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1. INTRODUCTION 

Recently Daniel and Palmer [2J have given an interesting application 
of a little-known lemma due to A. E. Taylor** [3J concerning the existence 
of an "orthogonal" basis for a finite dimensional (real or complex) normed 
vector space. Here we shall apply Taylor's lemma to obtain some simple 
results which have apparently not been noticed before. Thus we shall 
show that, given any bound norm (3, we can find a representation M so 
that, for each homomorphism T (linear transformation), the norm (3(T) 
is sandwiched between two easily computed sub additive functions of the 
matrix M(T) of T (Theorem 5.1), which do .not depend on M. Further 
we show that our results are the best possible: that is, there exists a 
bound norm for which our bounds for the norm are attained. 

Our point of view owes much to concepts independently introduced 
by Wielandt [4J and Bauer [1]. Wielandt has defined norms on the set 
of all (real or complex) matrices, while Bauer observed that we may consid­
er categories of vector spaces and corresponding norms.*** The two ap­
proaches are similar; we are in the happy position of wishing to make use of 
both. Thus we shall begin with a category of vector spaces and represent 
the homomorphisms as matrices. Our categories are sets; it would, 
however, be possible to state our results in terms of the category of all 
(real or complex) vector spaces, which is a proper class. Since we shall 

* The author was supported in part by NSF grant GP-7073. This paper was 
presented at the Gatlinburg Conference in Numerical Algebra, April 1969. 

** See Note added in proof at the end of this paper. 
u* Of course, norms on a single space or a pair of spaces have been considered 

previously. 
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12 H. SCHNEIDER 

use the axiom of choice, this attractive formulation would require a more 
extensive reference to the axioms of set theory than seems appropriate 
in a paper on matrix theory. 

Our terminology is close to that of Bauer [1]; however, it seems 
best to give some definitions in detail, at the expense of some paper. 

2. CATEGORIES OF VECTOR SPACES AND MATRICES 

2.1. A (small, pre additive) category is a couple j/ = (j/o, j/m), where 
j/o is a set of objects and j/m = U {Hom(C, D) : (c, D) E j/o X j/O}, 

where, for each C, D, Hom(C, D) is a vector space over a fieldF. Further, 
for T E Hom(C, D) and 5 E Hom(D', G), the product 5T is defined if 
(and only if) D' = D . 

Also, 

(2.1.1) 

(2.1.2) 

(2.1.3) 

(5T) U = 5(TU), 

(51 + 5 2)T = SIT + 5 2T, 

5(T1 + T 2) = 5T1 + 5T2, 

whenever the left-hand sides are defined. 

2.2. From here on, F will stand consistently for either the complex 
field or the real field. 

2.3. A category ot (finite dimensional) vector spaces (over F) is a 
category j/ = (j/o, j/m), where j/o is a set of nonzero finite dimensional 
vector spaces such that FE j/o. If (V, W) E j/o X j/o, then Hom(V, W) 
consists of all homomorphism (linear transformations) of V into W. 
Addition and multiplication and scalar multiplication are defined as usual. 

2.4. Observe that Hom(F, V) E j/m is naturally isomorphic to V E j/o: 

(x ->- Xl) for X E Hom(F, V). For this reason we shall denote elements 
of Hom(F, V) by x, y, etc., and, whenever convenient, identify Hom(F, V) 
and V. Observe also that, if X E V [= Hom(F, V)] and y' E V' 
[ = Hom(V, F)], then y' X E F [= Hom(F, F)] and xy' E Hom(V, V). 

2.5. The category ot all matrices (over F) is the category vlt = (J(O,J(m), 

where J(o is the set of positive integers {I, 2, 3, . .. }. For (n, m) E J(0 X 

vitO, Hom(n, m) consists of all (m X n) matrices over F. We shall write 
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BOUND NORMS 13 

Mat(n, m) in place of Hom(n, m). Matrix addition and multiplication, as 
well as scalar multiplication, are defined as usual. 

2.6. LetFn denote the space of n-tuples with elements in F (considered 
as column vectors). Let § denote the vector space category with §o = 

{F, F2, F3, ... }. There is a flatural mapping h of ..,((m onto §m given by 
h(A)c = Ac for A EMat(n,m) and cEF". Here h(A) EHom(?,Fm) . 

. ! 2.7. An (isomorphic) matrix representation of "Y is a pair of mappings 
(dim, M), such that M maps the vector space Hom(V, W) isomorphic ally 
onto Mat(n, m), where n = dim V and m = dim W. Further, 

(2.7.1) M(ST) = M(S)M(T) 

and 

(2.7.2) M(aT) = aM(T), aEF, 

whenever the left-hand sides are defined. We shall refer to a representation 
M [in place of (dim, M)]. 

