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CROSS-POSITIVE MA TRICES* 

HANS SCHNEIDERt AND MATHUKUMALLI VIDYASAGARt 

Dedicated to Alslon HOllseholder on the occasion of his 65th birthdav. 

1. Introduction. In recent years there has been a great deal of interest in a 
matrix A which is positive on a cone C in Euclidean n-space, i.e., AC s:;; C (e.g., 
Birkhoff [2] and Vandergraft [5]). Another type of positivity is considered by 
Haynsworth and Hoffman [4] for symmetric A and self-polar C. 

In this paper (§ 3) we introduce three classes of matrices related to the class of 
positive matrices: the class of cross-positive matrices on C, strongly cross-positive 
on C, and strictly cross-positive on C. These classes contain respectively extensions, 
by multiples of the identity matrix, of the class of matrices positive on C, irreducible 
On C, and strictly positive on C. In this section we also investigate when equality 
occurs in the various containment relations. In § 4 we consider exponentials of 
cross-positive matrices. Then (§ 5) we prove theorems of Perron-Frobenius type 
for each class of cross-positive matrices. Thus in the case of some cones C, we 
obtain extensions of the standard Perron-Frobenius theorems. Sections 6 and 7 
are devoted to matrices cross-positive on a polyhedral cone and symmetric cross
positive matrices,respectively. We state some open problems in § 8. We begin by 
assembling in § 2 some preliminary lemmas on cones in a form in which they are 
used in this paper. 

2. Lemmas on cones. 

DEFlNITION 1. A set C in real Euclidean n-space R" is said to be a cone if 
(i) Cis nonempty, 

(ii) C is a closed subset of R", 
(iii) C + C s:;; C, 
(iv) aC s:;; C for all a > 0, 
(v) C - C = Rn, 

(vi) C n ( - C) = {o}. 
It should be observed that many authors employ the term "cone" for subsets of 
Rn satisfying some, but not all, of the above conditions. 

We shall denote the inner product in R" by (z, y) = ZT Y and we write IIzll2 
= (z, z), IIzil ~ 0, 

DEFINITION 2. The polar S* of a nonempty set Sin Rn is defined to be 

S* = {z E R" :(z, y) ~ 0 for all YES}. 

Since 0 E S*, we observe that S* is non empty. Also it is easily shown that S* is 
closed. 
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DEFINITION 3. If C is a cone in Rn and x = y - 2 where y E C, 2 E C* and 
(2, y) = 0, then y, z will be called an orthogonal decompositioll of x on C. Where 
convenient. we shall refer to x = Y - z as an orthogonal decomposition on C. 

Lemma 1 is essentially to be found in [4] for C such that C* s C and is used 
in the section of this paper dealing with symmetric matrices. 

LEMMA 1. Let C be a cone in Rn. Then every x E Rn has all orthogonal decomposi
tion on C. 

Proof. Let y be the vector C whose distance Ilx - yll from x is minimal over 
all vectors in C (such a y exists, since C is closed) and let z = y - x. Let v E C. 
Then for all e > 0, (y + ev) E C and so 

!lz112 ~ Ilx - (y + ev)ll l = liz + wl12 = IIzl12 + 2e(z, v) + e211v1i 2. 

Hence for all e > 0, (z,v);;; -ellvI1 2/2 whence (z,v);;; o. It follows that ZEC*. 
Next, observe that (1 - ely E C for 0 ~ e ~ 1. Hence 

IIzl12 ~ Ilx - (1 - e)Y112 = liz - eYl12 = IIzl12 - 2e(z,y) + e211Y112; 

so for all e, 0 ~ e ~ 1, (z, y) ~ ellyIl2/2. Hence (z,y) ~ O. But YE C and ZE C* so 
that (z, y) ;;; 0 and so (z, y) = O. The lemma is proved. 

The decomposition is in fact unique, but we shall make no use of this. 
Severai well-known results are consequences of Lemma 1. To illustrate this 

point, we shall give a proof of Lemma 2 (cf. Fenchel [3, p. 10], Ben-Israel [1]), but 
in the case of Lemmas 3 and 4 we omit the details. We shall denote the (absolute) 
boundary of a set S by as and its (absolute) interior by So. 

