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1. INTRODUCTION

Recently Daniel and Palmer [2] have given an interesting application
of a little-known lemma due to A. E. Taylor** [3] concerning the existence
of an “orthogonal” basis for a finite dimensional (real or complex) normed
vector space. Here we shall apply Taylor’s lemma to obtain some simple
results which have apparently not been noticed before. Thus we shall
show that, given any bound norm f, we can find a representation M so
that, for each homomorphism 7" (linear transformation), the norm A(7)
is sandwiched between two easily computed subadditive functions of the
matrix M(T) of T (Theorem 5.1), which do not depend on M. Further
we show that our results are the best possible: that is, there exists a
bound norm for which our bounds for the norm are attained.

Our point of view owes much to concepts independently introduced
by Wielandt [4] and Bauer [1]. Wielandt has defined norms on the set
of all (real or complex) matrices, while Bauer observed that we may consid-
er categories of vector spaces and corresponding norms.**¥ The two ap-
proaches are similar; we are in the happy position of wishing to make use of
both. Thus we shall begin with a category of vector spaces and represent
the homomorphisms as matrices. Our categories are sets; it would,
however, be possible to state our results in terms of the category of all
(real or complex) vector spaces, which is a proper class. Since we shall

* The author was supported in part by NSF grant GP-7073. This paper was
presented at the Gatlinburg Conference in Numerical Algebra, April 1969.
** See Note added in proof at the end of this paper.
*** Of course, norms on a single space or a pair of spaces have been considered
previously.
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12 H. SCHNEIDER

use the axiom of choice, this attractive formulation would require a more
extensive reference to the axioms of set theory than seems appropriate
in a paper on matrix theory.

Our terminology is close to that of Bauer [1]; however, it seems
best to give some definitions in detail, at the expense of some paper.

2. CATEGORIES OF VECTOR SPACES AND MATRICES

2.1. A (small, preadditive) category is a couple ¥~ = (¥79, ¥"™), where
Y70 is a set of objects and ¥ = {J {Hom(C, D): (C,D)e¥°® x ¥},
where, for each C, D, Hom(C, D) is a vector space over a field F. Further,
for T € Hom(C, D) and S e Hom(D’, G), the product ST is defined if
{and only if) D' = D.

Also,
2.1.1) (STYU = S(TU),
(2.1.2) (S;+S)T=8,T+ S,T,
(2.1.3) S(Ty +T,) =ST,+ ST,,

whenever the left-hand sides are defined.

2.2. From here on, F will stand consistently for either the complex
field or the real field.

2.3. A category of (finite dimensional) vector spaces (over F) is a
category ¥" = (770, ¥"™), where ¥70 is a set of nonzero finite dimensional
vector spaces such that F e ¥ % If (V, W)e v° x ¥°9 then Hom(V, W)
consists of all homomorphism (linear transformations) of V' into W.
Addition and multiplication and scalar multiplication are defined as usual.

2.4. Observe that Hom(F, V) € ¥ ™ is naturally isomorphic to ¥V e ¥°0:
(x — %) for xe Hom(F, V). For this reason we shall denote elements
of Hom(F, V) by %, y, etc., and, whenever convenient, identify Hom(F, V)
and V. Observe also that, if xeV [= Hom(F, V)] and y'eV”
[= Hom(V, F)], then y'xe F [= Hom(F, F)] and %y’ € Hom(V, V).

2.5.  Thecategory of all matrices (over F) is the category A = (A°, A ™),
where #9 is the set of positive integers {1, 2,3, ...}. For (n, m) € #° X
A, Hom(n, m) consists of all (m X ») matrices over F. We shall write
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Mat(n, m) in place of Hom(»n, m). Matrix addition and multiplication, as
well as scalar multiplication, are defined as usual.

2.6. Let F"denote the space of #-tuples with elements in F (considered
as column vectors). Let & denote the vector space category with #° =
{F, F? F3,...}. Thereis a flatural mapping h of .#™ onto %™ given by
h(d)c = Ac for A e Mat(n, m) and ceF*. Here h(4) e Hom({F™", F™).

