1. But then the spectral radius can be at most 1 — 7,
a contradiction,

It has been shown by various authors, under conditions which insure that
A= lisapoleof (A\ — A4)2 that Ax = x for a vector x € K that is, Ax = px
where p is the spectral radius. It is this last result that we will extend.

We say that 4 is homogeneous if and only if 4(ox) = adx for « real and
call 4 monotone if 4 maps K into itself and »,y e K, x <y, implies
Ax < Ay.

LeMma 2.3, Let A be a homogeneous, monotone map. If x € K and Ax is
in the face F(x), then A maps F(x) into itself.

Proof. If y €eF(x), then ay < & for some & > 0, so
ady = A(ay) < Ax e F(x)

implying Ay e F(x).

Motivated by Vandergraff’s definition of irreducibility in Ref. [3] we say
that a homogeneous monotone map A is irreducible if and only if x; > 2, > 0,
X, 7 %o, and Ax; — Axy € F(x, — x,) imply that F(x, — x)) = K

Lemma 2.4, Suppose A is irveducible and that x, > %y, %, 5= %, . Then
=F((I1 4 AYt 2, — (I + AY x,) CFy 5 with strict inclusion unless F,, = K.
Proof. Weletx® = (I + A)*x;,{= 1,2, and note that the monotomcxty

of A implies that a* > ap* for all poesitive integers &. First,

ke w kL A — Ax > ) — x,

s0 Fy CFyyy JIfF), = F, k;l , then for some a > 0, e — af ) < % — xp*
so ofdx® — Ax®) < (1 — «) (%,* — &%) which, since 4 is irreducible,
implies F, = K.
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In Theorem 2.6 below we consider a homogeneous, monotone, upper
semicontinuous map. As the next lemma points out such a map must be
continuous in the interior of K. Of course, as noted, K° may be empty.

Lemma 2.5, If A is monotone and homogeneous, then A is continuous in K.

Proof. If x € K° and x, — x (the arrow denoting strong con-
vergence), then for any 0 <« <1, ax < %, < o lx for all large n. Thus
adx < Ax, < o tAx. Now if N is any neighborhood of Az, then using
the normality of K one sces that for « sufficiently close to 1, the order interval
[adx, a~1Ax] will be in N. Thus 4 is continuous at x.

We say A4 is upper semicontinuous if and only if whenever x, — x and
Ax,— 2, then Ax > 2.

THEOREM 2.6. Let X be a real Banack space and Xy C X a second Banach
space having a compact injection in X. Let K be a cone in X and suppose that
K°# @, where K, = KN X, . Let A £ 0 be homogeneous, monotone, upper
semicontinuous and bounded (i.e., map bounded sets to bounded sets) as a map
from K to K. Suppose that: (i) there exists a homogeneous, monotone map B,
bounded from K into K, , such that AB = BA and Bx = aAx for some o > 0
and all x € K. (ii) There is a homogeneous, monotone map C with AC = CA
and such that x, y € K, , y = x, y 5 x implies Cy — Cx is in K{°. Then there
is an x € K{° and p > O such that Ax = px. Moreover, p is maximal; that is if
Aw = pwwithwe K — {0}, thenp < p.

Proof. Let
p =sup{l | 3x € CB(K), x # 0, Ax > \x}. (2.1)

Let x be a vector for which Ax # 0. Then Bx > adx # 0, so Bx 5% 0 and
thus CBx € K}°. For some B8 > O then, CBx > Bx and so

CBAx = ACBx > BAx + 0.

Thus CBAx is in K{° and repeating the argument we see that
ACBAx = CBA% is in K{°. That means there is an n > 0 for which
A(CBAx) = nCBAx from which it follows that p > 0. Let x, be a sequence
of vectors in CB(K), normalized in X, i.e., with || x,| = 1, and satisfying
Ax, = (p — 1/n) x, . The sequences 4Bx, and Bx, are then bounded in K,
and hence compact in XK. Assuming we have taken subsequences if necessary,
we can assert that Bx, — xy € K and ABx, — z € K. We have

Bx, > adx, >« (p — %)x,.
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which means || Bx, || = 8a(p — 1/n) or, that xy 5% 0. Similarly, = 5= 0. Now
ABx, > (p~— 1/#) Bx, and A is upper semicontinuous so Axy > 2 > pxy .
Then ABxy = BAxy > pBxy > padxy # 0, so Bxy 7% 0 and is in K, . If
ABxy = pBx,, then x = CBxye K;° and Ax = px, giving the desired
eigenvector. Otherwise ACBx, — pCBxy = CABxy — CpBX,€ K?° and
ACBxy — (p + €) CBxy > 0 for some ¢ > 0, contradicting the character-
ization of p. The maximality of p follows easily from its characterization.