LEMMA 2. Let C be a cone in Rn. Then C** = C. 
Proof. It is clear from the definitions that C S C**. So let x E C**, and let 

x = y - z be its orthogonal decomposition on C. Then 

(z,x) = (z,y) - (z,z) = -llzI12. 

But x E C** and z E C* whence (z, x) ;;; O. It follows that 112112 = 0, and so z = O. 
Hence x = y E C. Thus C** s C, and the result follows. 

LEMMA 3. Let C be a cone in Rn, and let y E C. Theil there exists a z E C* such 
that (z, y) = 0 if and only if y E ac. If y i' 0, any such z E ac*. 

One half of the lemma is equivalent to the existence of a support plane at 
any point of the boundary of the cone, and this result may also be found in Fenchel 
[3, p. 8]. 

COROLLARY 1. Let C be a cone ill Rn
, and let y rt Co. Theil there exists 2 E C* 

sl/ch that (2, y) ~ O. 
LEMMA 4 (Fenchel [3, p. 12]). If C is a cone in Rn

, thell so is C*. 
A result more general than Lemma 4 is given by Lemma 5. We identify Rmn 

with the space of all real m x n matrices. 
LEMMA 5. Let C be a cone ill R", alld let D be a cOile in Rm. Let nC, D) be the 

set of all matrices A E Rmn such that AC S D. Then nC, D) is a cone ill Rm". 
Proof. Properties (iHiv) of Definition 1 are easily verified for nC, D). Since 

C* is a cone, and so C* - C* = Rn
, there exists a basis x I, ••• , Xn for R" with 

Xj E C*, i = 1, ... , n. Similarly, since D - D = Rm, there is a basis YI' ... , Ym for 
Rm with yjE D, j = 1, ... ,m.1t then follows that YjXT, i = 1"" , n,j = 1, ... ,m, 
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is a basis for Rm". But Yjx! E l(C, D), and thus l(C, D) satisfies condition (v) of 
Definition 1 for Rm". If A E l(c' D) n (-l(C, D)), then AC S D; and AC s - D 
whence AC = {O}, since D n (-D) = {O}. Since C - C = Rn. it follows that 
ARn = {O}, whence A = O. Thus condition (vi) of Definition 1 is satisfied, and 
l( C, D) is a cone. 

3. Cross-positive matrices. 
DEFINITION 4. Let C be a cone in Rn. An n x n matrix A is called cross-positive 

on C if for all Y E C, Z E C* such that (z, y) = 0 we have (z, Ay) ~ O. 
DEFINITION 5. Let C be a cone in R". An n x n matrix A is called strongly 

cross-positive on C if 
(i) A is cross-positive on C. 

(ii) for each y E iJC, y =1= 0, there exists z E C* such that (z, y) = 0 and (z, Ay) > O. 
DEFINITION 6. Let C be a cone in Rn. An n x n matrix A is called strictly 

cross-positive on C if for all y E C, Z E C*, y =1= 0, z =1= 0 such that (z, y) = 0, we have 
(z, Ay) > O. 

Let C be a cone in R n
, and let AC s C. In [5, Definition 4.1J Vandergraft has 

given an interesting definition of the irreducibility of A on C. He has shown 
[5, Theorem 4.1 and Lemma 4.2J that each of the following conditions (which also 
have been considered by other authors) are equivalent t6 irreducibility as defined 
by him. 

CONDITION II' A has no eigenvector in ac. 
CONDITION 12 , (I + A)"-I(C"{O}) s CO. 
Thus we shall call A irreducible on C if AC s C and A satisfies either of the 

equivalent conditions II or 12 , 

The following symbols are introduced for the sake of convenience: 

I:( C) = {A : A is cross-positive on C} , 
I:'(C) = {A:A is strongly cross-positive on C}, 
I: + (C) = {A: A is strictly cross-positive on C}, 
n(C) = {A :AC £; C}, 
fl'(C) = {A:A is irreducible on C}, 
fl+(C) = {A :A(C"{O}) S CO}, 
fldC) = {A:A + aI E fl(C) for some iX ~ O} 

= {A:A + iXIEn(C) for some real a}, 
fl'l(C) = {A:A + aI E n'(C) for some a ~ O} 

== {A:A + aI E n'(C) for some real a}, 
nt(C) = {A:A + iXI E n+(C) for some rx ~ O} 

= {A:A + aIEn+(C) for some real rx}. 