2.7. An (isomorphic) matrix representation of ¥ is a pair of mappings
(dim, M), such that M maps the vector space Hom(V, W) isomorphically
onto Mat(n, m), where # = dim V and m = dim W. Further,

(2.7.1) M(ST)=MOS)M(T)
and
(2.7.2) M(aT) = aM(T), aekl,

whenever the left-hand sides are defined. We shall refer to a representation
M fin place of (dim, M)].

2.8. To each family of (ordered) bases Z = {B(V): V € ¥} there
corresponds a representation M, and conversely. Forlet Ve ¥0 We vy,
with dim V = » and dim W =m. If #(V) = (%, ..., %,) and B(W) =
(%1, -+ -, ¥m), define 4 = M(T), for T € Hom(V, W), by Tx; = D7, vy,
7=1,...,n  Further, M(x;) = ¢;7 the 7th unit column m vector.
Conversely, to any matrix representation M there corresponds a family
of bases #: For Ve ¥ let x, be given by M(x;) = ¢ and put Z(V) =
(%4, .., %,). Thus

(2.8.1) BWV) = (x,...,%,); M(x,) =¢"
defines a 1: 1 correspondence between families of bases for 77, and matrix

representations for ¥

2.9. Representations exist. For, by the axiom of choice, we may
choose a basis (V) for each Ve ¥,

3. NORMS

3.1. A norm v on is a mapping of ¥ into FT (the set of nonnegative
elements in F) such that
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(3.1.1) »(T)=0 1ifandonlyif 7 =0 (7 azerohomomorphism),
(3.1.2) (1) =1, for 1lePF,

(3.1.3) v(aT) = |a|»(T), for a€eF,

(31.4) »(S+ T)<<»(S) +»(T), N
(3.1.5) »(ST) < »(S)»(T),

whenever the left-hand sides are defined. Evidently, for all norms,

v(S) Z sup{y(ST)/»(T): ST exists and T 5 0}.

3.2. If Ve?™° and |V (v asa function on V = Hom(F, V)) satisfies
(3.1.1), (3.1.3), and (3.1.5), we shall call » 2 norm on V.

3.3. A bound norm 8 on a category ¥~ of vector spaces is a norm £
that, for S e Hom(V, W), satisfies

(3.3.1) B(S) = sup{B(Sx)/B(x): xeV, x5=0}.

3.4. Bound norms exist. First define B|F [ as a function on F =
Hom(F, F)] by B(a) = |a|. Then, for V€%, V £ F, choose 8|V to be
any norm on V (3.2). Then, for Se Hom(V, W), V == F, define §(S)
by (3.3.1).

We mention without proof that a bound norm S also satisfies
(3.4.1) B(S) = sup{By'Sx)/B(y")B(x): 0 x€ V, 0 ye V' = Hom(V, F)}
and ®
(3.4.2)  B(S) = sup{B(ST)/B(T): ST exists and rank T = 1}.

A norm f on ¥  is a bound norm if and only if § is minimal in the set of
all norms on #". See Wielandt [4] for proofs of those results in the case
of matrix norms.

3.5. Let 4 the category of matrices. A mapping u of #™ into
F* is called a matrix norm, if u’ is a norm on the vector space category
F, FO0={F, F? F3% ...}, where u'(k(4)) = u(d), 4 € Mat(n, m). We
call u a matrix bound norm if i’ is a bound norm on 4. (Intuitively: wu
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is a norm on .# considered as a vector space category.) We shall not
distinguish further between 4 and h(4), &’ and .

4. TAYLOR'S LEMMA

4.1. Let (x,..., x,) be a basis for V [= Hom(F, V)]. Then there

exist transformations x,’, ..., %/, V' [= Hom(V, F)] such that x,/x, = 1,
and x;'x; = 0, 7 5% 2. It is well known that (x,’, ..., %,’) is a basis for V’;
it is called the basis dual to (x, ..., x,).

4.2. Lemma (A. E. Taylor [3]). Let B be a bound norm on the category
{V, F}. Then there exists a basis (xy, . . ., x,) for V suchthat, if (x,', ..., x,)
1S the dual basis, then

Sketch of Proof. Let det: V" — F be the usual multilinear determinant
function (normalized in an arbitrary fashion). Show that

s = sup{|det(z, . . ., %) |+ Blz;) <1}

is finite and nonzero and attained at, say, (x,,..., %,). Then show that
(%4, ..., %,) has the required property.