Cororrary 2.7. If in the statement of Theorem 2.6 the existence of C is
replaced by the assumption that K, satisfies the finite chain condition and A is
K, -irreductble, then there is an x € K3° and a maximal p > O such that Ax = px.

Proof. Let C = (I + A)™, where m is the maximal chain length in K, .
In the following theorem we replace homogeneity by a weaker condition
((i) below) and, in effect, replace B and C by a power of 4.

Tueorem 2.8, Suppose X, K, X; , and K, are as in the previous theorem.
Let A satisfy the following conditions :

(1) Thereexists ana > 2 such that if 0 < || || < a7, then A(2x) > 24(x)
while, if | 2 || > a and Ax > 1x, then there is an %, with a™* < || x, || < a such
that Ax, > %, . Further A(0) = 0.

(ii) A is monotone, upper semicontinuous and bounded from K into K.

(i) There is an integer v > 0 such that for each ball B, and each pair
0 <py < py < 00, the set

Sropron)= U (+4) B.nEK)

<oy
is bounded in K, . Further, if x >y > 0 and x 5~ y, then for each r > 0,

(iA)"x - (}A)Eeff".

¥

Then there is an x € K{° and a maximal p > 0 such that Ax = px.

Proof. If xe K and x # 0, then dx # 0, for 4*x € KJ* and A(0) = 0.
Hence 4**x € K{° and for some p, > 0, A(A4%x) = p,A"x. From (ii) we know
that for x in K N B, , Ax is in K N B, for some @ > 0. If we let p, be a real
number greater than 48-'a, where 8 is the normality constant of K, then
Az > p,x is:not possible for any x 5= 0. For were it to hold for some x it
would hold .for an » with a! <{| x| < a together with the inequalities
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a = Az}l = 8p, || 2|} > 8pyat, an impossibility. Using the p, and p, from
above and the set S(p, , p;, &, v) from hypothesis (iii), we define

Py={xeK |x=8yyeS(,,p2), 1l <B<2W,x¢B 4}

For « sufficiently large, P, will be nonempty. Suppose we have chosen such
an a. Now let

p=sup{A|FxeP,, Ax > \x},

noting that p; < p < p,. The set P, is bounded in K, and hence compact
in K. Moreover, AP, is compact. To show this it suffices to show that
AS(py , pg , o, v) is compact which will follow if S(p, , py, @, v + 1) is com-
pact. But since 4 is bounded S(p, , py , &, v -+ 1) is contained in S{p, , p; , &, v)
for some & > 0 and this last set is compact. Hence, we can choose a sequence
x, € P, such that », — x; in K with {{ 2, || = «, 4x, — 2z € K, and
Ax, = (p — 1/n) %, . Upper semicontinuity then yields Ax, > px,. If
Axy = px, , then A((1/p) Ay %, = p((1/p) A) x4 50 ((1/p) A) x, is the desired
eigenvector. Otherwise ((1/p) 4) x5 > x, without equality and we may
assume a1 << || x, || << @. Then ((1/p) Ay x, — ((1/p) A)’ x4 € Ki° or with

= ((1fp) Ay x,, Ax — px € K{°* so Ax > px for some § > p. Since
x = ((1/p) AY x5 = %y, || *{| = 8a?, and if || x || < a~?, then for some power
2% 2671, x, = 27x will be in P,. Using hypothesis (i) p times, we find
Ax; > pxy which is impossible for 5 > p. If || 2| > a, hypothesis (i) again
provides such an x; € P, and a contradiction.