We shall write cl (S) for the topological closure of a nonempty set S. 
LEMMA 6. Let C be a cone in Rn. Then in Rnn, 

Proof It is easily verified from Definition 4 that I:(C) is closed in wn• For 
A E I:( C) and () > 0, define 

. '. 
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where YEC and ZE(C*t. Then AoE:E+(C) for all b > 0, and limJ_oAJ = A, 
whence A Ecl(:E+(C)) . The lemma now follows since :E+(C) s; :E(C). 

LEMMA 7. Let C be a cone ill R" lind let A E :E'(C). Then A has //0 eigellrector 
ill ac. 

Proof. Suppose liE ac and All = ;.11. Since A E :E'(C), there is a Z E C* such 
that (Z,ll) = 0 and (z, All) > O. But (z. Au) = ;.(z, ll) = O. This is a contradiction, 
and the lemma follows . 

We postpone until § 5 the fuller results on eigenvectors and eigenvalues. 
THEOREM 1. Let C be a cone in R". Theil n'(C) = n(C) n :E'(C). 
Proof. If n = 1, the theorem is clearly valid, because every matrix is in :E+(C) 

and every nonnegative matrix is in n'(C). So let n ~ 2. Suppose A E n(C) n :E'(C). 
By Lemma 7, A has no eigenvector in ac and so A E n'( C) by Condition I •. 

Conversely, suppose that A E n'(C). Then A E mC), and it only remains to 
show that A E :E'(C). It is sufficient to prove that B = (A + I) E :E'(C). Let Y E ac, 
y#O, and (Z,y) =0. As AEn'(C), B"-IEn +(C), by Condition 12 , so that 
B"-ly E C, and so (z, B"-·y) > O. Since BE n(C), we have (z, B'y) ~ 0 
for r = 1, ... , n - 1. Since (z, y) = 0, there exists r, 1 ~ r ~ n - 1, such that 
(z,B'y) > 0 and (z,W-1y) = O. Let z' = (BTY-IZ. Then Z'EC*, (Z',y) = 0 and 
(z', By) > O. So BE :E'(C) and the theorem is proved. 

COROLLARY 2. n'I(C) = n1(C) n :E'(C). 
Remark 1. A E n(C) if and only if (z, Ay) ~ 0 for all y E C, Z E C*. 
Note that if (z, Ay) ~ 0 for all z E C*, then by Lemma 2, Ay E C. 
Remark 2. If A E :E(C), so is A + r:tI for all real r:t, and similarly for A E :E'(C) 

and A E :E+(C). 
Remark 3. From Remarks 1 and 2 and Corollary 2, the containments shown 

in Table 1 follow easily. (In Table 1, an arrow (~) is used instead of .. s;" for 
convenience.) 

TABLE 1 

n+(C) ..... mC) ..... n(C) 

! ! ! 
nt(c) ..... n'l(c) ..... nl(C) 

! ! ! 
L+(C) ..... L'(C) ..... L(C) 

We now investigate the containments :E+(C) :2 nt(C) and :E(C) :2 n1(C). 
THEOREM 2. :E + (C) = ni (C) (i.e., a matrix A is strongly cross-positive all a 

calle C if and only if (A + r:t1)(C",",{O}j S; CO for some r:t). 
Proof. Clearly from Remark 1 and Corollary I, :E +(C) :2 nt(C) . Suppose 

A ¢: n t (C). Then for each real a, A + ex I ¢: n + (C). So for all r:t there exists y~ E C, 
Ya: # 0, such that (A + rxI)y~ ¢: CO. Hence by Corollary I, there exists z~ E C*, 
Zex # 0, such that (z~, (A + r:tl)y~) ~ O. Let {ai } be a sequence of real numbers which 
approach infinity, and normalize the corresponding {za:J and {Yo,,} to unit norm. 
Then {z~J and {y~J have convergent subsequences {zd and {Yi.} converging to z 
and y respectively. Let these be renumbered {zJ and {yJ, and renumber the cor
responding subsequence {exi.} as {a j }. Then for all i, (zi,(A + r:tJ)y;) ~ 0, whence 

