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FOR THE READER 

We propose in this monograph to introduce the reader to 

some of the basic tools of investigation. in the algebraic the

ory of semigroups and to lead him through to some recent re

sults in this theory. We will not presuppose more than the 

usual sophistication of a good first year graduate student in 

mathematics, and will attempt to make the monograph self 

contained. We will give basic definitions where necessary 

although the proofs of some of the easier propositions will be 

left to the reader. (Most of these can be found in the stand

ard reference for this field by Clifford and Preston [2]. ) 

The reader who is familiar with the theory of semigroups 

will be able to skim the preliminaries of § () and pick up the 

investigation where it really begins in §2. We especially in

clude for them the summary in § 1 . 
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§o. PRELIMINARIES 

A semigroup, S, is a collection of elements, {a, b, c ... } 

closed with respect to a binary, associative operation, f. As 

usual, this operation will be written multiplicatively. Thus 

ab denotes the image of (a, b) under the binary operation 

f: S X S ~ S. 

A relation a on the semigroup S is a subset of the 

cartesian product S X S. We will alternatively write x ay 

whenever (x, y) Ea. A relation a on S is said to be re

flexive if sa s for each s E S; it is symmetric if whenever 

(x, y) E a we also have (y, x) E a; it is transitive if when

ever xfly and yaz we have xaz. An eguivalence rela

tion is a relation that is reflexive, symmetric and transitive. 

1 
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A congruence e is an equivalence relation on S such that 

if a e b then sa ~sb and as ebs for any s E S. 

Fundamental in the algebraic investigation of semigroups 

are the following relations defined on an arbitrary semigroup 

S called Green's relations (cf. [6]). 

(O.1) Definition. Let S be a semigroup and a, b E S. 

Let the relation ~ be defined by ~ = {(a, b) I 

a = b or there exist x, YES with ax = band 

by = a}. Let ;L = {(a, b) I a = b or there exist 

u, v E S with ua = b and vb = a}. 

(O.2) Proposition. 6P and ,;£ are equivalence relations. 

The intersection of any two equivalence relations 

is an equivalence relation. 

The reader will note that these two equivalence relations 

are (left-right) dual to each other. Often in the following ex

position we will make use of this duality and prove a theorem 

involving just one of theserelations, leaving the obvious 

dualization for the reader. This left-right dualization will be 

more apparent after the following definitions and propositions. 
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(0.3) Definition 1. If S is a semigroup without an 

identity element then we can adjoin an identity 

element 1 to S by defining the product s 1 = 

1 s = s for any s E S, 1· 1 = 1 and leaving ab 

defined as in S whenever a, b E S. The reader 

can readily check that S U {1} is a semigroup. 

SI will denote the semigroup S when S already 

has an identity element or the semigroup S U {I} 

just defined when S does not have an identity 

element. 

2. For a E S we define the principal right 

ideal R(a) generated by a by R(a) = aS 1
, the 

principal left ideal L(a) by L(a) = SI a and the 

principal (two-sided) ideal J(a) by J(a) = SlaSI . 

(0.4) Proposition. In any semigroup a~b if and only 

if R (a) = R (b) (and dually a £ b if and only if 

L(a) = L(b)). 

(0.5) Definition. We can now define two more of 

Green's relations as follows. Define a 9-b when

ever J(a) = J(b) and OJI- by opJ = &l n t, . 
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(0.6) Proposition. t1Jt and f} are equivalence rela

tions on a semigroup S. 

We define the product of two (equivalence) relations a, 
1fi on set S byU o T8= {(a,c)E SxS I there is bE S such 

that (a, b) E a and (b, c) E CB}. We will now show that the 

relations (f( and £, defined above commute, i. e., cJ( ot: 

(0. 7) Theorem. Let S be a semigroup. Then 

'(flot =;torR. 

Proof . We will show tha t 6? 0 L c;;;;. X 0 r1I. 

leaving the other inclusion for the reader. Sup

po se then tha t a 6? 0 i c. Then by definition 

there is abE S such that a6?b and bet c . If 

b = a or b = c we are done since tJ? and :i 

are equivalence rela tions (use the symmetric and 

reflexive properties). If b I a and b I c then 

by definition there are u, v, x, YES such that 

ax = b, by = a, ub = c and vc = b. Let d = cy. 

Then dx = (cy)x = ((ub)y)x = u(by)x = u(ax) = ub 

= c and d = c(y) so that cy = d&lc. Similarly, 
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ua = u(by) = (ub)y = cy = d and vd = v(cy) = 

(vc)y = by = a so that acid . Thus a1:dtfc 

and (a, c) E i 0 d? . 

5 

(0.8) Proposition. The product of two commuting equiv

alence relations is an equivalence relation. 

(0 . 9) Definition. We define the last of Green's equiva

lence relations by JJ' = (Jl o:t = i 0 rJ? . 

Equivalence relations give rise to partitions of a set . 

Green's relations defined above give rise to the so-called 

egg- box structure of a semigrouA the partitioning se ts will be 

the 8i -classes, W -classes, etc. One can picture 8?

equivalent elements as lying in the same row (tJ( -class) and 

t:. -equivalent elements as lying in the same column. The in

tersection of a row and a column when nonempty yields an '},/.

class, while the (intersecting) connected rows and columns 

build a J} -class. Thus, perhaps: 
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--~.,.. 
Y~ 

H =R =L =D 
x x x x 

will represent the structure of a given semigroup S. 

(0.10) Proposition. In any semigroup OJ/. <;; :t <;; b <;;;. 

Notation. Throughout this monograph we will 

denote the 1R -equivalence class of an element 

a E S by R , the t'-class of e E S by L etc. 
a e 

The reader will recall from previous algebra courses that 

one usually restricted the set of objects under consideration 

in order to obtain a more fruitful theory; thus, e. g., solvable 

groups when studying groups, or semi-simple ring s in ring 

theory. The same is true in the algebraic theory of semi-

groups. We will now try to reach what will be for us such an 

interesting set throughout the remainder of the monograph-the 

set of completely O-simple semigroups. In order to do so we 

will first have to give several definitions and results. 

(0. 11) Definition 1. A semigroup S is said to be regu-

lar if for each a E S there is a XES such that 
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a = axa. 

2. An element e e S, a semigroup, is called 

an idempotent if e 2 = e. 

(0. 12) Proposition. Prove that S is regular if and only 

if a e aSa for each ae S. If a = axa prove that 

ax and xa are idempotents and that ax is a 

left identity on R while xa is a right identity 
a 

on L . 
a 

Since ideals and especially minimal ideals figure heavily 

in puzzling out algebraic structure we record the following 

definitions: 

(0.13) Definition 1. A nonempty subset R[L] of a 

semigroup S is said to be a right [left] ideal of 

S if RS <;. R[SL <;. L]. A nonempty subset I of S 

is called an ideal if it is both a right and left 

ideal of S. 

2. A right [left] ideal R[L] of a semigroup S 

with zero, 0, is called O-minimal right [left] ideal 

if no nonzero right [left] ideal of S is properly 

contained in R[L]. 
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3. A similar definition is made for a O-minimal 

ideal. 

We may now inquire as to the relationship between 0-

( 

minimal ideals and Green's equivalence classes. This rela-

tionship is given in the following proposition (and its dual). 

(0.14) Propo&ition. If R is a O-minimal right ideal in a 

semigroup S with 0 prove that aS l = R for any 

a E R'\. {O}. Then prove that if R is a O-minimal 

right ideal in a semigroup S with 0 that 

R" {O} is an tlt-class. 

(0.15) Definition. A semigroup S with 0 is s,aid to be 

O-bisimple if it has just one nonzero dJ'-class. 

A semigroup S with 0 is said to be 0- simple if 

S2 .; {O} and {O} is the only proper two-sided 

ideal of S. 

(0. 16) Proposition. In any semigroup Go = {O} where 

2J is anyone of Green's relations. 

The idempotents of a semigroup prove to be extremely 
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useful wedges in separating out its structure. It is sometimes 

profitable to order them. Thus 

(0.17) Definition. A partial order on a set S is a rela

tion <;; which is reflexive transitive and anti-

symmetric, i. e., if a <;;. band b <;;. a then a = b. 

If a <;;. b and a I b we will write a C b. 

Now let S be a semigroup and let E = ~ (S) = {e E S I 

e 2 = e} be the set of idempotents of S. Define a relation 

~ on E by e ~ f whenever e = ef = fe for e, fEE. 

(0.18) Proposition. The relation ~ defined above on 

e,(S) is a partial ordering. 

(0. 19) Definition. A nonzero idempotent f E ~ (S) is 

said to be primitive if whenever e ~ f either 

e = 0 or e = f (where e E ¢"(S)). 

We are now ready to give the usual definition of a com

pletely 0- simple semigroup. 

(0.20) Definition. A completely O-simple semigroup is 

a semigroup S with 0 which is 0- simple and 
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has at least one primitive idempotent. 

We feel that it is far more preferable to depart now from 

what would be the usual approach-in which one proceeds to 

determine the element-wise behavior, i. e., where the prod

uct of two elements lie, etc., to another definition which 

takes, the ultimately determined behavior of a completely 0-

simple semigroup as its starting point. 

(0.21) Definition. A semigroup S with 0 is said to be 

absorbent if for any a, b E S we have ab = 0 or 

ab E Ra n Lb· 

Since an ffl-class and an .i-class intersect precisely 

when they lie within the same elY -class it is easy to check 

the following: 

(0.22) Proposition. In an absorbent semigroup each JY

class union {O} is an ideal. 

(0.23) Proposition. A semigroup is completely 0- simple 

if and only if it is a regular O-simple absorbent 

semigroup. 
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The proof of this proposition is not hard. That a com

pletely 0- simple semigroup (first definition) is absorbent is 

just one of the derived results in the usual development, cf. 

[2] Theorem 2.52. The converse follows immediately from [9] 

Proposition 3.3. However, we will show directly that each 

nonzero idempotent of an absorbent semigroup is primitive and 

leave it to the reader to put together the few remaining steps. 

(0.24) Theorem. If S is an absorbent semigroup then 

every nonzero idempotent is primitive. 

Proof. We must show that if 0;1 e"::; f (for e, 

f idempotents) then e = f, i. e., f is primitive. 

By definition, since e..::; f we have e = ef = fe. 

By absorbency, since e;l 0 we have ef E Re n L
f 

and thus ef = e E Lf" Hence Le = L
f
. (;t is an 

equi valence relation!) Now any idempotent is a 

right identity on its ';f, -class (show this). Whence 

it follows that e = fe = f and fis primitive. 

The absorbency condition also permits an easy proof of 

the following partial converse of (0.14) (cf. [2] Corollary 

2.49): 
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(0.25) Proposition. Let S be an absorbent semigroup. 

Then every nonzero principal right ideal of S is 

O-minimal. 

Indeed, it is now not difficult to combine (0. 14) and 

(0.25) to show: 

(0.26) Proposition. Let S be a semigroup with o. Then 

S is absorbent if and only if each nonzero princi-

pal right and left ideal is O-minimal. 

(0. 27) Proposition. An absorbent 0- simple semigroup is 

O-bisimple. 

A few more observations about idempotents and subgroups 

of S, one more definition and we will then be ready to get in-

to the monograph proper. 

(0.28) Proposition 1. 8l.is a left congruence in the 

sense that if a tR b then sa {fl sb. Dualize this. 

2. If e Z = e then H is a maximal subgroup 
e 

of S in the sense that no larger subgroup of S 

properly contains H . Conversely, if an C}I-
e 
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class H is a group it contains an idempotent 

(cf. [2] Theorem 2.16). 

The following theorem is directly related to the absorbent 

condition. 

(0.29) Theorem. ([2] Theorem 2.17) Let S be a semi

group and/ a, b E S. Then ab E Ra n Lb if and 

only if La n Rb is a group, in which case 

HaHb = Hab' 

Proof. The proof of this theorem uses tech-

niques similar to those of Theorem (0.7) and 

Lemma (2. 1). Since the proof of Lemma (2. 1) is 

independent of this theorem we will use that re

sult here. Suppose then that for a given a, bE S 

we have that La n Rb is a group. By Proposition 

(0.28.2) La n R
b

, a group ~-class contains an 

idempotent e. Thus a J, e 6l b. As in Proposition 

(0.12) we can show that any idempotent is a left 

identity on its tf{ -class and a right identity on 

its t -class. Hence using Proposition (0.28.1) 

and its dual we have ab £ eb = b and a = ae <R. abo 
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It follows that ab E Ra n Lb. But the above argu-

ment is the same for any a I E Ha and b' E H
b

. 