As an application of the previous theorem consider the following situation.
Let X be C[0, 1] with the “‘sup” norm and let H*[0, I] be the space of
L?[0, 1] functions f having & L? derivatives with the norm

A1 = A5 + I DFIG + === + 11 D I
|| llo being the L0, 1] norm and D being differentiation. We let K be the

cone of nonnegative functions.
We define a differential operator L with domain

L) ={fe HO, 1] |f(0) =f(1) =0}

and defined by Lf = — D for f e D(L). For each heL? g =L~ = Gh
is defined by

8 = [ sl =) o) ds + [ a(1 =) h) .
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It follows that
1 1 1
De(0) = j h(s) ds + j sh(s)ds and  Dg(l) = —j sh(s) ds.
0 0 (1]

Suppose we let X; = H?¥0, 1]. Then by a theorem of Rellich, H? has a
compact injection in HY, Since H?! has a continuous injection in C[0, 1], X,
has a compact injection in X. Now any g € K; = K N X; which is positive
on (0, 1) 2nd satisfies Dg(0) > 0, Dg(1) < 0 is in K;° with respect to the H?
topology and hence in Kj°. Thus, if h € K, h == 0, then g = Gh € K.

Let a(s, t) be a real-valued function defined on [0, 1] X [0, <o) satisfying
the following conditions:

(i) for each s, a(s, t) is upper semicontinuous in ¢ (uniformly in 5) and
strictly increasing in f;
(i) there is an & > 2 such that for 0 <t <&, afs, 2t) > 2a(s, t) > 0
while if £— co then ¢ la(s, t) — O uniformly in s;
(ii) for each f(s) € K, a(s, f(5)) is measurable and a(s, f(s)) = 0 if and
only if f=0.

Using the notation of the preceding paragraphs we can state a result as
follows:

CoroLLARY 2.9. There is a p > 0 and an f e D(L) with f > 0 on (0, 1),
Df(0) > 0, and Df (1) < O such that

Lf (s) = pa(s, f(5))-

Moreover, p is the smallest eigenvalue corresponding to such an f.

Proof. The problem is equivalent to finding an f in K;° (= X{° in this
case), such that

Af = Gals, f(5) = wf =,

so it will suffice to show that A4 satisfies the conditions of Theorem 2.8.
Since for || fi| < &Y, a(s, 2f (s)) = 2a(s, f(s)) and G is monotone, the first part
of hypothesis (i) will be satisfied for any number a > &. To satisfy the second
part it suffices to show that if > 0 is fixed and we assume Af, > =f, >0
for a sequence f,, with || f, || = -0, we are led to a contradiction. Under
such an assumption, for each #, || Ga(s, f,())| = 7| fo 1l . For a given € > 0,
we can choose £, so that for t > ¢, a(s, £) < et yielding

a(s, fu(s)) S als, o) + efu(s)  and [l a(s, fu(s)lo <l als, to)llo + € I[fn flo «
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Since G is a bounded map from L? to H2and C1[0, 1] has a bounded injection
in H?, there are constants ¢, and ¢, such that

T full < e ll Gals, fuls)lz < excalll als, tolllo + €1l S llo)
< 69l als, to)llo -+~ € Il fo II)-

But we may choose e so that ¢;¢,e << 7 which, for large || f, || , gives a contra-
diction. Recalling that a(s,0) =0 we see that 4(0) = 0 completing the
demonstration that hypothesis (i) of Theorem 2.8 is satisfied.

A will clearly be monotone and bounded. To show upper semicontinuity
suppose f, — f and that 4f, — g. The sequence a(s, f,(s)) will be bounded
in L2[0, 1] and hence will have a subsequence a(s, f, (s)) converging weakly
to an element 2 € L2 If a(s, f(s)) — A(s) is not in K, there will be a vector
¥ > 0 in L? such that (i, a(s, f(s)) — &) = n < 0, the inner product being
that in L?, and there is an integer N, such that for £ > N, ,

de = (f, als, £ () — als, fo () < 5+

From the upper semicontinuity of a, however, we conclude that lim inf d,, >0,
so we must have a(s, f(s)) = 5. Since G maps weakly convergent sequences
to strongly convergent ones (in L?), Gafs, f, (s)) converges to Gh. But we
assumed the sequence 4f, converged to g so we have

Af = Ga(s, f(5)) = Gh =g,

and the satisfaction of hypothesis (ii).