(z;, AYi) ~ -ai(zi,y;) ~ O. 
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Then, as i -+ ro, we have Zj -+ z, Yj -+ Y and therefore (z, Ay) ~ O. Also 

and since (Zj, Ayj) is bounded as i -+ ro, it follows that (z, y) ~ O. But (z,)') ~ 0 as 
:: E C*, Y E C, so that (z, y) = O. Hence there exist y E C, Z E C*, y i= 0, Z i= 0 such 
that (z,y) = 0 and (z, Ay) ~ O. We conclude that A rf :ET(C). The theorem follows. 

Theorem 2 shows that the containment:E +(C) ;2 rI t(C) is actually an equality. 
We now show by means of an example that this is false in the case of the contain
ment :E(C) ;2 n(C). However, as we shall see in § 6, nl(C) = :E(C) if C is polyhedral. 

Example 1. Let C be the circular cone in R3 : 

C = {x = (x l ,X2, X3f :x l ~ 0 and xi ~ x~ + xn. 

This cone is self polar (C* = C). Let 

Suppose y = (Yl,Y2,Y3)T EOC. Then YI ~ 0, yi = y~ + yL and ZEC, (z,y) = 0 
ifandonlyifz = k(Yl, -Y2' -Y3),k ~ O. Hencewehave(z, Ay) = k(Yi - y~ - yj) 
= 0 for all Y E oC, Z E oC* such that (z, y) = 0 and so A E :E(C). On the other hand, 
if x = (1,0, -If, then (A + I1/)X = (11 + 1,1, -(11 + lW which is not in C for 
any 11. It follows that A rf nl(C). Thus :E(C) contains n1(C) properly. 

4. Exponentials of cross-positive matrices. In the case that C'is the positive 
orthant in R".Varga [6, pp. 257-260] has called n1(C) the class of essentially non
negath'e matrices. He has shown that for this cone C, A E n I (C) if and only if 

1 2 1 3 
exp A = I + A + 2!A + 3!A + ... + En(C). 

For this cone, n l(C) = :E(C) and more generally we have the following theorem. 
THEOREM 3. Let C be a cone in R" and let A be a matrix in R"". Then A E :E(C) 

if and only if exp (tA) E n(C) for all t ~ 0, i.e., A is cross-positive 011 C if and ollly 
ifexp (tA) is positive 011 C for all t ~ o. 

Proof. Let A E :E( C). Then by Theorem 2 and Lemma 6, there exist Ai E n t (C) 
such that lim i _ co Aj = A . Since Ai = Bi - !XJ, where "Bi E ll(C) and I1j is real, 

exp (tAi) = exp (tBi - l1it/) = e - cz
" exp (tB;) 

and clearly exp (tB;) E n(C) for all t ~ O. Hence for all t ~ 0, exp (tAj) E n(C). But 
Ai -+ exp (tAi) is a continuous function on R"" for fixed t, and n(C) is closed, hence 

exp (tA) = lim exp (tA;) E ll(C) for all t ~ O. 
i- co 

Conversely, suppose that exp (tA) E n( C) for all t ~ O. Since (as is easily 
proved) 

lim (~)(exp (tA) - /) = A , ,-0 t 

. " 
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and for all positive t, 

(t)<exP(tA) - I)Ent(C), 

it follows that A Eel (nt(C) = :E(C) . 
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Remark 4. It is easily shown that if exp (tA) E n(C) for all t in some set P which 
has accumulation point at t = 0, then A E :E(C). 

Let f(z) be an analytic function on some domain D in the complex plane. Let 
A be a complex matrix such that spectrum(A) ~ D. If f'(A) i= 0 for all A in 
spectrum(A), then it may be proved by considering the Jordan canonical form of 
A that 

. V(j(A) - vI) = :E{ . V(A - ,H):f(A) = v}, 

where .;V(B) is the null-space of the matrix B. Thus if f'(A) i= 0 for all A in 
spectrum(A) andf(A) i= f(ll) , if A, 11 are in spectrum(A), but A i= 11, then 

.AlU(A) - f(A)I) = .;V(A - AI) 

for all A in spectrum(A). It follows that under these conditions A andf(A) have the 
same eigenvectors. We shall apply these remarks to the function f(z) = el

: . 