Whence HaHb ~ H
ab

. Now since W-classes 

within the same oCY-class have the same number 

of elements and since by Lemmas (2. 1) and (2.2) 

the translations (multiplications) are 1-1 and onto 

Conversely, let us suppose that ab E Ra n Lb. 

Then a 61 ab and as in Lemma (2.1) we can find 

a b' such that (ab)b' = a and the mappings Pb 
Pb' are mutually inverse, fi? -class preserving 

between La and Lab = Lb' Now Pb' maps b 

Now for any x E L we 
a 

have xP
bPb

, = xbb' = x. Thus if we set x = bb' 

it follows that bb' is an idempotent and that 

H
bb

, = La n Rb is a group by Proposition (0.28.2) . 

We shall eventually consider lattices: 

(0.30) Definition. A lattice L is a partially ordered set 

which contains for every pair of elements a, b E L 

a greatest lower bound (inf (a, b) = a I\b) and a 
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least upper bound (sup (a , b) = a Vb). 

A lattice L is complete if any subset (includ

ing the empty set 50') has a greatest lower bound 

(glb) and least upper bound (lub). 

(0.31) Proposition. The set of all subsets of a given 

set, partially ordered by inclusion, is a lattice, 

indeed it is a complete---.la ttice. The set of all 

congruences on a (semi]group is a complete lat

tice under the inclusion ordering. 



§ 1. SUMMARY AND NOTATION 

In this monograph we will study the lattice S of proper 

congruences on a completely O-simple semigroup S. Let H 

be a nonzero group ~-class of S. We denote by ~ the 

lattice of all normal subgroups of H, and by R . ..[L.,J the 
~"I"~"I" 

lattice of all equivalence relations on the set of l1{ -classes 

[i -classes] of S. We identify an initial segment R [L] of 
'" '" 

R .. [L JJ, such that C is isomorphic to a complete sublattice 
~"ICf"'o..J"I" ~ 

T of A = R X N X L (Theorems (7.8) and (8.4)). We in-

vestigate well-ordered chains in 2. (e-.g., Theorem 01.15)). 

0.1) Outline'and results. In §2 we associate with 

every normal subgroup E of H a congruence 

t: (E) lying under ~ ((2. 6)), and in § 5 we show 

16 
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that E -+ C (E) is a complete lattice isomorphism of 

~ onto the lattice ~ of congruences on S lying un-

derll- ((5.3)). In §3 we define an equivalence i 

on the set of ~ -classes of S, and with every 

equivalence r, r <;. d we associate a congruence 
'" '" '" 

t"(!.) on S ((3.5)) such that t"(,[,) n (J? =.Do., the 

diagonal. In § 6 we show that r -+ t" (r) is a com-
'" '" 

plete lattice isomorphism between the lattice of 

equivalences lying under i and the lattice of con-

gruences;P on S such that ;p n 6P =.Do. ((6.5)). 

Dual results hold for an equivalence relation ~ on 

the set of i-classes of S, and congruences J 

such that., n i =.Do.. 

By considering factor semigroups in §4, we define 

for each normal subgroup E of H an equivalence re-

lation d(E) [s(E)] on the setof tJ( -classes [J.-
'" '" 

classes] of S. A permissible triple ([" E,~) is then 

defined as an element of R ."x N X L ~, such that r <;. d(E) 
~"I'" f""oo-J f""oo-J"I" f""oo-J f""oo-J 

and ! <;.~ (E) \ ((4.4)). If! is the lattice of all permis-

sible triples, then we show in §7 that! and the 

lattice C of all proper congruences on S are 
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isomorphic complete lattices «7.8». 

Let ~[!::.] be the initial segment of ~ ~J!::.,~] 

consisting of all equivalences r under d (H), 
'" '" 

[!, under ~ (H)], and put !::; = ~ X ~ X!::.. In §8 

we show that T is a complete sublattice of A 

«8.4». 

In § 9, we determine nece s sary and sufficient 

conditions for the existence of a Brandt congruence 

on S, «9.8», and we investigate the sublattice of 

C consisting of all Brandt congruences. For ex-
'" 

ample we show that the lattice of all Brandt con-

gruences is a final segment of 2 «9.9». 

In the last two sections of the monograph proper 

we will discuss chains of congruences on 52 (or 

T). In § lOwe show that Tl covers TZ in T if 
'" '" 

and only if Tl covers TZ in A «10.3». It 
'" 

follows quickly that C is an upper semimodular 
'" 

lattice «l O. 5» and hence satisfies the Jordan-

Dedekind chain condition. In § 11, we inve stigate 

ascending well-ordered (infinite) chains of con-

gruences on S. If H has a well-ordered principal 
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series, then for each proper congruence ct on S, 

there exists in C a maximal ascending well-,..., 

ordered chain from ~ to a 1, and all such 

chains have the same length ((11. 15)). 

In § 12 we break down and at last admit to the 

reader that we have indeed heard of the Rees 

matrix representation. We do this in order to con-

struct an example showing that an inequality in a 

lattice that we have obtained may be strict. 

(1. 2) Related Papers. Congruences on a completely 0-

simple semigroup have been considered before. 

(Gluskin [6,7] investigated congruences on a 

completely simple semigroup and showed that they 

satisfied a Jordan-Holder theorem.) Preston [16] 

has obtained representations for congruences on 

a completely 0- simple semigroup though his rep-

resentation of a congruence is not in general 

unique. Tamura [20] has obtained a unique rep-

resentation in terms of a very special normaliza-

tion of a sandwich matrix for S. .our representa-
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tion is both unique and intrinsic. Preston [17] 

(cf. also [2], Vol. 2) has also considered finite 

chains of congruences on S. In the case of finite 

chains of congruences, the results of our § 11 re-

duce to Preston' s. A recent paper of Lallement 

[12] obtains similar results but again resorts to 

the Rees matrix representation. Howie [8] has 

also achieved these results starting with Tamura's 

normalized sandwich ma trix. 

0.3) Notation. Our terminology and notation is essen-

tially that of Clifford and Preston [2]. Relevant 

definitions and notation can be found in §O. 

When we consider a semigroup T, we shall use 

lower case letters for elements of T and capitals 

for subsets of T. Lower case letters, underlined, 

such as d, r will denote equivalence rela tions 
'" '" 

on the set of &i -classes and 1: -classes of T. 

We use lower case Gothic letters such as t, P , 
C{, r for congruences on T. Capitals, under-

lined, ~, 13" etc., will denote lattices. 
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(l.4) Special Conventions. In what follows we shall 

assume that S stands for a completely 0- simple 

(c- 0- s) semigroup, and H stands for a fixed non

zero group q1:j.-class of S. By e we shall de

note the identity of H. If xes, then 6.(X) will 

be the set of idempotents in X. 



§2. THE CONGRUENCE t = t(E) ASSOCIATED WITH A 

NORMAL SUBGROUP E OF A NONZERO GROUP 0)/.- -CLASS 

In (0.9) we saw that ;t and (j( commute. The technique 

used in that proof can be used to prove the following modifica-

tion of Green's Lemma ([2] Lemma 2.2). Indeed, 

(2.1) Lemma. Let a and as be '(f( -equivalent ele-

ments of a semigroup T. Then the translation 

p : x...,.. xs is a bijection of L onto Land 
s a as 

further x tlixs for all x in L. Moreover, there 
a 

is an inverse mapping p : y""" ys' of L onto 
s' as 

L where (as)s' = a. Dually, if bi'tb, then 
a 

>-t : x...,.. tx is a bijection of Rb onto Rtb which 

is '£ -class preserving: xcttx for x in R
b

. 

Again there is an inverse mapping >-t' of Rtb 

22 
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onto Rb where t' (tb) = b. 

Proof: Since a 8l as, there is an s' E T for 

which (as)s' = a. Suppose x E L , say x = ua 
a 

and a = vx. Then clearly xs = u (as) and as = 

v(xs) whence xs E L Next note that x = ua = 
as 

uass' = xss'. If y E L ,say y = was, then 
as 

ys's = wass' s = was = y. Hence p , is the in
s 

verse map to p , and so p is a bijection of L 
s s a 

onto L Further, since xs s' = x, it follows 
as 

that x dixs . The dual results are proved similarly. 

From (0.25) we see that when S is a c-o-s semigroup, 

every nonzero principal right ideal is O-minimal (cf. [2] Cor-

ollary 2.49). It follows that if as;l 0, then as eRa. Similarly, 

if ta;l ° then ta:i a. Moreover we can then conclude from 

(0.29) that if as;l 0, then L n R is a group. These re-
a s 

marks will be used very often, In particular, the first two , 

are used in combining the two parts of Lemma (2. 1) in to 

(recall (1. 4)): 

(2.2) Lemma. Let a E H and let c = tas. If c;l 0, 

then the translation At psis a bijection of H 
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onto H with an inverse of form A.t,p, . In 
c s 

every case, tHs is an ~-class. 

Proof. Indeed, if c -1o, we have a 11{as .tt{as), 

and the first assertion follows by (2. 1). If tbs = 

0, for all b E H, then tHs = {o} which is an 

U-class. If tbs -1o, for some b E H, then tHs 

is an CiJ,J -class by the first part of the proof. 

In order to fix the above result we should make the fol-

lowing: 

(2. 3) Definition. Let E be a nonempty subset of H. 

We shall call a subset E' of S a translate of 

E if and only if E' = tEs, for some t, s E S. 

Note that E, tE, and Es are translates of E since 

E = eEe, tE = tEe and Es = eEs. 

(2.4) Theorem. Let E be a normal subgroup of H. 

Then the set e of translates of E partitions S 

and (E, is itself a c- 0- s semigroup under the 

induced multiplication. 

Proof. Let e be the idempotent in E. Then 
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since S is O-simple SeS = S, and hence SES = S. 

Thus U(!... = S. 

Now suppose that two translates tEs and vEu 

have a nonempty intersection. Suppose that 

o E tEs n vEu. Thus 0 E tEs ~ tHs, whence {O} = 

tEs = tHs, by (2.2). Similarly vEu = {o} and so 

tEs = vEu. If 0 I'tEs n vEu, then tes = c where 

c '10. Then by (2.2), tHs = H and for suitable 
c 

t', s' the mappings A. "p , are inverse mappings 
t s 

for the translations A. ,p . Hence E = t' (tEs )s' so 
t s 

that t' (vEu)s' n E 'I Jf. However t' (vEu)s' = 

(t've)E(eus'). But both t've and eus' are ele-

ments of H. Hence t'vEus' is a group coset of 

E meeting E, and so t'vEus' = E. Now applying 

"t and p s we obtain vEu = tEs. We have shown 

that e partitions S. 

Now let tEs and vEu be elements in <E 

Then (tEs)(vEu) = tE(esve)Eu = t(esve)Eu = 

(tesv)Eu ErE-, since esve E Hand E is normal 

in H. But (tes)(veu) = (tesv)eu, and since 

every element of S is of form tes, tes - tEs is 
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a homomorphism of S onto f!.. Thus e is a 

semigroup. It is now easy to show (cf. [2] Lemma 

3. lO) that a nontrivial homomorphic image of a 

c-O-s semigroup is also c-O-s. This will com-

plete the proof. 

An immediate consequence is: 

(2.5) Corollary. Let t: be the equivalence relation on 

S whose equivalence classes are the translates 

of a normal subgroupE of a nonzero ~-class H. 

Then t: is a congruence on S . and f: ~ ""'. 

Proof. Since @, is a semigroup, l: is a con-

gruence. By (2.2) each translate tEs is con-

tained in an CJI. -class, whence t. ~~. 

(2.6) Definition. Let E be a normal subgroup of H, 

and let t be the congruence whose equivalence 

classes are the translates of E. We shall call 

t the congruence on S associated with the 

normal subgroup E of H and write t = t (E) 

where convenient. 
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(2.7) Remark . Clearly t(H) = ~ by (2.2). Thus % 

is a congruence on S. 
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In this section we will define an equivalence relation, d, 
'" 

on the m-classes of a c-O-s semigroup S so that for every 

equivalence relation r defined on the 6l-classes with 
'" 

r <; d there is an associated congruence, -y = Y( r) on S 
'" 

itself. We remark that an equivalence relation s can be de-
'" 

fined on the t -classes of S which is exactly dual to d 
'" 

and the definition of 1- = t (i.) for an equivalence i. ~ s 
'" '" '" 

is also directly dual to that for r = r (r ). Therefore, for 
'" 

each of the following lemmas and theorems there is a right-

left dual. 