2.8. To each family of (ordered) bases !?4 = {!?4(V): V E "YO} there 
corresponds a representation M, and conversely. For let V E "Yo, WE "Yo, 
with dim V = n and dim W = m. If !?4(V) = (Xl' ... , xn) and !?4(W) = 

(Yv···,Ym),defineA =M(T),forTEHom(V, W),byTxj= ~7'=IYiaij, 
i = 1, . . . , n. Further, M(Xi) = er, the ith unit column m vector. 
Conversely, to' any matrix representation M there corresponds a family 
of bases!?4 : For V E "Yo, let Xi be given by M(Xi) = et and put !?4(V) = 

(xv . .. , xn). Thus 

(2.8.1) 

defines a 1 : 1 correspondence between families of bases for "Yo, and matrix 
representations for "Y. 

2.9. Representations exist. For, by the axiom of choice, we may 
choose a basis !?4(V) for each V E "Yo. 

3. NORMS 

3.1. A norm y on is a mapping of "Ym into F+ (the set of nonnegative 
elements in F) such that 
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(3.1.1) 

(3.1.2) 

(3.1.3) 

v( T) = 0 if and only if T = 0 (T a zero homomorphism), 

v(l) = 1, for 1 EF, 

v(aT) = lalv(T), for a EF, 

(3 .1.4) v(5 + T) ~ v(5) + v(T), 

(3.1.5) v(5T) ~ v(5)v(T), 

whenever the left-hand sides are defined. Evidently, for all norms, 

v(5) ~ sup{v(5T)/v(T): 5T exists and T =1= O}. 

3.2. If V E "I/0, and vlY (vas a function on V = Hom(F, V)) satisfies 
(3.1.1), (3.1.3), and (3.1.5), we shall call v a norm on V. 

3.3. A bound norm /3 on a category "1/ of vector spaces is a norm /3 
that, for 5 E Hom(V, W), satisfies 

(3.3.1) /3(5) = sup{/3(5x)//3(x): XE V, x =1= O}. 

3.4. Bound norms exist. First define /3IF [/3 as a function on F = 

Hom(F, F)J by /3(a) = 14 Then, for V E "I/0, V =1= F, choose /31Y to be 
any norm on V (3.2). Then, for 5 E Hom(V, W), V =1= F, define /3(5) 
by (3.3.1). 

We mention without proof that a bound norm /3 also satisfies 

(3.4.1) /3(5) = sup{/3(y'5x)//3(y')/3(x): 0 =1= XE V, 0 =1= yE V' = Hom(V,F)} 

and • 

(3.4.2) /3(5) = sup{/3(5T)//3(T): 5T exists and rank T = I}. 

A norm /3 on "1/ is a bound norm if and only if /3 is minimal in the set of 
all norms on "1/. See Wielandt [4J for proofs of those results in the case 
of matrix norms. 

3.5. Let.4( the category of matrices. A mapping fJ, of .4(m into 
F+ is called a matrix norm, if fJ,' is a norm on the vector space category 
~, ~o = {F, F2, F3, ... }, where fJ,'(h(A)) = fJ,(A) , A E Mat(n, m). We 
call fJ, a matrix bound norm if fJ,' is a bound norm on~. (Intuitively: fJ, 
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is a norm on Jt considered as a vector space category.) We shall not 
distinguish further between A and h(A), 1-" and 1-'. 

4. TAYLOR'S LEMMA 

4.1. Let (Xl' ... , xn) be a basis for V [= Hom(F, V) J. Then there 
exist transformations Xl" ... , x n ', V' [= Hom(V, F)J such that X/Xi = 1, 
and x/x; = 0, j * i. It is well known that (Xl', ... , xn') is a basis for V'; 
it is called the basis dual to (Xl> ... ' Xn). 

4.2. LEMMA (A. E . Taylor [3J). Let 13 be a bound norm on the category 

{V, F}. Then there exists a basis (Xl' ... , xn) lor V such that, il (Xl" ... , xn') 

is the dual basis, then 

i = 1, .. . ,n. 

Sketch 01 Prool. Let det: V" -->- F be the usual multilinear determinant 
function (normalized in an arbitrary fashion). Show that 

is finite and nonzero and attained at, say, (xl> . .. , xn). Then show that 
(xl> ... , xn) has the required property. 