4.3. DerINITIONS. (1) Let V be a vector space and let § be a bound
norm on the category of vector spaces with two objects {V, F}. A basis
for V satisfying the conditions of Lemma 4.2 will be called a S-orthogonal
basts for V. (2) Let ¥ be a category of vector spaces, let 8 be a bound
norm on ¥, and let & be a family of bases for ¥™°. If #(V) is a f-or-
thogonal basis for all ¥V €¥7%, we shall call the matrix representation
M corresponding to & a f-orthogonal representation.

Sometimes we shall use the phrase norm-orthogonal in place of f-
orthogonal. If & is a family of fS-orthogonal bases for ¥, we refer to
% as f-orthogonal.

44. If V=0F, then (1) is the unique f-orthogonal basis for V.

4.5. PRrROPOSITION. Let ¥ be a category of vector spaces, and let 8
be a bound noym on ¥". Then there exists a f-orthogonal matyix vepresentation
Mof 7.

Linear Algebra and Its Applications 3(1970), 11-21



16 H. SCHNEIDER

Proof. By the axiom of choice and Taylor’s Lemma 4.1, there exists
a family of f-orthogonal bases for ¥0.

5. BOUNDS FOR BOUND NORMS

5.1. THEOREM. Let 8 be a bound wnorm on a category ¥~ of vector
spaces. Let M be a f-orthogonal vepresentation of ¥". Then, for all T e v™™,

(6.1.1) (1M(T)|] o < B(T) < ||M(T)

o

o

where, for any m X n wmatrix A,

(5.1.2) ||[4]|o = max{lay|: i=1,...,m, j=1,...,n}
(5.1.3) ||A||1 = z ‘a,‘-,-|.
i=17=1

Proof. Let TeHom(V,W), dmV ==, and dim W =m. Let
Fg oo %n) = BV), Gne-orym) = BW), and let M(T) =A. i
(%1, ¥m') is the basis for W’ = Hom(W, F) dual to (¥, ..., ¥a), then
3T = 950 i) = oy Whense, by (1), D) > fal Tt
follows that §(T) = ||4||,. Now let z€ V with §(z) =1, and let w e W’
with f(w’) = 1. Suppose z= D7, xb; If (x/,...,%,") is the dual
basis to (xq,..., x,), it then follows from %,z = b; and f(z,") = 1 that
;] < 1. Similarly, if w' = D7, ¢y, then |¢;] << 1. Hence |y'Tx| =
| D7 = Cattashs| < D iy |ass] = ||4|li-  The theorem is proved.

5.2. THEOREM. Let f3 be a bound norm on a category ¥~ of vector spaces.
Let M be a matrix vepresentateon of ¥". Then the following are equivalent.

(6.2.1) M s a f-orthogonal representation.

(6.2.2) |M(T)|, < B(T) < ||M(T)|}y, for all Tev™, where |||,
and ||- ||, are defined by (5.1.2) and (5.1.3).

(5.2.3) |M(%)|| < B(x) < ||M(x)

v forall xeV and Vevo

(5.2.4) If M(T) is a matrix with exactly one entry 1, and all other entries 0,
then B(T) =

(6.2.5) If M(y) is a unit row or column vector, then B{y) = 1.
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Proof. In the diagram below, the implication (1) = (2) is given by
Theorem 5.1 and all other implications are immediate [we write (1) for
(6.2.1), etc.]:

Thus we need merely show that (5) implies (1). But, if & is the family
of bases corresponding to M and #(V) = (x,, ..., %,), then M{x,) = ¢/,
whence, by (5), f{x;) = 1. If (x,..., x,") is the dual basis to #(V),
then M(x,) = (¢;) (the transpose of ¢,*), whence f(x;) = 1. This proves
that # is g-orthogonal, and (1) follows by Definition 4.3.2.

6. STANDARD MATRIX NORMS

6.1. THEOREM. Let o be a matrix bound,norm. Then the following
are equivalent.

6.1.1) ||C]] o(C) < ||C|ly,  for all matrices, C.

w <O
<

6.1.2) ||» a(%)

for any column vector x.

o

(6.1.3) It E 4s any matriz with exactly one entry equal to 1, and all others
0, then o(E) = 1.