We recall that e, (X) is the set of idempotents in X. 

(3.1) Theorem . Let RI and Rz be two nonzero f/{ -

28 
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classes of S. Then the following conditions on 

Rl and Rz are equivalent: 

(1) There exists an s in S such that ~(Rl ) 

= S e; (Rz ). 

(2 ) There exists an h in C{R l ) such that 

~{Rd = he; (Rz ). 

(3 ) e{R l ) = ~ (Rd e, (Rz )· 

(4 ) a. For any X-class L we have L n Rl 

is a group if and only if L n Rz is a 

group, and 

b. There exists an s in S such that if 

e, E C{R,), i = 1,2, and e l X e z then 
1 1 

se 1 I 0 and se 1 = sez. 

(5) Condition 4a and 

5b. There exists an h E ~(S) such that 

if e, E ~(R.), i = 1,2 with el'£eZ 
1 1 

then hel 10 and hel = he z . 

(6) Condition 4a and 

6b. For all e , Ec;{R,), i=1,2, with 
1 1 

eltez and for all g inf;,{S) we 

have gel = gez . 
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(7) Condition 4a and 

7b. For all e, E ~(R,), i = 1,2, with 
1 1 

el r. ez .and for all t in S we have 

Proof, We shall prove (2)<===> (3) and then 

(l) ~ (7) ::::';> (6) ~ (5) =:;. (4) => (2) ~ (l). 

(2) ~ (3). Assume (2). Since the idempotents 

in Rz are left identities on Rz we have 

,,(Rz )C(Rz ) = ~(Rz). Hence e' (R 1 ) = he(Rz ) = 

h ~(Rz)~(Rz» = (he,(Rz»C:(Rz ) =C(Rd~(Rz). 

(3) => (2) . Assume (3) and let h E e(R 1 ). Then 

ez E ~(Rz). Hence since hez lOwe have 

heZ~el and since both elements are idempotent, 

(l)~(7). (a) Assume (l)andlet L bea 

given ,i-class. An c:iJ.-class is a group if and 

only if it contains an idempotent ((0.28». Hence 
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if L n Rz is a group then there is an idempotent 

and so sez E ~(Rl n L) and hence Rl n L is a 

group. In almost the same manner one shows that 

if L n Rl is a group then L n Rz is a group. 

(b) Now suppose e . E ¢,(R.), i = 1,2 with 
1 1 

el:iez. Let t be given in S. Since (7)a has 

already been demonstrated we can use the absor-

bencyof Sand (0.29) to conclude that tel = 0 

implies tez = O. If tel 10, then there is an 

idempotent ell E L
t 

n Rl , and for some rES, 

t = reI'. By (]), ell = sez', for some ez' E ';;(Rz ). 

Thus there is an r such that r(sez') = reI' = t. 

since sez = el, as sez is an idempotent in Rl 

which is :i equivalent to ez. Thus in every 

case tel = tez . 

The implication (7) ='> (6) is obvious. 

(6) ~ (5). Assume (6 )b. To prove (5)b we need 

only find an idempotent h E S for which hel 10. 

But any idempotent in Rl has this property. 
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The implication (5) ·~(4) is also obvious. 

(4) ~ (2). Assume (4)a. Then for each ez E 

~ (Rz ) there is an i'-equivalent idempotent 

e l E e(Rl ). Let s be as in (4)b. Since sellO 

we have that L n Rl is a group and hence there 
s 

is an h E ~(L n Rl ) and an r in S such that 
s 

rs = h. Thus sel = sez implies e l = hel = 

rsel = rsez = hez and so we have proved that 

The proof of ¢(Rl ) ~ h~(Rz) is obtained by 

interchanging eland ez. 

The obvious implication (2) ~ (1) completes 

our proof. 

(3.2) Definition. The &?-classes Rl and Rz are said 

to be ~-equivalent (written Rl S Rz ) if and only 

if condition (3. 1. 7) holds. 

It is obvious that d is an equivalence relation on the 
'" 

set of Bt -classes of S. Observe that the {O} '6? -class is 

s-equivalent only to itself. If Rl and Rz are ~-equivalent 

nonzero dl. -classes then obviously each condition in (3. 1) 

holds. 
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(3.3) Lemma. Let T beanarbitrarysemigroup. If 

s = sf and f.ts then fZ = f. 

Proof. Since f £, s we can find an r in TI 

such that rs = f. Thus s = sf implies f = rs = 

rsf = fZ. 

(3.4) Theorem. Let RI and Rz be ~-equivalent fJ?-

classes of S and let x. E R., i = 1,2. If there 
1 1 

is an s such that SXI I 0 and SXI = SXz then 

txl = txz for all t in S. 

Proof. Let xi E Ri' i = 1, 2, and s be given 

as in the hypothesis. Since S is c-O- S, SXI = 

SXz 10 implies that L n R., i = 1,2, are groups 
s 1 

and that Xl :£xz. Thus there are :t -equivalent 

idempotents e. E ~(L n R.), i = 1,2. Since 
1 s 1 

el(}lxI, there exist u and u ' suchthat el =XIU 

and el u ' = Xl and then the translations p and 
u 

are inverse mappings of L 
Xl 

and L upon 
el 

each other by (2.1). These mappings are more-

over tJi.-class preserving. Thus Xz u E Rz n L 
el 

Now from SXI = sXz we have s = sel = SXI U = SXz u. 
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By (3. 3) Xz u is the idempotent ez E f;. (R l n L ). 
s 

Let t be given. Since RI d Rz we have te I = tez . 
'" 

Hence t(XI u) = t(Xl u) implies t(XI uu') = t(xz uu'), 

whence tXI = txz · 

Definition. Let r be an equivalence relation on 
'" 

the set of tR. -classes of S such that r ~ d. We 

define a relation r-' = Y( r) on S by XI'Y Xl if 

and only if 

1. R r Rand 
Xl '" Xz 

'" 

2. tXI = txz for all t E S. 

We say that ;1"'(r) is the equivalence associated 
'" 

(3.6) Remarks. 

1. It follows from (3.4) that in definition (3.5) 

we can replace (2) by the apparently weaker 

condition 

(2') sXI = sXz 10 for some s in S or Xl =Xz =0. 

2. It is obvious that -y' = r1r) is an equivalence 
'" 

relation with r ~ ;i . 
3. Indeed 'Y'n 6l =.a.. For suppose Xl (r'n i1r)Xl 
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4. We further remark that if RI.!:, Rz , el E e(RI ) 

In particular if RI.!:, Rz and e. E e. (R . ), 
1 1 

i = 1,2, with el i ez then tel =tez by def-

inition (3.1. 7b). Whence elreZ. 

(3.7) Theorem. Let ~ be as defined in (3.2) and let 

.!:" !, ~~, be an equivalence relation defined on 

the set of el-classes of S. Let Y =r(!,) be 

the associated equivalence on S as defined in 

(3.5). Then Y is a congruence. 

Proof. In (3.6) we saw that r is an equiva-

lence relation on S. Suppose now that xl'Y"' Xz . 

Let s E S. We have SXI = sXz and therefore , 

sxlY sXz. Since tXI = tXl for all t, it follows 

that t(XIS) = t(XlS). Thus (3.5.2) holds for XIS 

and Xl s. It is clear that Xl £, Xl and hence Xl s = 0 

if and only if Xl S = o. In that case Xl SYXl s . 

Otherwise if Xl s 10, we have from (2.2), R = 
XIS 

R rR =R and again XlSYXlS. 
Xl'" Xl Xl S 
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§4. THE CONGRUENCE [!" E,!,J ASSOCIATED WITH THE 

TRI PLE ( r , E, l' ) 
'" '" 

Let;P be a congruence on S such that p ~ tR.. If 

a E S, we put a = c! , and then the relation (JUp on Sip 

is defined by a(tJi/p)b if and only if am b. We claim that 

in fact that rJi I;P is the Oi-relation on S/;p and the proof is 

easy. It follows that the di -classes of S and those of S/;p 

are in a one-one correspondence under a natural map R -+ R'. 

Where necessary we will use primes to distinguish between 

Sand SI;P. 

To any equivalence relation r defined on the set of 

(7/-classes of S there obviously corresponds an equivalence 

relation r' on the 8l-classes of S(p defined by Rl' ;::, RZ' 

if and only if Rl!, Rz , and in the same manner to any ;::, de

fined on the ~-classes of Sip there corresponds an equiv-

36 
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alence r defined on the l1i'-classes of S. Because of this 

natural correspondence we will write ,:, for r'. In the sequel, 

we shall be concerned with semigroups SiC, where t ~ ~. 

Thus we shall write r for a relation on the 6{-classes of S 
'" 

or sit " but we will find it necessary to distinguish the as-

sociated congruences (cf. (3.5)) on these semigroups. We 

shall write -r--' for the congruence on Sand 1"" for the con-

gruence on sl t . 

(4. 1) Definition. Let E be a normal subgroup of the 

nonzero 9-.i-class H, and let .t: = c: (E) be the 

associated congruence (cf. (2.6)). We denote 

by ~(E) the j-relation on ~-classes of Sit 

defined by (3.2). The relation ~(E) is defined 

dually on the £. -classes of sit. 

(4. 2) Remark. We note that ~(E) can be considered 

as a relation on the set of &?-classes of S 

since r: = t(E) ~ ~ ~Uf. Moreover, we then 

clearly have ~(E) ~ ~(e) =~: Indeed we can 

define ~(E) directly on S without going to 

sit. Thus condition (7a) of (3.1) would remain 
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the same while (7b) would read 

(7b') For all e, E e(R,), i = 1,2, with 
1 1 

e 1 :t ez and for all t in S we have te 1 r: tez . 

Observe that t C e~ = (te,l = t(e~ ) since [: is a 
1 1 1 

congruence and hence t(ep ) = t(el ) so that the above con-

ditions are natural. Further if E = H, then by (2.7), C. (E) = 

*. But el £. ez implies tel CJ.Itez, for all t E S. Hence 

£(H) is defined by (3. 1. 7a). More explicitly: 

Rl d (H)Rz if and only if for any £ -class L, Rl n L 
'" 

is a group precisely when Rz n L is a group. 

(4.3) Lemma. Let Y, Yr;,£ be a right congruence 

and t, t r;, fR, be a left congruence on an arbi-

trary semigroup T. Then -Yo t = t 0 -r'. If Y 

and 1 are congruences, then so is Y' 01.. and 

Yo t is the smallest congruence containing 

both r" and t . 

Proof. The first assertion of the lemma gen-

eralizes the result that C1i. ot. = t otfl. and can 

be proven as (0.7) making use of the first obser-

vation and dual of (0.28). The second assertion 



Kapp and Schneider 39 

follows immediately since r 0 1- is an equiva-

lence by (0.8). A special case of our lemma is 

found in Munn [14], Lemma 3. 

(4.4) Definition of Permissible Triple and the Asso-

ciated Congruence. 

(a) Let H be the fixed nonzero group '# -

class of S and let E be a normal subgroup of 

H. Let t = e(E) be the associated congruence, 

cf. (2.6). Let ~(E) and ~(E) be the equiva-

lence relations on the set of rJi -classes and 

i-classes, respectively, of S (or sit), cf. 

(4. 1). Let land! be equivalence relations 

defined respectively on the same sets. Then 

(r, E, i.) is said to be a permissible triple if ,....., ,....., 

and only if l ~ ~(E) and! :;; ~(E). 

(b) Let (l, E,!) be a permissible triple. 

Let1'" =t"~O and l' = f(!) be the congruences 

on Sit, t = t (E), associated with the equiva-

lences rand! respectively, cf. (3.5). Then 

(""" 0 t, / is said to be the congruence on S 
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associated with (~, E,!:,). This congruence 

will be denoted by [r,E,1]. 
'" '" 

(4.5) Remark. Note that for x and y in S, 

follows from Lemma (4.3) that [£" E,!:,] is in-

deed a congruence. Thus [£" E,!:,] is the kernel 

of the composite mapping 

S -+ s/~ -+ sit I(r'~ tl ). 