LEMMA 8. Let C be a cone in Rn and let A be an n x n matrix. Then exp (tA) 
E n'(C)for all positive t except possibly on a countable set if and only if 

(i) A E:E(C) 
and 

(ii) A has no eigenvector on ac. 
Proof. Let exp (tA) E n'(C) for all positive t except possibly on a countable 

set. Then there exists a sequence {tn } such that tn > 0, limn_co tn = 0, and exp (tnA) 
E IT'(C) for all n. It follows from Remark 4 that A E :E(C). To prove (ii), suppose by 
way of contradiction that A has an eigenvector on ac, and choose t > 0 such that 
exp (tA) E n'(C). Since every eigenvector of A is also an eigenvector of exp (tA), 
exp (tA)" also has an eigenvector on ac. But this contradicts Condition I \ as 
exp (tA) E nrC). Thus (ii) follows. 

Now let A E :E(C) and suppose A has no eigenvector on ac. From Theorem 3, 
it follows that exp (tA) E n(C) for all t ~ O. The eigenvalues of exp (tA) are {e l

/'\ 

i = 1, . .. , n} where {Ili' i = 1, ... , n} are the eigenvalues of A. Let 11k = Uk + iwko 
k = 1, ... , n, where i 2 = -1. Let 

{ 0 2n:p , } 
F= t :t> ,t= ,panmteger'Uj= UkoWji=Wk . 

Wj - Wk 

Clearly F is either empty or countable, and if t ¢ F, then el/lJ i= el/lk whenever 
Pj i= 11k' Hence by the preceding remarks, if t¢ F, every eigenvector of exp (tA) 
is also an eigenvector of A. Since A has no eigenvector in ac, it follows that for 
t ¢ F, exp (tA) has no eigenvector cc. Since exp (tA) E nrC) for all t ~ 0, and since 
exp (tA) satisfies Condition 11 for t ¢ F, it follows that exp (tA) E n'( C) for t ¢ F . 
The theorem follows. 

Remark 5. Let E = {t :exp(tA)En(C)"n'(Cn. Clearly E ~ F, and either 
E = 0 or E is infinite. For if tEE, so is mt E E for all positive integers m. 
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THEOREM 4. Let C be a cone in Rn
, and let A E L'(C). Then exp (tA) E n'(C) 

for all t > 0, except possibly on a countable set. 
Proof. The theorem follows immediately from Lemmas 7 and 8. 
Example 2. Let C be the cone of Example 1, and let 

Then A E L(C) but A 1: L'(C). Further, A has no eigenvector in ac and 

exp (tA) = [~ co~ t Si~ t] . 

o -sin t cos t 

Thus exp (tA) E n '( C) for all positive t, except t = 2nk, k an integer. Indeed, 
exp (tA) E n'(c)""n+(C) for all such t. This example illustrates that the converse of 
Theorem 4 is false, and also that the exceptional set E may be nonempty. 

It is instructive to compare Lemma 7 and Theorem 4 with the following 
propositions. For the case that C is the positive orthant, their proof is to be found 
in Varga [6, pp. 257, 260] and is essentially the same in the general case. 

PROPOSlTlON 1. If A E n~(C), then 

exp (tA) E n+(C) for all t > O. 

PROPOSlTlON 2. If A E TI1(C),,-n'[(C), then 

exp (tA) E n(c),,-n'(c) for all t ~ O. 

COROLLARY 3. If A E n1(C), then 

exp(tA)E(n(C),,-n'(C)) U n+(C) for all t ~ O. 

IfL(C) = n[(C), the converses hold of the above propositions and corollary. 

5. Extensions of the Perron-Frobenius theorems. It may be helpful to explain 
the relation of our theorems to the Perron- Frobenius theory for cones. In view of 
Theorem 2 (L + (C) = n i (C)) it is easy to extend the strong Perron-Frobenius 
Theorem for cones C in Rn (Vandergraft [5, Theorems 4.3 and 4.4] et al.) to L+(C) 
(Theorem 5). We then use Lemma 6 (L(C) = cl (L+(C))) to obtain a theorem of 
Perron-Frobenius type for L( C) (Theorem 6) . In the case of L'( C), we use Theorem 
4 to derive Theorem 7. 