(6.1.4) If e is any unit vow or colwmmn vector, then ole) = 1.

Proof. By Theorem 5.2 all of the above are equivalent to the o-
orthogonality of the identity representation M: M(4) = 4.

6.2. DerINITION. A matrix bound norm ¢ satisfying any of the
equivalent conditions (6.1.1)—(6.1.4) will be called a standard (matrix)
norm.

Observe that the matrix bound norm associated with a Hélder vector
norm |||, = (27—, %" (or ||x]|,, = max, |x,]), for ze F*, 1 <p <
oo, is a standard norm.

6.3. THEOREM. Letu be amatrix bound norm. There exist nonsingular
#n X n matyices P,, n=1,2,..., with P, =1, such that

Linear Algebva and Its Applications 3(1970), 11-21
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(6.3.1) for each column x; of P,, p(x;) =1;
(6.3.2) for each row x; of P,7', u(x/)=1;

(6.3.3) the mapping o of MA™ into F* defined by o(C) = u(P,,CP,™1),
for an m X n matrix C, is a standard norm.

Proof. Consider C € Mat(n, m) as an element of Hom(F”", F™). Choose
a family of y-orthogonal bases for £° = {F, F2%,...}. If (x,..., %,) is
the basis for F*, let P, be the matnx [x,,..., xz]. By (44), P,=1. If
x; is the ith row of P,~1, then (x,’,..., %) is dual to (%, ..., x,,), and
(6.3.1) and (6.3.2) follow. Now observe that, if M is the corresponding
matrix representation, and M(C) = 4, then Cx;= D", ya; |=
1,..., n, where (y,,..., y,) is the chosen basis for ™. Hence CP, =
P4, and so M(C) = P,,~1CP,. If ¢ is defined as in (6.3.3), then it is
easy to verify that ¢ is a matrix bound norm. Further, as M is a y-ortho-
gonal representation, it follows by Theorem 5.2 that

o(C) Su(PrnCP,) < |[M(PLCP, Y|, =

and similarly o(C) = ||C||,. Hence, by (6.1.1) and Definition 6.2, o is a
standard norm.

7. THE BOUNDS ARE ATTAINED

7.1. Let V be any vector space and let (x,..., x) be any finite
family of vectors that spans V. For each x& V, define

(7.1.1) (%) 1nf{2 |a;|: Za %; = x}

It is not hard to see that »|V norms V [i.e., satisfies (3.1.1), (3.1.3), and
(3.1.5)], and a compactness argument in F” shows that the infimum is
achieved, viz., for suitable a;, 1 =1,...,s. x= > ax and »(x) =
i1 We shall call »|V defined by (7.1.1) the convex hull norm
belonging to (x,, ..., x). [The name is natural since »(x) <{ 1 if and only
if x lies in the convex hull of (x,..., x)].

72. LeEmMA. Let (xy, ..., %,) be a basis for the vector space V, and
let w= 7 x;. Lety be the bound norm on {V,F} determined by the
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convex hull norm on V belonging to (%, ..., %, u). Then (%,,..., %,) ts a
y-orthogonal basis for V.

Proof. let zeV such that y(2) = 1. Then there exist g,€ F, 7 =
1,...,nand ceF such that z = D7, axx; ++ cu, and 27| |a,| + [c] =

1. Let (%, ..., x,) be the dual basis to (%;,...,%,). Then x'u =1,
and so [x'z| = |a; + ¢| < 1. Since x/x, = 1, it follows that y(x/) = 1,
i=1,...,%

It is clear that, for any m X » matrix A4, ||4||, < m#n||4[|;. The fol-
lowing theorem (really an example in disguise) shows that the bounds
of Theorem 5.1 may be achieved.

7.3. THEOREM. Lel ¥ be a calegory of vector spaces and let M be any
representation of V. Then there exists a bound norm y such that M is y-
orthogonal and, for every V, W ¥, we can find S, T € Hom(V, W) for
which

(7.3.1) |M(S) || = p(S) = (mn)~1{|M(S)

i
(7.3.2) man|[M(T) || = p(T) = ||M(T)||,
wheve n = dim V, and m = dim W.