(4.6) Observation. We observe from (3.6) and its 

dual that r "collapses" exactly those dl.-

classes which are £,-equivalent and is :i

class preserving, whilet "collapses" ;t-

classes which are!:, -equivalent and is ~-

class preserving. Moreover, it is clear that 

null ~-classes can only go onto null ~-

classes and group 9-i -classes onto group q.J.-

classes. 
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(5. 1) Theorem. Let ir be a congruence on S such 

that 15 ~ OJ./-. Let e be the nonzero idempo

tent in H and put E = e1l- Then E is a normal 

subgroup of Hand 11- = C (E), the congruence 

associated with E. 

Proof. Since t- restricted to the group '3f-

class, H, is a congruence on H, it follows that 

e 1f' = E is a normal subgroup of H and by 

(2.6) there is an associated congruence C = C(E) . 

We must show that 1; = t . It is enough that 

every} -congruence class is a tran~late of E. 

Let a E S. If a = 0, then air = {O} = OEO. 

Suppose a -10. Then, since abe, there exist 

41 
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s, t, S', t' such that tes = a and t'as' = e. Let 

A = a"". Then A = (tes)11 = t1J' Es1r ;] tEs, and 

similarly E;] t'As'. Thus A;] tEs :::::> tt'As' s = 

A, by (2 . 2), whence A = tEs. 

We remark that we have proved that if T is O-bisimple, 

and 11 is a congruence such that 1r S; "', then every con-

gruence class is of the form t B s, where B is a fixed non-

zero congruence class. In this more general case, we do not 

know if every t B s is a congruence class. 

(5.2) Remark. If the set ~ of normal subgroups of 

H is ordered by set inclusion, then ~ is a 

complete lattice (cf. (0.30) and (0.31» . The 

set of all congruences on S is also a complete 

lattice (cf. [3], p. 86). Since C (H) = <J..I.. is a 

congruence on S, the set ~ of all congruences 

lying under CJ./..- is also a complete lattice. 

(5.3) Theorem. Let H be the set 'of congruences ly-

ing under ~, and let ~ be the complete lattice 

of normal subgroups of H. Then Nand Hare 
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isomorphic complete lattices under the mappings 

E - t(E) and t- e[; . 

0:': 

Proof. Let e be the identity of H, and let 

C - et , and (3 : E - t (E) be mappings on 

the two sets mentioned above. By (5 . 1), 0:'j3 is 

the identity on the set of congruences under ~. 

Let E be a normal subgroup of H. By (2.6), 

the image of E under SO:' is a translate of E 

and clearly contains e. Hence Ei3O:' = E and so 

0:' and i3 are mutually inverse. It is clear that 

0:' and i3 are order-preserving. Hence ([3], 

p. 22) 0:' and j3 are complete lattice isomorph

isms, and the corollary holds. 
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§6. CONGRUENCES LYING UNDER ;£ AND til. 

(6. 1) Lemma. Let p be a congruence on S such 

that J n (j( = ..6.. 

(1 ) If e Z = e and x;pe then XZ = x. 

(2 ) If Xl;? Xz then txl = txz for all t in S. 

(3 ) If Xl,? Xz then XI:t Xz . 

Proof. (1) If e = 0 the result is trivial. 

Let e I O. If x;P e then e Z J> ex)' xZ, hence 

X;P XZ since e Z = e. But then xz~ X; whence 

X = x Z
, by p n 6l = ..6.. 

(2) If Xl' Xz then tXI'P txz. Since 1 is 

proper tXI = 0 implies txz = O. If tXI I 0, 

then tXI (jf tl1l txz and whence txl = txz since 

44 
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(3) This is an immediate consequence of (2). 

(6.2) Definition. Let if be a proper congruence on 

S. Let l (~ be a relation on the &i-classes 

of S defined by Rll (c{)Rz if and only if there 

are x. E R., i = 1,2 such that Xla' xz. We 
1 1 f 

define 1, (r[) dually. 

(6.3) Remark. Let { be any congruence on S, and 

suppose Yl c{Yz, If Xz is any element in S 

wi th Xz tJi yz then one readily see s tha t there 

exists Xl with Xl (J( YI such that Xl {xz and 

Xl 1, xz· For proof, observe that Xz = Yz t for 

some t in S and put Xl = YI t. 

The relation l (1) defined in (6.2) is clearly 

reflexive and symmetric. That l (C/J is also 

transitive is an easy consequence of the obser-

vation in the preceding paragraph. Thus l (en 

is an equivalence on the set of ~ -classes of 

S, which will be called the equivalence relation 

induced by if . 
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(6.4) Theorem. Let J' be a proper congruence on S 

such that :p n 6i. =.a.. Let !, =!, C;P) be the 

equivalence relation induced on the set of (fl -

classes of S as defined in (6.2). Then r ~ d 

and ;P =P'(!,) (cf. (3.5 )), the congruence asso-

ciated with r. 

Proof. Let Rl!, Rz . Suppose el E ~(Rl). 

By (6.2), there is an ez E Rz such that elf ez. 

By (6.1), ez E t(Rz ) and eul ez. We can 

draw two conclusions from this. 

First, suppose L is an ,i-class for which 

Rl n L is a group. Then there is an idempotent 

el E Rl n L (0.28.2). But then ez E Rl n L so 

that Rz n L is a group. Similarly, if Rz n L is a 

group, so is Rl n Land (3. 1. 4a) is verified. 

Second, let e. E C(R.), i = 1,2, and el:i ez. 
1 1 

By the first part of the proof, there is an idem-

potent ezl E Rz such that el;P ezl and el:f. ez l . 

Hence ezj"J. ez l , and as each ~ -class has at 

whence by (6.1.2), tel = tez, for all t in S. 
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This verifies (3.1. 7b), whence RI i Rz . 

We have shown r ~ d . 

By the definition of rand (6. 1. 2) it is im

mediate that p ~ r =r~. Suppose now that 

xlrxz. Then by (6.3) there is an xz' E Rz such 

that Xl? xz'. Since p ~ r, we have Xl 1"" xz' 

and hence xz"- xz' . Thus Xz (1"" n 8t )xz I. But 

by (3.6), Y nClt = 1:., whence Xz = xz'. Thus 

Xl)' Xz and it follows that -y' ~ p. This com

pletes the proof. 

(6.5) Theorem. Let ~ be the set of equivalence re

lations on the '&i-classes of S which are under 

i and let f- be the set of all congruences p 

on S such that ;P n (Jt = 1:.. Then ~ and f

are complete lattices isomorphic under the map-

pings I., -+ r~) and ;P -+ I., ('p). 

Proof. We will show that the mappings 

Cl' : I., -+r(I.,) defined in (3.5) and 13 : l' -+ I., (;P) 

defined in (6. 2) are mutually inverse mapping s 

between Rand P. By (6.4), 13Cl' is the 
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identity on !,. That!. a!3 ~!. is immediate 

from the definitions of Y(r), cf. (3.5.1), and 
"" 

!. (1'), cf. (6.2). If RI !. Rz , then by (3.6) 

there exist Xl E RI and Xz E Rz such that 

It follows that r ~ ra!3, whence 
"" "" 

a!3 is the ide ntity on ~. 

When Rand P are ordered in the usual fash-

ion it is clear from the definitions that a and j3 

are order-preserving, and that ~ is a complete 

lattice. Since y'(~) = £11' is the maximal element 

of P it follows that P is closed under arbitrary 
"" "" 

intersections whence P is also a complete lat-
"" 

tice. The conclusion is now immediate since a 

and!3 are order-preserving inverse mappings 

([3], p. 22). 

Since all of the above results can be dualized, we have 

that the set of equivalence relations, L on the ,i-classes 
"" 

of S which are under s and the set Q of all congruences, 
"" "" 

ti' on S, such that r{ n i =.6., are also isomorphic complete 

lattices. 



§7. THE 'CORRESPONDENCE BETWEEN PROPER CONGRUENCES 

AND PERMISSIBLE TRIPLES 

In this section we will finally show that the association 

of (4. 4b) from the set of permissible triples to the set of con-

gruences on 8 is 1-1 and onto. We will do this by factoring 

the given congruence, t through iJ./. -as :p n ~ = C -and 

then factoring ;P leon sit as the circle, a , product of 

two congruences 7" (r) and t (1 ). ,..., ,..., 

We begin with two preliminary results. 

(7. 1) Theorems. Let r{ be a proper congruence on S. 

Then Y = q; n i. and t = c{ n (/i are proper 

congruences. 

Proof. From the definitions, we have that Y 

is a right congruence (cf. .! 0.28. 1)) and t is 

49 
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a left congruence, and both are proper. Suppose 

xry so that xq;y and xJ',y. Then for any s, 

sx{sy. Thus sx = 0 if and only if sy = O. In 

that case sx f"sy. Otherwise we have 

sx I x t.y:t sy, whence sx1'" sy. The proof for 

t is dual. 

(7.2) Theorem. Let 1. be a proper congruence on S. 

Then ct = (c{n £.) 0 (r{n fR) . 

Proof. By (7. 1), r{ n t and ct n (Jl are 

congruences which commute by (4.3). Hence 

(cfn:l ) 0 (~n tR) ~! by the last part of (4.3). 

Conversely, suppose a 'fb, and a -10. Then 

since S is regular, we can find an idempotent 

e, ·6!-equivalent to a. Hence a<{b implies 

ea = a c{eb. Thus eb -10 and both eb6l eOl a 

and eblb. But bc[ar{eb implies bq;eb . 

Combining these, we see that for a -10, a{b 

implies a(e{ n 8? )eb and eb(c{. n i )b, which is 

obviously also true for a = O. We deduce that 

c{,~ (1 n t.) 0 (c[ ncJl) and the equality follows. 



Kapp and Schneider 51 

For the sake of clarity, we shall now use primes to indi-

cate relations on a factor semigroup sir:. ,where C is a 

congruence (see beginning of §4). For example, ~, is the 

ell-relation on s/~. If t ~ <}.J- then it is easy to check that 

tR, =Ollc ~ 1.' = tiC. and ~I = 'J-J.lt. Further, if :P is a 

congruence on S, then f.pltl =;P and if P' is a congru

ence on 's/r: then (J't)/e =;P'. However, if R is an 

d(-class of S then the corresponding 6(-class of siC. will 

still be identified with R. 

(7. 3 ) Lemma. Let t: be a congruence lying under g..I. . 

Then for any proper congruence :P we have 

£, (y) = !, ((;1' n t. )/t.) where!, ( ) is defined in 

(6.2). Dually! (;P) = ! ((y n <JJ. )/t). 

Proof. Let £, "'!, (1) and £,' = !, ((;p n i )/~). 

If RI r' Rz then there exists x.~ E R., i = 1,2, 
'" 1 1 

t. t such that Xl (CP n £. )/e )xz. Hence 

Xl ('1 n :1 )xz and clearly RI!, Rz . Conversely, 

if RI r Rz then there are y. E R., i = 1,2 
'" 1 1 

such that YIP yz· But by (6.3) we can then 

find xi E Ri with XI:t Xz such that xil Xz . 
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whence Rl r' Rz • The equality follows. 
'" 

(7.4) Theorem. Let Y be a proper congruence on S 

and let 

(2) r = r (l') 
(3) 1. =! (;P). 

Then (r, E, 1.) is a permissible triple and 
'" '" 

Proof. By (5.1), E is a normal subgroup of H, 

and t(E) = :pn~ =~, say. By (7.3), we have 

..s = I,«pnt.)/t). Now (pn£)/t: ntR' = 

cy n f. n 6l)/t:. = (;p n9+)/t =..a.' and similarly 

(JnCR)/t. n i' =..a.'. By (6.4) r ~£' =£(E) 

and also 1:, ~~' = ~ (E), so that (r, E,!) is a 

permissible triple. 

Now put 1'" =r(r) and J..' = 1-(1:,) on sit. 

Then by (6.4), 1""" = Cp n ;t)/t and 1.' = 

(P n ~)lt:. Hence (t'" 0 ~') = (lit n ,;[,') 0 

<;PIC n ~') = ':PIt by (7.2). It follows that 
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[r E £] = (t'" 0 J..'l rv' 'rv -;P - . 

(7.5) Lemma. If l' and (are proper congruences 

on S such that P 01 = ct° Y then cp of) n 

t = (jJ n:f. ) 0 (r{ n 1. ) = (j n t. ) V (c{ n 1.) and 

(,poc(,) n6( = (pntR.) 0 (c[.nCR.) = (;pn6/) V 

(c[ n (fl) (cf. (0.30) and (0.31 )). 