4.3. DEFINITIONS. (1) Let V be a vector space and let 13 be a bound 
norm on the category of vector spaces with two objects {V , F}. A basis 
for V satisfying the conditions of Lemma 4.2 will be called a f3-orthogonal 

basis for V. (2) Let "Y be a category of vector spaces, let 13 be a bound 
norm on "Y, and let !lB be a family of bases for "Yo. If !lB(V) is a I3-or­
thogonal basis for all V E "Yo, we shall call the matrix representation 
M corresponding to !lB a f3-orthogonal representation. 

Sometimes we shall use the phrase norm-orthogonal in place of /J­
orthogonal. If !lB' is a family of f3-orthogonal bases for "Yo, we refer to 
!lB as f3-orthogonal. 

4.4. If V = F, then (1) is the unique f3-orthogonal basis for V. 

4.5. PROPOSITION. Let "Y be a category 01 vector spaces, and let 13 
be a bound norm on "Y. Then there exists a f3-orthogonal matrix representation 

M 01 "Y. 
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Proof. By the axiom of choice and Taylor's Lemma 4.1, there exists 
a family of ,8-orthogonal bases for "I/0. 

5. BOUNDS FOR BOUND NORMS 

5.1. THEOREM. Let (J be a bound norm on a category "1/ of vector 
spaces. Let M be a (J-orthogonal representation of "1/. Then, for all T E "I/m, 

(5.1.1) IIM(T) 1100 ~ (J(T) ~IIM(T)lll' 

where, for any m X n matrix A, 

(5 .1.2) IIAlloo=max{laijl: i=I, ... ,m, j= I, ... ,n}, 

m,n 

(5.1.3) IIAlll = ~ laiil· 
;=1,j=1 

Proof. Let T E Hom(V, W), dim V = n, and dim W = m. Let 

(Xl"'" Xn) = .?l(V), (Yl'" .,Ym) = .?l(W), and let M(T) = A. If 
(Yl', . .. , Ym') is the basis for W' = Hom(W, F) dual to (Yl" . " Yn), then 

y/Txj = Y/(L;:1 Yiaij) = aij, whence, by (3.4.1), ,8(T);;:: lai1l. It 
follows that ,8(T);;:: IIAlloo. Now let ZE V with (J(z) = 1, and let WE W' 
with ,8(w' ) = 1. Suppose z = ~7=1 xibi' If (Xl', ... , xn') is the dual 
basis to (xl>"" xn), it then follows from x;'z = bj and ,8(x/) = 1 that 

Ibjl ~ 1. Similarly, if w' = ~l CiYi' then ICil ~ 1. Hence ly'Txl = 

IL?,~~,j=1ciaijbjl ~ ~::'~,j=llaijl = IIAlll' The theorem is proved. 

5.2. THEOREM. Let (J be a bound norm on a category "1/ of vector spaces. 
Let M be a matrix representation of "1/. Then the following are equivalent. 

(5.2.1) M is a ,8-orthogonal representation. 

(5.2 .2) IIM(T)l loo ~,8(T) < IIM(T)lll' for all TE"I/m, where 11'1100 

and II' Ih are defined by (5.1.2) and (5.1.3). 

(5.2.3) IIM(x)lloo ~ ,8(x) ~ IIM(x)lll' for all X E V and V E "I/0. 

(5 .2.4) If M(T) is a matrix with exactly one entry 1, and all other entries 0, 
then ,8(T) = 1. 

(5.2.5) If M(y) is a unit row or column vector, then ,8(y) = 1. 
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Proof. In the diagram below, the implication (1) => (2) is given by 
Theorem 5.1 and all other implications are immediate [we write (1) for 
(5.2.1), etc.] : 

(1) => (2) => (3) 
JJ JJ 

(4) => (5) 

Thus we need merely show that (5) implies (1). But, if fJI is the family 
of bases corresponding to M and fJI(V) = (xl> ... , xn ), then M(x;) = e/" 

whence, by (5), fJ(x i ) = 1. If (Xl', ... , x n ') is the dual basis to fJI(V) , 

then M(x;) = (e;,,)T (the transpose of e/'), whence fJ(x/) = 1. This proves 
that fJI is fJ-orthogonal, and (1) follows by Definition 4.3.2. 

6. STANDARD MATRIX NORMS 

6.i. THEOREM. Let a be a matrix bound, norm. Then the following 

are equivalent. 

(6.1.1) IIGlloo:::;;; a(C) :::;;; IIGlIl> 

(6.1.2) Ilxlloo:::;;; a(x) :::;;; IlxlII' 

for all matrices, C. 

for any column vector x. 