Proof. let & be a family of bases for #°. For Ve ¥, suppose
B(V) = (%,...,%,), and set w = D% | %, Let y|V be the convex hull
norm on V belonging to (x,..., x,, #) and let ¢ be the corresponding
bound norm on ¥". By Lemma 7.2, 4 is a family of y-orthogonal bases
for ¥". let V,We#0 and let (x',...,x,), x/€ V' be the dual to
(%, oo, %) = B(V). Set ' = D% % and v = X7, (— 1) lw =
% — % kxS Let BW) = (v, ..o V) @ = D20, y;and z =

7 (= 1)y, We claim that

=1
(7.3.3) y@) =1, @) =m, yw)=mn po)=1.

To avoid tedious computations, we shall prove only two of these: y(v') =1,
and p(z) = m. By definition, y(v') = sup{[v'%|: x€V, p(x) = 1} and
y(%) = Inf{ D" |as| + eox 12 = D7) azx; + cu}. Sosupposex = D7, -
a;%; + cu, where 2% . |a;| + |¢| = 1. Then v'x = 27 | (—1)"a;+ dc,
where ¢ = 0 or 1 according as # is even or odd. In either case, [v'x| <
21 ]a: + le] = 1. Since v'x; = 1, it follows that y(v') = 1. To show
that y(z) =m, let z= D7, a;y, -+ cw. Then, for odd
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a,=1+4c¢
and, for even 1,
a,=—14c
Hence |ag; — ag; 1| =2, 2=1,2,..., and so, for m = 2p,

m ?
Z |ai| + lc| = Z |a2i — Ay | =2 =m
=1

1=

and, for m = 2p — 1,

m ?
Z ,ail +c= Z }ai - azi——l’ + lu2p+1 + C‘
=1 =1

=2m+1=mn.

Hence y(2) = n. But z= X7y, whence p(z) = n.

Now let S = wv’. Then Sx = wv'x, for xe V. Hence y(Sx) = y(w)[v'x|,
and it follows that ¢(S) = y{w)y(v') = 1. Further, if 4 = M(S), then
A = M(w)M(v) and hence a,;; = (— 1)77%,{ = 1,..., n. Thus |[M(S)]], =
1, while ||[M(S)||, = mn. This proves (7.3.1). Similarly, for T = 2/, we
have (T) = y(2)p(v') = wm, while B = M(T), where b;; = (— 1)*"".
Thus ||M(T)||, =1 and again |[M(T)|[, = mn, yielding (7.3.2). The
theorem is proved.

©. 1) (1.1

(1.0 (1. 0)

(=1 = ©. =1

Fic. 1.

To help intuition, we sketch in Fig. 1 the norm body {x: y(x) < 1}
where F is the real field, » = 2, and the basis (x;, %) is (g2 €,2).

3
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7.4. COROLLARY. Let o be a bound norm on the category of matrices

such that for m=1,2,..., o|F" is the comvex hull norm belonging to
(e, &, ..., ex", [*), where e” is the sth unit vector and f, =1,
i=1,...,n. Let A, B be the m x = matrices given by a,; = (— 1)1,
by=(—1)"Y4=1,...,m j=1,..., % Then ois a standard matrix
norm and

(7.4.1) 4|l = o(4) = (mm)~||A]|,

(7.4.2) mn||B||, = o(B) = ||B||;.

8. AN OPEN QUESTION

Let ¢ be a standard matrix norm, and let C be a matrix for which
o(C) = 1. Then, by (6.1.1),

(8.0.1) [IClle <1< |C])-

However, it is easy to find a matrix C satisfying (8.0.1) such that ¢(C) < 1
[or o(C) > 1] for all standard norms ¢. Thus it seems interesting to char-
acterize the set of matrices C such that ¢(C) =1 for some standard
norm o.

Note added in proof: B. Grunbaum [Math. Rev. 9(1964), 4429] has given an
interesting history of this lemma in a review of a paper by A. Sobczyk, and I thank
W. W. Kahan for drawing my attention to this review. An equivalent geometric
result was published by M. M. Day [Trans. American Math. Soc. 62(1947), 315-139]
almost simultaneously with Taylor’s paper. The form of the result needed in this
paper is Taylor’s.
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