Proof. By (7. 1 ), (]' °1J n :t, :p n :f., and 

c[ n 1. are all congruence s. Since:p n i. ~ 

cp 0 C{J n t and C{ n i ~ Cl 0 qJ n t. we 

clearly have (;P n t ) 0 (c[ n t ) ~ ( y n i ) V 

(r[, n t ) ~ (P 0 c[,) n i. Conversely, suppose 

x((! 0 ct) n t )y. Then xl y and xC? 0 r{,)y. 

Hence, there is a z such that x;P z c(Y. But if 

e E ~(L), we have x = xep ze c{.ye = y and 

hence ze E Lx' Thus x{J n £ )ze(c{ n i)y and 

therefore x(;p n i ) 0 (q, n t. )y. Hence 

(1' oc{;) n t ~ (1 n i ) . (c[ n t), and 

(J n ;t ) 0 (c{. n t ) = (P 0 c[,) n t = (:p n .t ) V 

(ee n '£) follows. Dually one obtains the other 

equality. 
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Combining the above results and that of (4.3), we have 

(7.6) Corollary. If;P and c[ are commuting con-

gruences on S, then any pair of the following 

congruences commute: ;p , c{. , p n;l , {, nt, 

p n ~ , q; n lR , ;p n fj./. and q; n OJ+ • 

In order to state our main theorem, we order the set of 

permissible triples in an obvious fashion. 

(7.7) Definition. If T is the set of permissible trip-

les on S, then we partially order T by 

(r, E, £ ) C (rl, E' , £1) if and only if r C rl , 
f"J f"J f"J f"J f"J-1"'V 

E ~ f.Y1 and £ ~ £1. 

(7. 8) Main Theorem. Let C be the set of proper 

congruences on S, and let T be the set of 

permissible tripes. Then C and Tare iso-

morphic comple te la ttice s. 

Proof. Let Ct map T into C by (,!:, E,1,)Ct 

= [r, E, £] and f3 map C into T by 
'" '" '" 

pn9f yf3 = (,!: f,P), e ,1, (),)), where [,!:" E,1,] is 

defined by (4.4) and ,S (,P) and! (f) by (6.2). 
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Theorem (7.4) asserts that I3cr is the iden-

tit yon C. We shall now prove that crB is the 
'" 

identity on T. So let (r, E, 1. ) E T, and let 
f"'ooJ rv rv rv 

.P = (l" E,!)cr = (,....1 0 11)[;., where (; = C(E), 

1"'1 =t"(r) and t I = 1-(1.). 
'" '" 

By (2.5), t <;:;;;. ~; and so we observe that 

(;p n t.. )/ t: = ,P It. n t I = WI 0 1,1) n t.' = 

«y" n 1.') 0 (1' n i')) by (7.5). Since by (3.6) 

and its dual, r' <;;1.' and t, n [, = A', we 

obtain that J' n .fIt. = yr. Now l' n ~/C- = 

;P I 1: n IJ.i = <;pIt nt.') n 6?' = rw' n (Ji' = A', 

and so [: =;P n~. By (5.2), E = e~ , and 

E = e
pn

<3-J- follows. 

Again, since 1:;. <;; CJ.I. we have by (7. 3) that 

l,(;P) = ,J(,P n~/I:) = l,(r'), wherer" =t"(l,) 

on sir;. Hence by (6.5), l,<;P) = l,. Similarly 

! <1) =!, and hence cr~ is the identity on !. 

We have proved that cr and 13 are bijections 

between T and C, and from the definitions it 
'" '" 

is clear that they preserve order. Thus cr and 

B are order isomorphisms. Clearly (d (H), H, 1. (H)) 
'" '" 
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is the maximum element of T, whence 

(d (H), H, £ (H»a = [ d (H), H, £ (H)] =m, say, is 
"""'" """'" """'" """'" 

the maximum element of C. But the collection 

of all congruences on S is a complete lattice, 

and 52 consists of all congruences under m , 

whence 52 is itself a complete lattice. Since 

f3 is an order isomorphism, it follows that T is 

an isomorphic complete lattice. 



§8. THE IATTICE STRUCTURE OF T 

In the previous section we have shown that ! is a 

complete lattice under the natural ordering. It is of interest 

to describe explicitly the lattice operations on T. 

(8.1) Notation. Let K be a lattice and let A be an 

index set. If {k} A is a family of elements 
Q' Q'E 

in K, then the infinum and supremum of 
'" . 

{k} A in K will be denoted by I\K k and 
Q' Q' E '" Q' 

VKkQ' respectively. The index set A will be 

implicit in this notation. Since we shall have 

to refer to many lattices, we give a list here: 

R-the lattice of equivalences on the 71l-
'" 

classes of S, lying under £ (H); 

57 
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L -the latticeof equivalences on the £,-
'" 

classes of S lying under s (H); 
'" 

N = N (H)-the lattice of normal subgroups of 
'" '" 

H' , 

A=RxNXL' 
~ ,.-..J ",' 

1, -the lattice of permis sible triples; 

C-the lattice of proper congruences on S; 
'" 

H-the lattice of congruences on S which lie 
'" 

under q).J.. 

(8.2) Remark. By (5.2), E -+ t:. (E) is a complete lat-

(8.3) 

tice isomorphism of N(H) onto H. Thus for 
'" '" 

any family {E} A of normal subgroups of H, 
a aE 

C("NEa) = "H C(Ea) and t(VNE) = VH t:(Ea )· 

Observe that unless A is empty "H can be 

'" 
replaced by 1\ C' but if A is empty I\H C (E a) = 

~ while "C C(Ea) is the maximal proper con-

gruence on S. 

Lemma. Let {E} A be a collection of normal 
a aE 

subgroups of H. Then I\Rd (E ) = d ("NE ), 
'" a '" a 

'" '" 
'\~(Ea) = ~("NEa)' VR£(Ea ) <;; £(VNE) and 
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VL~ (Ea) <;. ~ N NEa)' where £, and ~ are 

defined as in (3.2) and its dual. 

Proof. Let d ':' = "R d (E ) and d '" = d (A NE ). 
I""'oJ I""'oJ a ~"I'" I""'oJ a 

* Then RI £, Rz if and only if RI and Rz satis-

fy (3.l.7a) and for e. E e,(R.), with el iez we 
1 1 

have tel t(E )tez for all t E S and each a E A. 
a 

* Hence RI d Rz is equivalent to 
'" 

if and only if RI and Rz satisfy (3.l.7a) and 

for e I and ez as above we have 

te I C ("NE a )tez for all t. But [; ("NE a) = 

"H C(E
a

) by (8.2) and the first assertion fol-

lows. The second is dual. 

The final two inequalities are immediate, 

since for normal subgroups E and F of H 

with E <;. F it follows that d (E) <;. d (F) and 
'" '" 

s (E) <;. s (F). 
'" '" 

It will be shown by an example in the appendix, § 12, 

that the last two inequalities of the lemma are sometimes 

strict. 
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(8.4) Theorem. Let 1JE,~, and .!::. be defined as in 

(8. 1). Then T is a complete sublattice of 

R X N X L = A. 

Proof. We will show that if {(r ,E ,£ )} 
"1l' Q' '" Q' Q' E A 

is a collection of permissible type triples, then 

(/\R r , I\N E , "L £ ) and (VR r , VNE , V T !- ), '" Q' Q' '" Q' '" Q' cr.l.r-' Q' 

are in T and AT (r ,E ,£ ) = (I\R r , I\NE , '" Q' Q' '" Q' '" Q' Q' 

/\ L £ ) = /\A ( r ,E £ ) and VT (r ,E ,£ ) = 
'" Q' '" Q' Q' '" Q' '" Q' Q' '" Q' 

Since each triple is permissible, r ~ d (E ) 
"" Q' "" Q' 

and £ ~ s (E ) for each Q' E A. Thus "R r C 
'" Q' '" Q' '" Q' -

s ("NE ). It follows that (A Rr , ANE , I\L£ ) 
'" Q' '" Q' Q' '" Q' 

'" 
is in T. Since T is a complete lattice by 

'" 

(7.8), we may put "T(r ,E ,£ ) = (r,E,£). 
""Q' a ""O! "" "" 

Thus r ~ r for all Q' E A, whence r <;;;;.I\R r . 
"" "" a "" ('Va 

Similarly E <;;;;..I\N E and £ <;;;;.. /\L £ ,it follows 
Q' '" '" Q' 

that ([" E,!) ~ (AR!.Q" ANEQ" '\ !Q'). But 

'" 
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{ (r ,E ,P. )} and "T (r ,E ,P. ) = 
'" 01 01 '" 01 01 E A '" 01 01 '" 01 

(I\R r , "NE , AL P. ) follows. The proof of 
'" 01 01 '" 01 

'" 
the second equality is similar. 

(8.5) Remark. Observe that R X N x L = A is an 
'" '" '" 

initial segment of R ," X N XL.,. = A," where 
f""-J ..... f'J f'J ..... f'J .. ," 

R , .. [L.,..] is the lattice of all equivalences on 
I'J r," f'J "I"" 

the set of $t- [.t]-classes of S. Thus, except 

for empty intersections, lattice operations in 

A and A, .. coincide and we see that T is es-
'" "'. '" 

sentially a complete sublattice of the Cartesian 

product R oJ. X N XL ... . 
f'J ",'" ,....., f'J .... " 



§9. THE lATTICE OF BRANDT CONGRUENCES ON S 

We will now determine necessary and sufficient condi

tions for the existence of a Brandt con,gruence on S and show 

that the set of Brandt congruences .!2, (if nonempty) on S 

form s a complete lattice contained in the lattice of all con-

gruences. 

(9.1) Definition. 1. A semigroup, T, with zero, 0, is 

a Brandt semigroup if (a) for each a I 0, a E T, 

there are unique elements e and f such that 

ea = a, af = a and a unique element a l such 

that ala = f, and if (b) for any nonzero idem

potents e, f of T we have eTf 10. 

2. A congruence, 11 , on a semigroup, G, 

62 



Kapp and Schneider 63 

is a Brandt congruence if and only if G/,fr is 

a Brandt semigroup. 

One readily checks that the elements e and f above 

are idempotents. This follows from their uniqueness (e2 a = 

ea = a, etc.). Indeed aa' = e since (aa')a = a(a'a) = af = a. 

It is easily seen that a~ e and a if. Now let b lObe 

~ny other element in T; let f be the right identity for band 

let e be the left identity for a. Thenby (9.1. lb) we can 

find a c lOin eTf. Since e and f are idempotent ec = 

c = d and we have, as above, c(f{ e and c if. Thus 

a(i( e(J? ct f t'b and it follows that aJ:r b. Now if e and f 

are nonzero idempotents of T, then just from e = ee = fe we 

can conclude e = f (uniqueness) so that each nonzero idem

potent of a Brandt semigroup is primitive (cf. p. 9). Thus it 

can be seen that a Brandt semigroup is completely 0- simple. 

The reader should now be able to complete the proof of 

the following lemma which provides a characterization for 

Brandt semigroups (d. [2] Theorems 3.9 and 1. 17). In what 

follows the reader may wish to think of Brandt semigroups in 

terms of this characterization. 
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(9.2) Lemma. A semigroup T is a Brandt semigroup 

if and only if it is completely 0- simple and the 

idempotents of T commute; or equivalently, if 

and only if it is completely 0- simple and each 

d?,- and i-class of T contains exactly one 

idempotent. 

(9. 3) Definition of Condition Br. The semigroup S 

will be said to satisfy condition Br if and only 

if {R. n L.}, i, j = 1, 2, never contains exactly 
1 J 

three distinct groups for any two eil-classes 

R1 , Rz and any two ;£ -classes L1 , Lz . 

(9.4) Lemma. Let S(c-O-s) be given, and suppose 

the 8! -classes Rl and Rz of S contain two 

i-equivalent idempotents. If S satisfies Br 

then Rl ~ (H)Rz . 

Proof. Let Ll be the £'-class of the 

e. E ~(R.), i = 1,2, and let Lz be any ;;t-
1 1 

class. Since R. n L1 , i = 1,2 contains an 
1 

idempotent, both Rl n Ll and Rz n Ll are 

groups. Hence, by Br, if Lz ;I L1 , then 
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Rl n Lz is a group if and only if Rz n Lz is a 

group, and this is trivial if Lz = L1 • It now 

follows by (4.2) that Rl d (H)Rz . 
'" 

(9.5) Lemma. If 1r is a Brandt congruence on Sand 

(9.6) 

Rl and Rz contain :t -equivalent idempotents 

Proof. Let R., i = 1,2 and 1J be as above 
1 

and suppose that the idempotents e . belong to 
1 

R. n L, i = 1,2, for some X-class 1. Then 
1 

e{r t e;,ts- in S/'Ir since ,a congruence respects 

Green's relations and whence by (9.2) el1!- ez. 