(6.1.3) If E is any matrix with exactly one entry equal to 1, and all others 

0, then a(E) = 1. 

(6.1.4) If e is any unit row or column vector, then a(e) = 1. 

Proof. By Theorem 5.2 all of the above are equivalent to the a­

orthogonality of the identity representation M: M(A) = A. 

6.2. DEFINITION. A matrix bound norm a satisfying any of the 
equivalent conditions (6.1.1)-(6.1.4) will be called a standard (matrix) 
norm. 

Observe that the matrix bound norm associated with a Holder vector 

norm Ilxlli> = (~~~l Ix;Ii»I/i> (or Ilxlloo = maxi IXil), for xEF", l:::;;;p < 
00, is a standard norm. 

6.3. THEOREM. Let f-l be a matrix bound norm. There exist nonsingular 

n X n matrices P n , n = 1,2, ... , with PI = 1, such that 
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(6.3.1) for each column Xi of P '" tt(Xi) = 1; 

(6.3.2) for each row x/ of P" -1, tt(x/) = 1; 

H. SCHNEIDER 

(6.3.3) the mapping a of JIm into p+ defined by a(C) =tt(PmCP,,-I), 

for an m X n matrix C, is a standard norm. 

Proof. Consider C E Mat(n, m) as an element of Hom(pn, pm). Choose 
a family of tt-orthogonal bases for $"0 = {P, p2, ... }. If (Xl' ... ' X,,) is 
the basis for pn, let P" be the matrix [x}' ... , X2J. By (4.4), PI = 1. If 
x/ is the ith row of P" -1, then (X}', . . . , x,,') is dual to (Xl' ... , X,,), and 
(6.3.1) and (6.3.2) follow. Now observe that, if M is the corresponding 
matrix representation, and M(C) = A, then CX1 = ~;:1 Yiai;, i = 

1, ... , n, where (y}I ... ' y,,) is the chosen basis for pm. Hence C P" = 

P mA, and so M(C) = Pm -ICP " . If a is defined as in (6.3.3), then it is 
easy to verify that a is a matrix bound norm. Further, as M is a tt-ortho­

gonal representation, it follows by Theorem 5.2 that 

and similarly a(C) ~ IICllco. Hence, by (6.1.1) and Definition 6.2, a is a 
standard norm. 

7. THE BOUNDS ARE ATTAINED 

7.1. Let V be any vector space and let (Xl' ... ' xs) be any finite 
family of vectors that spans V. For each X E V, define 

(7.1.1) 

It is not hard to see that vlV norms V [i.e., satisfies (3.1.1), (3.1.3), and 
(3.1.5)J, and a compactness argument in pn shows that the infimum is 
achieved, viz., for suitable ai, i = 1, ... , s. x = ~t=1 aix and v(x) = 

~~=1 lail· We shall call vlV defined by (7.1.1) the convex hull norm 
belonging to (x}I ... , xs). [The name is natural since v(x) ~ 1 if and only 

if X lies in the convex hull of (Xl"·.' Xs) J. 

7.2. LEMMA. Let (x}I ... , x,,) be a basis for the vector space V, and 

let u = ~7=1 Xi' Let 'Y be the bound norm on {V, P} determined by the 
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convex hull norm on V belonging to (Xl'" " Xn , u). Then (Xl' ... , xn) is a 

y-orthogonal basis for V. 

Proof. Let Z E V such that y(z) = l. Then there exist ai E F, i = 
1, ... , nand c E F such that z = 1:~'=I aix i + cu, and 1:~'=I lail + lei = 
l. Let (x/"'" xn') be the dual basis to (Xl"'" xn). Then x'u = 1, 
and so IX'zl = lai + cl ~ l. Since x;' Xi = 1, it follows that y(x;') = 1, 
i = 1, ... , n. 

It is clear that, for any m X n matrix A, IIA 110 ~ mnliA 111' The fol­
lowing theorem (really an example in disguise) shows that the bounds 
of Theorem 5.1 may be achieved. 

7.3. THEOREM. Let"Y be a category of vector spaces and let M be any 

representation of "Y. Then there exists a bound norm y such that M is y­

orthogonal and, for every V, WE "YO, we can find 5, T E Hom(V, W) for 

which 

(7.3.1) 

(7.3.2) 

IIM(S) 1100 = y(S) = (mn)-IIIM(S) 111' 

mnIlM(T) 1100 =y(T) = IIM(T)III 

where n = dim V, and m = dim W. 