THEOREM 5. Let C be a cone in Rn and let A E L + (C). Let 

(*) 

Then 

A = max {Re f1:f1 E spectrum (A)}. 

(i) A is a simple eigenvalue of A, 
(ii) A. > Re f1 for any other eigenvalue, 
(iii) the unique eigenvector u of A corresponding to A lies in Co, 
(iv) A has no other eigenvector in C. 
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Proof. By Theorem I there is an !x. :x ~ O. such that B = A + :xl E n + (C). 
By the strong Perron-Frobenius Theorem [5]. the spectral radius p of B is a simple 
eigenvalue, with unique eigenvector II and II E Co. Also B has no other eigenvector 
in C. If ), = p - IX, then ;, satisfies (*) and (iHiv) follow immediately. 

THEOREM 6. Let C be a cone in Rn Qlui let A E L(C). If 

;, = max {Re 11:11 E spectrum(A)}, 

then A. is an eigenvalue of A and a corresponding eigenvector lies in C. 
Proof. Let A E L(C), and for c5 > 0, define 

A el =A+c5yzT
, YECOandzE(C*)O, 

as in the proof of Lemma 6. Since Ad E L + (C) for (j > 0, we see by Theorem 5 that 
there exists Uel E Co (assume Iluell! = I without loss of generality) such that Adud 
= A.elUel and such that A.el has the property ;'el > Re Ilel for all eigenvalues Ilel of Ael . 
Let (j -+ 0 through a sequence {(jj} and let {l/;} and {A.;} be convergent subsequences 
of {Uel.} and Pel.} respectively, with II = lim Uj i= 0 and ..i. = lim A. j • Then Au = A.U, 

where U E C, and A. ~ Re II for all eigenvalues II of A. since we can find a sequence (jj 
such that lim j _""llel; = II, where Ilelj is an eigenvalue of Aelj • 

then 

THEOREM 7. Let C be a cone in R" and let A E ~'(C). If 

A. = max {ReWIlEspectrum(A)}, 

(i) A. is a simple eigenvalue of A, 
(ii) the unique eigenvector of A corresponding to A. lies ill Co, 

(iii) A has no other eigenvalue in C. 
Proof. We shall first prove (i) . It follows from Theorem 6 that A. is an eigenvalue 

of A. From Theorem 4, it follows that there is at> 0 such that exp(tA)E n'(C). 
Also ell is already the spectral radius of exp (tA). Suppose by way of contradiction 
that A. is not a simple eigenvalue of A. Then elA is a multiple eigenvalue of exp (tA), 
which is a contradiction since the spectral radius of a matrix in n'(C) is a simple 
eigenvalue [5]. Hence (i) follows. . 

Condition (ii) is a direct consequence of Lemma 8. 
To prove (iii), let t again be chosen so that exp (tA) E n'(C). Then exp (tA) 

has no eigenvector in C other than the one corresponding to its spectral radius (eIA
) . 

Since every eigenvector of A is an eigenvector of exp (tA), A has no eigenvector in C 
other than the one corresponding to A.. 

The matrix of Example 2 shows that the converse of Theorem 7 is false. 
For the same cone of Example 1, a symmetric matrix which is also a counter
example to the converse of Theorem 7 is 

A~[~ _: ~:J 
6. Polyhedral cones. 
DEFINITION 7. Let C be a cone in R". We call the set S £; R n a set of generators 

for C if for all x E C there exist Xl ' •••• Xs in S such tha t x = :L:= llXjXj, where 
IXj ~ 0, i = 1, . .. , s. 
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DEFINITION 8. Let C be a cone in R". Then C is a polyhedral cone if and only if 
C has a finite set of generators. 

By a well-known theorem C is a polyhedral if and only if C* is also polyhedral 
(Frenchel [3, p. 22J). 

We now identify Rm
" with the space of all real In x n matrices. For such 

matrices A. B the inner product (B, A) is then given by (B, A) = trace (BT A). 
LEMMA 9. Let C be a polyhedral cone in Rn, and D a polyhedral cone in Rm. 