It follows that Rl r (g.,)Rz by (6.2). 
'" 

Theorem. Let (r, E, 1.) be a pennis sible triple 
'" '" 

on S and let ir = [ r, E. 1.]. Then 1J is a Brandt 
'" . '" 

congruence if and only if 

(l) S satisfies Br and 

(2) r = d (H) and 1. = s (H). 
,.-..J,-...J ,.-..J f"">J 

Proof. Suppose 1; is a Brandt congruence 

on S. Let R., i = 1,2, be -e1(-classes and 
1 

suppose that R. n L, i = 1,2, is a group, for 
1 
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some nonzero i-class L. Observe that 

R. n L, i = 1, 2 each contains an idempotent 
1 

eo, and elteZ' Whence Rl r(/r)Rz by (9.5). 
1 ~ 

But by (7.4) and (7.8), r = r ('/J), hence 
~ ~ 

Now, (i) let R., Lo, i = 1,2 be m.. and £-
1 1 

classes and suppose Rl n L1, Rz n L1 and 

R1 n Lz are groups. Then Rl r Rz , whence 
~ 

Rl d (H)Rz , since r <;;, d (E) <;;, d (H). Hence by 
t"'>oJ f'J r-..J f'J 

(4.2) Rz n Lz is a group. Dually, (ii) if Rl n Ll , 

R1 n Lz and Rz n Ll are groups, so is Rz n Lz • 

Hence S satisfies Br, and (1) is proved. Next 

let Rl d (H)Rz . For some .;t'-class L, Rl n L 
~ 

is a group. By (4.2), Rz n L is a group. 

Hence by the first part of the proof, Rl r Rz . 
~ 

' Thus d (H) <;;, r, whence d (H) = r. Thus (2) is 
~ ~ ~ 

proved. 

Conversely, suppose (1) and (2) hold. Let 

el' and ez' be ;i-equivalent nonzero idem

potents in SIt--, say e o' E L', i = 1,2, where 
1 

L' is an 'i -class of SIft-. It is easy to prove 
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that there is an i-class Ll in S whose 

image under} is L'. Then there exist x, E L" 
1 1 

i = 1 2 with x 1r = e '. Further the x, belong , iiI 

to group ~ -classes H, of S, since they can-
1 

not be nilpotent. But '} restricted to H, is a 
1 

group congruence, hence it follows that er = 
1 

e ,' , where e , is the identity of H,. Let 
111 

H, = R, n L 1 , i = 1, 2 and let Lz be any 'i-
1 1 

class. Since S satisfies Br, and R, n L1 , 
1 

i = 1,2 are both groups, Rl n Lz is a group 

precisely when Rz n Lz is a group. Hence by 

(4.2), Rl d (H)Rz , and so by assumption 
'" 

Rl r Rz , and this relation also holds in siC , 
'" 

where [: = C (E). Hence, applying (3.6) to 

S II;., we obtain ef r' ef , where t'" =1""(r) 
'" '" 

in siC. Since 1r = (1'" 0 1,l , we obtain 

el'} ez. It follows that el' = ez', and so each 

:t'-class of sl'} contains exactly one idem-

potent. Dually, the same is true for t1i,-classes 

of S/}, and it follows by (9.2) that 1t' is a 

Brandt congruence. 
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The following corollaries are now immediate: 

(9.7) Corollary. If S satisfies Br, then the maximal 

proper congruence [d (H), H, s (H)] is a Brandt ,..., ,..., 

congruence. 

(9. 8) Corollary. There exists a Brandt congruence on 

S if and only if S satisfies Br. 

(9.9) Corollary. Let B be the collection of Brandt 

congruences on S, and suppose }2, is nonempty. 

Then there is a minimal normal subgroup F of 

H such that d (F) = d (H) and s (F) = s (H). The 
"-' "" "-' f""o<J 

collection B consists of all congruences 

[d (H), E, s (H)], where E 2 F. Further, B is a ,..., ,..., ,..., 

complete lattice which is a final segment of 2, 

and is isomorphic to a final segment of ~ (H). 

If 1t = [d (H), F, s (H)] and 'In = [d (H), H, s (H)] 
"-' "" '" "-' 

and if 1r E}2, then SIft- is a homomorphic image 

of Sill and can be mapped homomorphically 

onto sim. 

(9. 10) Corollary. Let S be a completely simple semi,:-'/ 

group with 0 adjoined. Then B is nonempty and ,..., 
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for every "} E B, S/'Ir- is a group with o. 
'" 

(9. 11) Corollary ([ 18] Theorem 6). If S is a completely 

simple semigroup with adjoined 0 and if F is 

the minimal normal subgroup of H such that 

d (F) = d (H) and s (F) = s (H) then for 
~ ~ ~ ~ 

"It- = [d (F), F, s (F)] S/'/r is the maximal group 
'" '" 

image of S with adjoined zero. 



§ 10. FINITE CHAINS OF CONGRUENCES ON S 

For the sake of completeness, we give two lattice 

theoretic definitions, cf. [1], [19]. 

(10.1) Definition. In a partially ordered set, !S a is 

said to cover b (written a >-- K b or b --< K a) 

if a ~ b but there is no c such that a > c > b. 

(l 0.2) Definition. A lattice, !S is (upper) semimodu-

lar if whenever a >-- KC and b >--KC where 

a -I b , then a v b >-- K a and a v b >-- Kb. 

We shall show that the lattice C of proper congruences 
rv 

on S is semimodular. This will be done by considering T, 
rv 

the lattice of permissible triples of S (cf. (7.8)). 

70 
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(10.3) Lemma. Let T be the lattice of permissible 
'" 

triples of S, and let A = R X N XL, where 
I""<oJ I""<oJ 1".1 ,......, 

R,N,L are defined in (8.1). If T. = (r.,E .,i.) 
'" '" '" 1 '" 1 1 '" 1 

E!" (i = 1,2) then Tl >-T TZ if and only if 

Suppose conversely that T 1 doe s not cover 

(rz,Ez,i z ). There are three possible cases: 
'" '" 

(1) El :) E :) Ez (we use ::::> for proper contain-

ment), or (2) El = E, or (3) El ::::> E = Ez . In 

case (1), <Tl = (rz,E,iz)E T and in case (2), 
'" '" '" 

E T and either r > r z or i > i z. Thus for one 
f""oJ 1".1 1".1 1".1"""" 

of i = 1,2, 3, <T. E T and T 1 > <T. > TZ so tha t 
1 1 

T 1 does not cover TZ in T. This contradiction 

completes the proof of the lemma. 

(l 0.4) Lemma. The lattice R X N X L = A is semi-

modular. 
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Proof. The lattice N of normal subgroups 
'" 

of H, is modular (cf. (l0. 7) and (10.8», and 

it is easily shown that a modular lattice is also 

semimodular. Now R[L] consists of all equiv-
'" '" 

alences on the set of 6t[£]- classes which lie 

under d (H) [s (H)]. It is not hard to see that 
'" '" 

the lattice of all equivalences on a set is upper 

semimodular (cf. (10.9» so are Rand L. But 
'" '" 

one easily verifies that semimodularity is pre-

served under direct products, and this completes 

the proof. 

(10.5) Theorem. The lattice - S of all proper con-

gruences on S is semimodular. 

Proof. By the isomorphism theorem (7.8) it 

is enough to prove that the lattice T of all 
'" 

permissible triples is semimodular. By (8.4), 

T is a sublattice of A = R X N x L and for 

T, E T, i = 1,2, TI >-TTz if and only if 
1 '" 

T 1 >-AT Z by (1 O. 3). But by (10.4) A is semi-
'" 

modular and the theorem then follows imme-

diately. 
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See also Lallement [12]. 

(10.6) Corollary. The Jordan-Dedekind Chain Condi-

tion holds on C; viz, all finite maximal chains 
'" 

between two elements of C have the same 

length. 

Proof. This follows directly from the semi-

modularity of C (cf. [7], Theorem 8.3.4). 

(10.7) Definition. A lattice L is said to be modular 

if whenever a.2:. c in L then a 1\ (b v c) = 

(a 1\ b) v c for any bEL. 

(10. 8) Lemma. The set, N, of normal subgroups of a 
'" 

(fixed) group G is modular lattice under the 

inclusion relation. 

Proof. It is easily shown that N is a lattice. 

Now suppose A~ C for A, C E N and let BEN. 
'" '" 

We must show A 1\ (B V C) = (A " B) V C. Since 

A :2 A "B, A:2 C and B V C ~ A 1\ B, B V C :2 

C we have A I\(B V C):2 (A 1\ B) Y C so that 

we need now only check the reverse containment. 
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In order to show A 1\ (B VC) ~ (AA B)V C 

we make use of the lattice operations in N 

checking that NI A N z = NI n Nz and 

NI,Nz E N. Thus we must show An (BC) C 
'" 

(A n B)C. Let x E A nBC. Then x = aEA and 

x = bc for b E B, c E C. From x = a = bc, we 

-1 
have b = ac E A since A"2 C. Thus b E An B 

and x = bc E (A n B)C and the result follows. 

(10.9) Lemma. The set, E, of all equivalences on a 
'" 

set is a semimodular lattice. 

Proof. Let E be the set of equivalence re-

lations on a fixed set X. One readily verifies 

that E is a lattice under the inclusion ordering. 
'" 

Let a, b, c E E where a >-- c and b >- C and 
'" 

a I b. It is obvious that a >-- c (and b >- c) 

precisely when a (and b) identifies exactly 

two equivalence classes, say Xl, Xz , (say X3 , 

X4), induced by c on X, so that the equivalence 

classes of a are those of c excluding Xl and 
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Xz but including (Xl U Xz ). Since a I b either 

three or four equivalence classes of care 

identified by a and b. Suppose then there are 

just three equivalence classes identified and 

Xz = X3 • Then the equivalence classes of a vb 

are those of c excluding Xl, Xz and X 3 but 

including (Xl U Xz U X3 ) and it is then clear 

that a v b >- a and a v b >- b. The proof of 

the other case is similar. 



§ 11. WELL-ORDERED CHAINS OF CONGRUENCES ON S 

In this section we will examine well-ordered chains of 

congruences o!l S. We will show that under a certain condi-

tion all maximal well-ordered chains in C are of the same 

length. Some general lattice theoretical definitions must be 

given and then we must first consider the lattices N, of 
'" 

normal subgroups of H, and Eq (X)-the lattice of equiva-
'" 

lences on a set X. 

Recall that a partial ordered set, P, is well-ordered if 

every nonempty subset, Q, has a first element ql, i. e., there 

is a ql e Q such that ql C q for all q e Q. A chain is a 

partially ordered set P in which any two elements are com-

parable, Le., for p,qe P either p,5q or q,5p. 

76 
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(11. 1) Definition. Let K be an arbitrary lattice with 
'" 

minimum element A and maximum element v . 

(1) Let A be a well-ordered index set. A col-

lection {k} A' of elements of K will 
Q' Q' E '" 

be called an (strictly) ascending well-

ordered chain, indexed by A if and only if 

k C k in K whenever Q' < B in A. For 
Q' ~ '" 

short, {kQ'} Q'EA will be called a chain 

(indexed by A). 

(2) If in K {k} is an ascending well-Q' Q'EA 

ordered chain indexed by A, then the 

cardinal I A I - 1, is said to be its length. 

(3) An element k E K will be called accessible 

if and only if there exists an ascending well-

ordered chain {k} A from A to k Q' Q' E 

which is maximal in K. Here \. = k 

precisely when A. is the maximal element 

in A. The lattice K will be called aCC:8s-

sible if and only if every element in K is 

accessible. 
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(4) If k E !S is accessible and if all ascending 

well-ordered maximal chains from A to k 

are of the same length, then we will say 

that the height, II kll, of k is the common 

length of these chains . If v has height 

then we say that the height II!S II of K is 

II vii. 

(5) The lattice K will be called an accessible 

lattice with height if and only if every 

k E K is accessible and has height. 
'" 

(6) If k ~ k' in K, then k' is said to be ac-
'" 

cessible from k if there is a maximal 

ascending well-ordered chain from k to k'. 

If every such maximal chain is of the same 

length that common length will be called 

the height of k' over k and will be writ-

ten Ilk'/kIi. 