Proof. Let!!J be a family of bases for "Yo. For V E "Yo, suppose 

&6'(V) = (Xl' ... , xn), and set u = 1:~=1 Xi' Let y/V be the convex hull 
norm on V belonging to (xl"'" X n , u) and let y be the corresponding 
bound norm on "Y. By Lemma 7.2, ~ is a family of y -orthogonal bases 
for "Y. Let V, WE "Yo, and let (X', ... , xn '), X/ E V' be the dual to 

(Xv.," Xn) = !!J(V). Set u' = 1:~'=1 Xi and v' = 1::'=1 (- l)i-lx/ = 

Xl' - X 2' + ... + xn'· Let !!J(W) = (yv' .. , Ym), w = 1::"=1 Yi and z = 
1:~:I (- l)i-lyi. We claim that 

(7.3.3) y(w') = 1, y(z) = m, y(u') = n, y(v') = l. 

To avoid tedious computations, we shall prove only two ofthese: y(v') = 1, 

and y(z) = m. By definition, y(v') = sup{lv' xl: x-E V, y(x) = I} and 

y(x) = inf{1:~=l lail + Ci X : X = 1:~'=1 aix i + cu}. So suppose X = 1:~=1 . 
aixi + cu, where 1:7=1 lail + lei = l. Then v'x = 1:~'=1 (-1)i- 1ai + be, 
where b = 0 or 1 according as n is even or odd. In either case, lv' xl ~ 

1:7=1 lail + lei = l. Since V'XI = 1, it follows that y(v') = l. To show 
that y(z) = m, let z = 1:::1 aiYi + CWo Then, for odd i, 
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and, for even i, 

ai = -1 + c. 

Hence la2i - a2i- 1 1 ~ 2, i = 1, 2, .. " and so, for m = 2P, 

m p 

L lail + Icl ~ L laZi - aZi _ 1 1 ~ 2p = m 
i~l i~1 

and, for m = 2p - I, 

tn p 

~ lail + c ~ L lai - a2i _ 1 1 + la2P+1 + cl 
i~ 1 i~1 

~2m+ 1 =n. 

Hence y(z) ~ n. But z = ~:~1 Yi' whence y(z) = n. 
Now let S = wv'. Then Sx = wv'x, for XE V. Hencey(Sx) = y(w)lv'xl, 

and it follows that y(S) = y(w)y(v') = 1. Further, if A = M(S), then 
A = M(w)M(v) and hence aij = (- I)j-l, i = 1, .. " n. Thus IIM(S) 1100 = 
1, while IIM(S)lll = mn. This proves (7.3.1). Similarly, for T = zu', we 
have y(T) = y(z)y(v') = mn, while B = M(T), where bij = (_ I)i-l. 
Thus IIM(T)lloo = 1 and again IIM(T)lll = mn, yielding (7.3.2). The 
theorem is proved. 

(0. 1) (1. 1) 
,,---------, 

(-1.0) 
o 

(1 . 0) 

(-1. -1) (0. -1) 

FIG. 1. 

To help intuition, we sketch in Fig. 1 the norm body {x: y(x) ~ I}, 
where F is the real field, n = 2, and the basis (xl> x2) is (11. 2, e2

2). 
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7.4. COROLLARY. Let a be a bound norm on the category of matrices 

s~tch that for n = 1,2, ... , alP' is the convex hull norm belonging to 

(et, et, ... , en", r), where et is the ith unit vector and f(iJ = 1, 
i = 1, ... , n. Let A, B be the m X n matrices given by ai; = (- I)j-\ 
bi; = (- 1);- \ i = 1, ... , m, j = 1, ... , n. Then a is a standard matrix 

norm and 

(7.4.1) 

(7.4.2) 

8. AN OPEN QUESTION 

IIAII", = a(A) = (mn)-IIIAIII' 

mnllBII", = a(B) = IIBIII' 

Let a be a standard matrix norm, and let C be a matrix for which 

a(C) = 1. Then, by (6.1.1), 

(8.0.1) 

However, it is easy to find a matrix C satisfying (8.0.1) such that a(C) < 1 
[or a(C) > 1J for all standard norms a. Thus it seems interesting to char­
acterize the set of matrices C such that a(C) = 1 for some standard 
norm a. 

Note added in proof: B. Grunbaum [Math. Rev. 9(1964), 4429J has given an 
interesting history of this lemma in a review of a paper by A. Sobczyk, and I thank 
W. W. Kahan for drawing my attention to this review. An equivalent geometric 
result was published by M. M. Day [Trans. American Math. Soc. 62(1947), 315-139J 
almost simultaneously with Taylor's paper. The form of the result needed in this 
paper is Taylor's. 
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