Let nC, D) be the set of matrices A in Rmn such that AC £; D. Then nco D) is a 
polyhedral cone in Rm". 

Proof. By Lemma 5, n C, D) is a cone in Rmn. Since C is polyhedral, there 
exist generators u I, ..• , Us for C in Rn; and since D* is polyhedral, there exist 
generators VI' . .. , vr for D* in Rm. Clearly, A E nC, D) if and only if AUi ED for 
i = 1, ... , n whence A E nC, D) if and only if (vjuT, A) = trace (UiVJ, A) = (v j , AUi) 
~ ° for i = 1, ... , s,j = 1, . . . , t. Hence nC, D) is the dual of the polyhedral cone 
G in Rmn generated by vjuT, i = 1, . . . , s, j = 1, . . . , t, and hence is polyhedral. 
The lemma is proved. 

If C* is generated by x I' .. . , xp in Rn and D is generated by YI' ... , yq in 
Rm, then yjxT E nC, D). It is tempting to conjecture that the YjxT. i = 1, . .. , p, 
j = 1, ... , q, generate nC, D). But this is false in general. For example, let C = D 
be the cone in R3 generated by YI = (1,0, If, Y2 = (0, 1, l)T, Y3 = (-1,0, l)T and 
Y4 = (0, -1, l)T. Then C* = D* is generated in R3 by Xl = (-1, 1, If, X2 = ' (-1, 
-1, 1)T, X3 = (1, -1, If, X 4 = (1,1, If. Then IE nC, D) £; R33

, but I is not in 
the cone generated by the YjxT, i,j = 1,2,3. 

THEOREM 8. Let C be a polyhedral cone in Rn. Then 1:(C) = ITdc). 
Proof. By Lemma 9, IT(C) is a polyhedral cone in R m

", say IT(C) is generated 
by A I, ... , A p ' It follows that IT I (C) is the set of all linear combinatiot;ls of - I, 
AI' ... , Ap with nonnegative coefficients and hence ITI(C) is closed (Fenchel [3], 
Ben-Israel [IJ) . Hence by Lemma 6 and Theorem 2, 

1:(C) = cl(1:+(C» = cl(ITt(C» £; ITI(C). 

Since 1:(C) ;2 ITI(C), the theorem follows. 
THEOREM 9. Let C be a polyhedral cone in Rn. Then 

Proof. By Corollary 2 and Theorem 8, 

IT~{C) = ITI(C) n 1:'(C) = 1:{C) n 1:'{C) = 1:'(C). 

Obviously, and more generally, IT'I(C) = 1:'(C) if ITI(C) is closed. 

7. Symmetric matrices. In this section the results of § 5 are strengthened for 
the case of symmetric matrices. 

THEOREM 10. Let C be a cone in R n and let A be a real symmetric matrix in 
1:+(C). Let;' be the largest eigenvalue of A. Then 

(i) A. is a simple eigenvalue, 
(ii) the unique eigenvector u corresponding to A lies in (C n C*t, 

(iii) u is the only eigenvector of A in C U C*. 

. ; 
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Proof. It is clear from Definition 6 that if A EE+(C), then AT EET(C*). 
So if A is symmetric, A E E + (C) implies A E E + (C*) . Then from Theorem 5, i. 
is a simple eigenvalue of A, and from Theorem 5 and its dual for C*. it follows that 
the unique eigenvector LI corresponding to A. lies in Co n (C*) = (C n C*t. 
Further, u is the only eigenvector in C and in C*, whence (iii) follows. 

THEOREM II. Let C be a cone in R". Let A be a real symmetric matrix and 
suppose A E E'(C) and A E E'(C*). Let ), be the largest eigenvalue of A. Then the 
properties (iHiii) of Theorem lO hold. 

The proof uses Theorem 7 and is analogous to that of Theorem lO and is 
therefore omitted. 

THEOREM 12. Let C be a cOile in R" and let A be a real symmetric matrix in 
E(C). If A is the largest eigenvalue of A, then there is a correspondillg eigenvector ill 
C n C*. 

This theorem is a consequence of Theorem lO and Lemma 6. But the following 
independent proof is of interest. 