(7) If H is a group then a maximal ascending 

well-ordered chain to H in the lattice of 

all normal subgroups, (N(H)-cf. (8.1)), 
'" 

will be called a principal series for H. 
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(11.2) Remark. (1) When convenient, our index set A 

will be totally ordered, but possibly not well-

ordered. 

(2) If A is a well- ordered set we will write 

W = W(A) to be the collection of all elements 

in A which hav~ a predecessor in A, i.e., 

W(A) = {b E A I there is an a E A with a -< b}. 

!tis easy to verify that Iwi = IAI-l. Inpar-

ticular, when A is infinite Iwi = IAI. 

(3) It will be seen that our definition of 

principal series coincides with that of Kurosh 

([10], p. 173). Indeed, H has a principal 

series if and only if it is accessible in N = 
'" 

~ (H). Moreover, we shall show that the acces-

sibility of H in N is sufficient to guarantee 

the accessibility of N. 

(11.3) Lemma. Let {H } be a chain in N indexed 
a aEA 

by A and E EN. Then 

V (H 1\ E) for 13 E A. 
a 

a«3 

(VH)I\E= 
a«3 a 

Proof. Clearly (V Ha) 1\ E :2 V (H
a 

/\ E). 
a«3 a<[3 
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Conversely, we note that V H 11' 
11'<13 

= U 
11'<[3 

H . 
11' 

Thus if h E (V H ) /\ E then h E H "E for 
11'<[3 11' 'I 

some '1<13. Hence hE V (H I\E). Thus 
11' 

11'<13 

( V HQ')" E ~ V (HQ'I\ E) and the equality 
11'«3 Q'<!3 

follows immediately. 

( 11. 4) Theorem. Let {H } A be a principal series 11' Q'E 

for H. Then for each E E N there is a suit-

able subset B ~ A such that {Hf3'} f3E B is a 

maximal well-ordered ascending chain to E in 

N(H), where H' = H "E. 
I'V 11' 11' 

Proof. Let 13 E B if and only if 13 is the 

smallest 11' of A such that H' = H' with 
11' 'I 

'I E A. Clearly, B is well-ordered. If 

{Hf3' } f3E B is not maximal we can find an FEN 

such that for some 'I E B, F C H' and H' C F 
'I 11' 

for all 11' < 'I. 

Case 1) Suppose 'I has a predecessor 0 in 

A. By the construction of B, it follows that 

Ho' = Ho A E C F. (We do not claim that 0 E B 
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but of course there is a 0 1 
E B with HOi = H~I') 

We will now produce a contradiction. We 

clearly have Ho 1\ H~ = Ho 1\ H'{ 1\ E = Ho " E = 

H~ and hence we can also readily deduce 

From Fe HI C H we have 
'{ '{ 

H C F VH" CHand since {H} A is maxi-o - u - '{ ~ ~E 

mal F V H 0 = H'{ or F V H 0 = H 0 . In the former 

case, it would follow that HI V H" = H. Thus 
'{ u '{ 

we have a five point sublattice as in Fig. 1. 

By [3], p. 66, 67, N is nonmodular and this 

is a contradiction. Hence F V Ho = Ho ' whence 

F <;;;;, Ho 1\ E <;;;;, H~ , again a contradiction. 

/ 
/ 

, 
/ 

Figure 1 
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Case 2) Suppose y has no predecessor in A. 

Then since {H} A is maximal we must have 
a ae 

V H = H. But then by (11.3), HI = 
a y y 

a<y 

V (H 1\ E) = V HI But for each a < y, 
a a 

a<y o<y 

HI C F C HI , whence HI = V HI C F C HI a - , 
a y y a<y y 

a contradiction. This completes the proof that 

{HI} B is maximal. 
13 13 e 

It is easy to see that {H~} l3
e 

B is a strictly 

ascending chain. Whence we can conclude that 

{HI} B is a maximal, well-ordered ascending 
13 13 e 

chain to E and so E is accessible in N 

(11. 5) Corollary. A group H is accessible in ~ (H) if 

and only if N (H) is an accessible lattice. 
'" 

(11.6) Theorem. Let E be a normal subgroup of H 

which is accessible in N(H). Then E has 
'" 

height. 

Proof. Consider E as a group with operators, 

where the set of operators consists of all inner 

automorphisms of H restricted to E. It is 
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proved in Kurosh [10], p. 175, that any two 

(well-ordered) principal series of an arbitrary 

group with operators are isomorphic and hence 

have the same length. But such principal series 

for E are precisely the maximal well-ordered 

ascending chains in N (H) to E, and the result 
""'" 

follows. 

Since the triples in T involve equivalences on sets we 
""'" 

will first develop the necessary theory of Eq(X), the lattice 
""'" 

of equivalences on a set X before proceeding to T. 

(11. 7) Definition. Let c{ be an equivalence on a set 

X. A transversal 0 for c{ will be a subset of 

X consisting of precisely one element from each 

equivalence class determined by c{. 

(11. 8) Proposition. Let A be a well-ordered set and 

{rr} A be a (strictly) ascending chain of 
'1-Ct CtE 

equivalence s on X from eto =.6. to 1>.. = cr· 
If 0 is a transversal for 1 then \ A \ - 1 .::; 

\X '\0\ .::;· \X\ - 1. 
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Proof. We well- order X and put 

00' = {xl x is the first element of a fO' -class 

of X}. 

Without loss of generality we suppose 0 = 0 X: 

Let T = X '\ 0 . We observe that To = Ji and 
0' 0' 

that {T} A is a strictly ascending chain. 
0' O'E 

Let W = W(A) (cf. (11. 2)) and if [3 E W 

let [3 be the predecessor of 13. Since 

1[3 ':' < ~, T[3" T[3~' -I Ji. Let x (13 ) be the first 

element of T6" T[3':" Since X. is the greatest 

element in A, we have X, 0, = T :) T for 
I\. x.- 13 

all [3 in A, whence {x ([3 ) } WeT . i3E - X. 

If i3,Y E W with y < 13 then x(y) E Ty ~ T
i3

,:, 

but x{(3)!T
i3

,:,. Thus x(y) -Ix{(3) and so the 

map 13 -- x ([3 ) of W into T X. is 1- 1. Since 

IAI-l = Iwl, the first inequality follows. 

The second inequality is trivial. 

(11. 9) Theorem. Let X be a set and let ~q(X) be the 

lattice of equivalences on X. Then ~q(X) is 

an accessible lattice with height and, for 
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(E ~(X), II crll = IX'QI where Q is a 

transversal for <t. 

Proof. We again well-order X and let Q 

consist of all first members of equivalence 

classes. Let T = X\. Q. Let ..J be the set of 

initial segments of T, ordered by inclusion. 

Since X is well-ordered, so is d. For I E.J 

define an equivalence cfr on X by x%. y if 

and only if either (1) x, y E I U Q and x '!y or 

(2) x = y. Thus {r(I } IE ~ is an ascending 

chain in li.,q(X) from ~ = f~ to c{ = c[T . Now 

{ctr }IE J is clearly a well-ordered chain which 

is maximal and I ~I - 1 = ITI = IX'QI. 

Now let {rr} A be a maximal ascending 
1-a aE 

well-ordered chain of equivalences from ~ to 

c( = (,).... We define Qa , Ta' Wand x ([3 ) as 

in (11. 8). As in the proof of that proposition, 

the mapping B -+ x(B) from W to T)... is 1 - 1. 

We shall now show that it is in this case also 

onto. 

Let x E T).... Let 13 be the first element of 
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of A for which x E T
13

• Since To = fO', 13'; o. 

Suppose, contrary to our hopes, 13 has no pre-

decessor. Then { rf} - cr.. by the maximal-
7-a a< 13 - '13 

ity of the given chain. 

and so TI3 = U {T a} . 
a <13 

Hence n {o } = 0 
a< 13 a 13 

But then x E T for 
a 

some a < 13, a. contradiction. Thus 13 has a 

predecessor 13 and x E TI3 '\ TI3 >:, . Indeed, since 

the chain is maximal, c{13 identifies exactly two 

rf .', classes, from which it follows that T '\ T ,', 
JI3. 13 13' 

= {x} and therefore x(f3) = x. The map 13 ->- x (13 ) 

is therefore a bijection of W onto T}... Whence 

I wi = IT}..I = I X " 0 I. But I A I - 1 = I wi, 

whence IAI - 1 = Ix",o\ and this is true for 

all maximal well-ordered chains. Hence by def-

inition (11.1.4) 11'1.'11 exists and II~II = Ix '\01 . 

(11. 10) Corollary. The lattices Rand L are acces-

sible with height. 

Proof. The lattice ~ is an initial segment of 

the lattice R -" of all equivalences on the set of 
,...,.,0'," 

'di-classes of S, and R., is accessible with 
,...,., ~I( 
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height by (II. 9). A similar argument proves the 

result for L. 

(II. 11) Lemma. Let K and K' be two lattices. If 

k E K, k E K' are accessible with height, then 
'" '" 

(k, k') is accessible in K x K' with height and 

II (k, k')11 = II rJ + II k' II. 

Proof. Let {kf3} j3E B and {k~ lYE C be maxi

mal well-ordered ascending chains for k and 

k' in K and K' respectively. We suppose that 
'" '" 

Band C are disjoint except that the last ele-

ment of B is the first element of C. Let 

A = B U C. Define 

{

(k ,.6.) (l' 
P -

(l' (k k') , (l' 

if (l' E B 

if (l' E C. 

It is clear that {p} A is a maximal ascend(l' (l'E 

ing well-ordered chain for (k, k') in K x K' and 
'" '" 

that IAI - 1 = (IBI-l) + (ICI-l) = Ilkll + Ilk'll. 

Let {(k , k' )} A be any maximal well(l' (l' (l'E 

ordered chain for (k, k'). For 13 E A put 13 in 

B if and only if k(l' = kj3 implies (l' ~ 13, when 

(l' E A. Similarly put Y in C if and only if 
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k~ = k~ implies 0 ~ ". It is then easily seen 

{kj3 }j3E B is a maximal well-ordered chain for k, 

and that {k'} is a maximal well-ordered chain 

" for k'. Let 0 E W(A), and suppose (k, k' ) -< 

" " 
(ko' k~). Then either k =k 

" 0 
and k' -< k' 

" 0 
or 

k 
" -<ko 

and k" = k~. Since " < 0, either 

o E B or o E e but not both. Now, if A is 

finite, then W = A " {O}, where 0 is the first 

element in A, and B n e :: {O}. Thus 

I A I - 1 = I wi = I (B u C) " {O } I = I B U e I - 1 = 

(IBI-l)+ (lei-I) = Ilkll + IIk'll. 

Otherwise, if I AI is infinite, then 

W <;. B u e <;.A and Iwi = IAI. Hence IAI = 

I B I + I e I. Thus I A I - 1 = I A I = I B I + I e I = 

IBI -1+ lei -1 = Ilkll + Ilk'll. The result 

follows. 

Clearly, if K and K' are accessible lattices with 
'" '" 

height, then (11.11) implies K x K' is also an accessible 

lattice with height. 
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(11. 12) Lemma. If {T } A is a maximal ascending 
Q' Q'E 

89 

well-ordered chain to T in T, then it is also 
'" 

a maximal ascending well-ordered chain to T 

in A. 

Proof. This is immediate from the (8.4) and 

the "covering lemma" (10.3). 

(11. 13) Theorem. Let 2 be the lattice of proper con-

gruences on S. Let;p = [l" E,!,J E 2. Then? 

is accessible in C if and only if E is acces-
'" 

sible in N (H) where H is the fixed subgroup 
'" 

of S. Moreover, in this case 

lip II = II r II + II Ell + 111 II • 
'" '" 

Proof. By (7.8) there is a complete lattice 

isomorphism between C and T. We will thus 
'" 

consider the accessibility of T = (r,E, 1) in T. 
'" '" '" 

Suppose T is accessible, and let {T} A = 
Q' Q'E 

{( r ,E ,1 )} A be a maximal well-ordered 
'" Q' Q' '" Q' Q' E 

chain to T. Obviously, for a suitable B con-

tained in A, {E} is a maximal well-
Q' Q'E B 

ordered chain for E in N(H). Hence E is 
'" 
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acce s sible in ~ (H). 