For (iii) we may take v = 1. We have already remarked that G and hence 4
is bounded from L? to H? and hence from X to H2.1ff, > f, > Oand f, + f;,
then g(s) = als, f1(s)) — a(s, fu(s)) will be positive on a set of positive measure
since a(s, t) is strictly increasing in . But then Af; — Af, = Gg will be in
K,° as will any positive multiple of Gyg, completing the demonstration.

We wish to give some results on the size of p = p(4) and for simplicity
will limit ourselves to the situation of Theorem 2.6 and Corollary 2.7, The
next two results are immediate consequences of Theorem 2.6.

Cororrary 2.10. Under the hypotheses of Theorem 2.6,

(¥, Ax)
A) = inf ———=
p(4) xe%‘;i%{) »'eK’ <x x)

Proof. TFor each & € CB(K), Ax — p(4)  is either not in K or is 0. In the
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first case we can separate Ax — p(4) x and K by a hyperplane using the
Hahn~Banach theorem which means there is an &’ € K’ such that

(', Ax — p(A) x> < 0,
or

inf &> 4%)

Hewm <

In the second case the quotient is p(A4) for all a”.

CoroLrary 2.11. Suppose A, B, and C are given as in Theorem 2.6 and
that there is a similar triple A, B, and C with Ax > Ax for x € K. Then

p(A) = p(4).
Proof. Let Axy = p(A)x,, where x; € K?° and suppose

Axy > (p(A) + €) %
for some ¢ > 0. Then
A4Bxy — p(A)Bxy € K; — {0}

and
ACBxy — p(A)CBxy e KJ°

yielding p(A) > p(A), an impossibility. It follows that adding w, to the
set CB(K) in the definition of p(4) (cf., (2.1)) will not increase p(A). Then
since Axy > Axy > p(A) x, , we see that p(Ad) > p(4).

THEOREM 2.12. Suppose that the conditions of Corollary 2.7 are satisfied
for a linear pair A, B. Likewise, assume a second linear pair A, B satisfies the
ypotheses of that corollary with the exception of irreducibility for A. If Az > Ax
forx e K and A= A on Ky, then A is irreducible, p(A) and p(A) are the spectral
radii of A and A, respectively, and p(4) > p(A).

Proof. 'The irreducibility of A follows easily. Let 7 be the spectral
radius of A. Clearly p(4) <r. Since 7 is a boundary point of o(4),
(4 — 7 4+ 1/n))"! || must be unbounded as # — co. Otherwise, choosing any
vector ¥ and setting 2, = (4 — (r 4 1/n))~*y we have

(A"f)?‘n=y+(l/")zm

showing that 4 — r has dense range. Then 7 is in the point or continuous
spectrum and. (4 — (r -+ [/n))~! must be unbounded in n. In particular,
there must be unit vectors x, € K for which {4 — r)x,— 0 as n— <0,
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Then ABx, — rBx, — 0 and since B is compact, we can assume, without
loss of generality, that Bx, converges to a vector w in K, satisfying
Aw — rw = 0. Having Bx, > aAx, > orx, we see that | Bx, || = 8ar and
that w 5 0. Then 4Cw — rCw = 0 and we see that p(4) > r. Now let y be
a vector in K for which 4y # Ay. Then

By =F(I + Ay y — (I + A)y)
properly contains B, or E;, = K, For if E,; = E; s+ K, we must have

(I+ A [+ Ay — I+ AFy] <+ Aytty — (I + Ay
<B4 AYy — I+ AFy)

for large B, contradicting the irreducibility of 4. From the finite chain condi-
tion it follows that E, = K, for some integer p. Now if Ax; = p(A4) x, for an
xy € KP°, oy < x, for some o« > 0 and

I+ AP xy— (1 + p(A)P 2 = (T + Ay — (I + AP) oy
' + I+ A)p Xp — (I + P(A))p Xo
== k,

where % € K{°. As before we can conclude that p((I + 4)?) > (1 + p(4))?
which, combined with the spectral mapping theorem, yields p(4) > p(4).
Aga corollary we obtain Theorem 4.6 of Vandergraff [3].
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