Proof. Let A be the largest eigenvalue of A. Since A is symmetric, 

, {(V, Av) n} 
./I. = sup ~,O '" V E R ; 

and 

). _{(V,AV) } 
,- -(--)' v '" ° V,V 

if and only if Av = i,v. So let x '" ° and Ax = AX. By Lemma 3, there is an orthog
onal decomposition x = y - z of x on C. We shall first show that both Ay = },y 
and Az = ;.z. If either y = ° or z = 0, this is obvious. So suppose both y '" ° and 
z '" 0. Then since (z, Ay) ~ 0, 

A = (x, Ax) = (y, Ay) + (z, Az) - 2(z, Ay) 

(x, x) (y,y) + (z,z) 

< (y, Ay) + (z, Az) 
= (y,y) + (z,z) 

S max {(y, Ay), (z, AZ)}. 
- (y,y) (z,z) 

If A. ~ (y, Ay)/(y, y), then i, = (y, Ay)/(y, y) whence Ay = i.y. It then follows from 
Ax = i.x that Az = i.z. If ). ~ (z, Az)/(z, =), the argument is similar. 

Since x '" 0, either y '" ° or z '" 0; say y '" 0. Let - y = y' - z' be the 
orthogonal decomposition of - y on C. Since C is a cone, - y ¢ C, whence ;:' '" 0. 
Also ;:' = y' + Y E C whence z' E C n C*. By the argument of the previous para
graph, Az' = I..Z'. If z '" 0, the argument is similar and the theorem is proved. 

The following example shows that not all eigenvectors corresponding to the 
largest eigenvalue of a symmetric matrix need lie in C n C*. 
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Example 3. Let C be the cone of Example 1 and let 

A = [~ - ~ ~l. 
o -1 

Then A is cross-positive on C. Its eigenvalues are 0,0, - 2, and two eigenvectors 
for 0 are (1,0, O)T E C = C n C* and (0, 1.1)T rf= C. 

8. Tables and open questions. The various containment relations can be 
conveniently summarized in Tables 2.3 and 4. A cone C is smooth if for each y E oC 
there is a unique Z E oC* such that (z, y) = 0, (Note that the polar C* of a smooth 

TABLE 2 

Polyhedral cones 

nt(C) ---t-> n'I(C) -j-> nl(c) 

II /I " 
E+(C) -j-> E'(C) -t-+ E(C) 

TABLE 3 

Smooth calles 

nt(C) = n'l(c) -t-+ nl(c) 

/I " t 
E+(C) = E'(C) -t-+ E(C) 

TABLE 4 

General cones 

n+(c) -----t.-+ n'(C) -t---> n(c) 
t t t 

nt(c) --t-+ ni(C) -+--> nl(C) 

/I ? t 
:t + (C) --t-+ E'( C) -t---> E( C) 

coneC need not be smooth.) For such cones it is obvious from Definitions 5 and 6 
that L+(C) = L'(C) , whence also ilt(C) = il'I(C) (but in general il+(C) c il'(C)). 

Tables 2, 3,4 should be read as follows. The symbol G(C)=H(C) means that 
the sets G( C) and H( C) are equal for all cones C in the class considered. The symbol 
"G(C) ---i--+ H(C)" means that G(C) is contained in H(C) for all C in the class and 
that there exists a cone C for which the containment is proper. 

The containment relations between the top two rows of Table 4 are omitted 
from Tables 2 and 3 since they are the same as in Table 4. The following questions 
are open. 

1. For which cones C i.n W is ill(C) = L(C)? (Evidently, if and only if 
ill(C) is closed.) 

2. Our main open problem: Is il'l (C) = L'( C) for all cones C? (We know that 
the equality holds if il\(C) is closed, and therefore if C is polyhedral, and 
also when C is smooth.) 

,I 
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3. If A E L'(C) and A. = max {Re /l:/l E speetrum(A)), IS Re /l < A. for /l 
E speetrum(A), /l i= A. (ef. Theorem 7)? 

4. If A E L'(C), is exp (tA) EO +(C) for all t > 0 (ef. Theorem 4 and Proposition 
I)? Observe that problems 3 and 4 are solved if O'\(C) = L'(C). 

5. If A E L'(C), does it follow that AT E L'(C*) (ef. Theorem 11)? 
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