Suppose now E is accessible in N (H). To 
'" 

show that T is accessible we begin as in 

(11. 11). Since by (11. 10), rand i are also 
'" '" 

accessible, we can find maximal well-ordered 

as cending chains {£-y } -yE C' {E f3 }f3 E B' and 

{i } D to r, E, and i ,respectively. We 
'" 0 0 E '" '" 

assume moreover that the last element of B is 

the first element of C, that the last element of 

C is the first element of D and that B, C and 

D are otherwise disjoint. Let A = B U CUD 

and order A in the obvious way. Define 

(..::l, E ,..::l) if 
a 

T = (r ,E,..::l) if 
a "'a 

(r, E, i )if 
'" "'a 

It is easy to see that 

a E B 

a E C 

a E D. 

{T } A is a maximal 
a aE 

well-ordered ascending chain in T. Whence T 

is accessible in T. By (11.12) {T } A is 
a aE 

also a maximal well-ordered chain to T in 

J\. = R X N XL. By (11. 6) E has height, and 

since rand i also have height it follows by 
'" 
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double use of (11. 11) that IAI - 1 = II r II + II Ell 

+ II!, II. This proves the theorem. 

(11 . 14) Corollary. Let J> be a pro per congrue nce on S 

such that there exists a finite chain of con

gruences (of length n) to l' which is maximal. 

Then all chains to p have at most length nand 

all maximal chains to J> have precisely length 

n. 

Proof. By (11. 13) all well-ordered chains to 

-p have length at most n, and all maximal well

ordered chains have length n. Suppose there is 

a totally ordered chain to J of length greater 

than n. Then we can select a subchain of length 

(n+l) which is a contradiction. The result 

follows. 

(11. 15) Theorem. Let 52 be the lattice of proper con

gruences on S and let H be the fixed subgroup 

of S. Then C is an accessible lattice with 

height if and only if H is a group with principal 

series. Moreover, if p = [,!> E,!,] E C, then 
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11)7 II = II,!: II + II Ell + II! II . 

Proof. Let E be a nonnal subgroup of H. 

By (11. 4), E is accessible in N (H). The ,...., 

theorem now follows by (II. 13). 

(II. 16) Remark. By slight generalization of our argu-

ments we can obtain results for well-ordered 

chains from 'l to:p' in 52. Thus (11. 13) 

would become 

(11. 13)' Theorem. Let l' = [,!:, E,;t] and .:r' = [~, E',;t] 

be in 52, and let ;P <;.,'. Then:p' is acces

sible from:p if and only if E' is accessible 

from E in N (H). Moreover in this case, ,...., 

Then ' (II. 15) would become a theorem due to Preston 

(l1. 15)' Corollary. Let;P and J" be proper congruences 

on S such that there exists a finite chain of 

congruences (of length n) fromp to;p' which 
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is maximal. Then all chains from p to;p I 

have at most length n, and all maximal chains 

from ;P to ? I have precisely length n. 



§ 12. Appendix. The Regular Rees Matrix Semigroups 

Of great importance in the study of c- 0- s semigroups 

are the regular Ree s matrix semigroups. It can be shown that 

the se semigroup3 are c- 0- s and every c- 0- s semigroup is 

isomorphic to a semigroup of this type (cf. [2], Theorem 3.5). 

These semigroup3 were first introduced by D. Rees (On Semi

groups, Froc. Cambridge Fhilos. Soc. 36{l940), 387-400). 

We will briefly develop some of this theory in order to give an 

example of the lattice operations involving permissible triples 

in ! and to give an example in which the strict inequality 

is obtained in Lemma (8. 3). 

(l2. 1) Definition. 1. Let I, A be index sets and let 

G be a group {G is written multiplicatively 

94 
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and 0 I G). A A X I matrix P with entries in 

G U {o} is called regular if P has at least one 

nonzero entry in each row and column (P is called 

a matrix over G U {o }). 

2. Let S be a collection of I X A matrices 

over G U {o} such that each A E S has at 

m 0 stone nonzero entry in G. Let P be a 

regular A X I matrix. For A, BE S, define 

A. 0 B = A P B, where the latter is the regular ma-

trix product. Then S is called a Rees I X A 

matrix semigroup. and is denoted by 1no (I, G, A; P). 

Note that we can write A::: (i, g, X.) for A E 

"?no (I, G, A; P), if g, the unique nonzero entry, 

occurs in position (i, X.). Also, f1Jn ° (I, G, A; P) 

is clearly a semigroup since (A 0 B) 0 C ::: (APB)PC 

::: AP(BPC) ::: A 0 (B· C). 

The structure of S::: 1'11.°(1, G, A; P) is easily determined. 

If we let (U] be the entry in P in position (X., i), then 

direct calculation shows that A 0 B ::: APB ::: (i, g, X.)P(j, h, fJ.) ::: 

(i, g[X.j]h, fJ.) where A::: (i, g, X.) and B::: (j, h, fJ.). Thus the 
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product A 0 B is 0 if and only if [A.j] = O. Using the regu-

larity of P one can easily check the following theorem. 

(12.2) Theorem. Let S = t1J!Z0 (I, G, A; P) be a regular 

Rees matrix I X A semigroup. Then 

(1) R. = {(i, g, A.) I 9 E 
1 

G, A. E A} is an dl,-

class for each i E I. 

(2 ) LA. = {(i, g, A.) I 9 E G, i E I} is an :f. -class 

for each A.E A. 

(3 ) RiA. = {(i, g, A.) I 9 E G} is an W-class for 

each i E I, A. E A. 

° -1 .th . (4) fj,(1n. ) = {(i, [A.i] ,A.) the A.l entry m P, 

[U] lo}. 

Proof. For example, we show (i, g, A.) C'Jl (i, h, fJ.). 

Since P is regular, there is a nonzero entry in 

th 
the A. row, say [A.j] 10, and a nonzero entry 

. th 
m the fJ. row, say [fJ.k] 10 (remember P is a 

A X I matrix). Then direct calculation shows 

(i,g,A.)(j,[A.jf 1g-
1

h,fJ.) = (i,h, ·fJ.) and 

-1 -1 
(i, h, fJ.)(k, [fJ.k] h g, A.) = (i, g, A.). 
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(12.3) Theorem. The regular Rees matrix semigroup 

S = UJn° (I, G, A; P) is completely O-simple. 

Proof. We will verify the conditions of 

Proposition (0.23). The regularity of S is a 

direct consequence of the regularity of P. If 

A = (i, g, A) and [Aj] I 0, [f-Li] 10, then 

(i, g, A)(j, [Ajf 19 -1[f-Lif 1, f-L)(i, g, A) = (i, g, A). 

-1 .-1 
If B = (k, h, v) then we have (k, h, g [f-Ll] , f-L). 

(i, g, A)(j, [Ajf 1, v) = (k, h, v) and in a similar 

fashion we can find X, YeS such that XBY = A. 

It readily follows that S is O-simple. Now the 

-d? and i-classes of S are precisely those 

determined in Theorem (12.2) so that the absor-

bency condition will follow directly from the 

definition of A Q B which, if not 0, is 

(i, g[Ak]h, v)e Ri n Lv = RA n LB where A, B 

are as above. Thus S = em ° (I, G,A; P) is a 

completely O-simple semigroup. 

Rees' theorem is (mainly) the converse of (12.3): Let 

S be a completely 0- simple semigroup. Then there exist 
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index sets I and A, a group G, and a regular A X I 

matrix P such that S ~ 111. 0 (I, G, A; P) ([2], Theorem 3. 5). 

Further ([2], Corollary (3. 12), suppose t?f!l 0 (I, G, A, P) ~ 

m 0 (II, GI, AI; PI) then there exists a bijection i -- i l of I onto II, 

a bijection A -- AI of A onto AI, and an isomorphism 

g -- g' of G onto G' such that the element of P' in position 

(A',il) is uA[Ai]'v
i 

where {uAI AEA} and {vi liE!} 

are families of elements in G. Conversely, if the above con

ditions on the various mappings denoted by , are all satis

fied, then 'ttl 0 (I, G, A; P) ~ 1rt. 0 (I', G', A'; P'). 

We shall not prove the results, as, after all, in all our 

theory we have proceeded intrinsically, i. e., without refer

ence to representations. 

We will now proceed to construct the example promised 

after Lemma (8.3). Let S = ~ 0 (I, G, A; P) be a regular Rees 

matrix semigroup where I and A contain a common element 

1, Hll = R1 n L1 is a group, and where in P we have 

[II] = e, the identity of the group G. The H fixed in O. 4) 

will be identified with Hll . 

It is easy to check that g -- (1, g, 1) is an isomorphism 
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of G onto Hll . Indeed, we can also check that 

g ~ (i, g[Aif 1, A) is again an isomorphism of G onto the 

group CJJ- -class HH.' since HiA is a group 9J-class pre

cisely when [Ai] ;I 0 in P. Moreover, we have that E is 

normal in G preciselywhen (l,E,l) is normal in (l,G,l)= 

H ll . Thus the nonzero translates, tEs of (2. 3), are of the 

form (i, gE, A) for some g E G, i E I, A E A. The partition-

ing of S by the translates of E = (l, E, 1) is now obvious. 

Furthermore, we can now check directly on P the con-

ditions of (3. 1. 7) and (4.2). For E normal in H = Hll = G, 

we have: 

(l2.4) R, d{E)R. 
'" 1 '" J 

(i, j E I) if and only if 

(a) [vi] = 0 precisely when [vj] = 0; and 

(b) for some g E G, [floif 1 [floj] E gE whenever 

A dual formulation can be given for L s (E)L . 
A '" flo 

It is easy to derive (12.4.b) from (4.2.7b'). Suppose that 

L n Rand L n R. are groups for some fixed A. Then they contain 
.A i A J 

the idempotents e. = (i, [Aif 1, A) and e, = (j, [Ajf \ A), 
1 J 

respectively. Thus under the congruence C = C (E), we have 
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e.C = (i,E(>-.i(l,>..) and eP = (j,E((>"j(l,>..). Now if (f.Li] 10 
1 J 

(then also (f.Lj] 10 by (12. 4. a)~ let t = (k, e, f.L) and compute 

tee =te.~ toobtain (k,(f.Li]E(A.i(l,>..) = (k,(f.Lj]E(>"j(l,>..). 
1 J 

Equating middle coordinates we have (f.Li]E(A.i( 1 = (f.Lj]E(>..j( 1 . 

Since E is normal in H = G = H u , we have (>-.ir 1 (>..j]E = 

E(>..i( 1 [>..j] = [f.Lif 1 [f.Lj)E and it follows that [f.Li( 1 [f.Lj] E gE 

for all such [f.Li] 1 0 where g = (>-.if 1 [>..j]. 

A dual formulation can be made for L s (E)L . 
>..'" f.L 

We remark that P can be normalized so that certain 

"leading" entries are e, the identity of G (Tamura (20]). 

In that case condition (12.4. b) may be replaced by (b' ): 

(f.Li( 1 [f.Lj] E E, whenever [f.Li] 10 (cf. Howie [8]). 

The reader should now recall the lattices of (8.1). 

(12. 5) Example. Let G be the cyclic group Z6. Let I = 

{1,2,3}, A = {1,2}, 

P = [: :J 
and let S = 1Tl 0 (I, G, A;P). 

Let El = {e, a Z
, a4 

} and Ez = {e, a 3 }. First 

observe that (12.4. a) does not apply since P 

has no zero entries. Next note that 
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-1 -1 
[ll] [12] = e EEl and [21] [22] E EI so that 

-1 
RI ~(EdRz. On the other hand [ll] [13] = e EEl 

determining the coset eEl of (12.4. b) while 

-1 
[21] [23] = a I eEl and it follows that RI and 

R3 are not ~(EI) equivalent. Thus the equiva-

lent classes for d(R I ) are {RI' Rz } and {R3 }. 
'" 

In a similar fashion one sees that the "1ead-

ing" entries of P in the first row (and in posi-

lion (2,1» will always fix Ez as the coset of Ez 

determined in (12.4.b). But in this case 

so that the equivalence classes of ~(Ez) are just 

{R1 }, {Rz } and {R3 }. Hence V R~(Ei) = ~(EI), 

(the supremum being taken over {I, 2} ). But 

VN(E.) = G, and by (12.4. b) R. d(G)R. for all 
'" 1 l~ J 

i and j. Thus ~(G) is the universal congruence 

on {RI' Rz , R3 } with the one equivalence class 

{RI' Rz , R3}. It follows that V
R 

d(E . ) C d(V
N

:!;:.) 
~ 1 ~ 1 

and thus the containments of (8.3) are some-

time s proper. 
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