COMPLETELY O-SIMPLE SEMIGROUPS

An Abstract Treatment of the Lattice of Congruences

KENNETH M. KAPP
University of Wisconsin, Milwaukee
HANS SCHNEIDER

University of Wisconsin, Madison

W. A. BENJAMIN, INC.

New York 1969

Amsterdam



COMPLETELY O-SIMPLE SEMIGROUPS:

An Abstract Treatment of the Lattice of Congruences

Copyright © 1969 by W. A. Benjamin, Inc.
All rights reserved

Library of Congress Catalog Card Number 69-17032
Manufactured in the United States of America
12345 M 2109

The manuscript was put into production October, 1968;
this volume was published on February 1, 1969

W. A. BENJAMIN, INC.
New York, New York 10016



A Note from the Publisher

This volume was printed directly from a typescript prepared by the
author, who takes full responsibility for its content and appearance.
The Publisher has not performed his usual functions of reviewing, edit-
ing, typesetting, and proofreading the material prior to publication.

The Publisher fully endorses this informal and quick method of pub-
lishing lecture notes at a moderate price, and he wishes to thank the
author for preparing the material for publication.






FOR THE READER

We propose in this monograph to introduce the reader to
some of the basic tools of investigation. in the algebraic the-
ory of semigroups and to lead him through to some recent re-
sults in this theory. We will not presuppose more than the
usual sophistication of a good first year graduate student in
mathematics, and will attempt to make the monograph self
contained. We will give basic definitions where necessary
although the proofs of some of the easier propositions will be
left to the reader. (Most of these can be found in the stand-
ard reference for this field by Clifford and Preston [2].)

The reader who is familiar with the theory of semigroups
will be able to skim the preliminaries of §0 and pick up the
investigation where it really begins in §2. We especially in-

clude for them the summary in §1.
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§0. PRELIMINARIES

A semigroup, S, is a collection of elements, {a,b,c...}
closed with respect to a binary, associative operation, f. As
usual, this operation will be written multiplicatively. Thus
ab denotes the image of (a,b) under the binary operation
f: SXS—~S.

A relation & on the semigroup S is a subset of the
cartesian product S X S. We will alternatively write x Qy
whenever (x,y)e @ . Arelation &4 on S is said to be re-
flexive if s s for each s ¢ S; it is symmetric if whenever
(x,y) e . we also have (y,x) e (Z; it is transitive if when-

ever x{y and y 4z we have x(z. An equivalence rela-

tion is a relation that is reflexive, symmetric and transitive.
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A congruence £ is an equivalence relation on S such that

if aCb then salsb and as@bs for any s e S.
Fundamental in the algebraic investigation of semigroups

are the following relations defined on an arbitrary semigroup

S called Green's relations (cf. [6]).

(0.1) Definition. Let S be a semigroup and a,be S.
Let the relation & be defined by # = {(a, b) |
a = b orthere exist x,y e S with ax=b and
by =a}. Let L = {(a, b) | a =b or there exist

u,ve S with va =b and vb=a}l.

(0.2) Proposition. % and £ are equivalence relations.
The intersection of any two equivalence relations

is an equivalence relation.

The reader will note that these two equivalence relations
are (left-right) dual to each other. Often in the following ex-
position we will make use of this duality and prove a theorem
involving just one of these relations, leaving the obvious
dualization for the reader. This left-right dualization will be

more apparent after the following definitions and propositions.
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(0.3)

(0. 4)

(0.5)

Definition 1. If S is a semigroup without an
identity element then we can adjoin an identity
element 1 to S by defining the product sl =
ls =s forany se¢ S, 1-1 =1 and leaving ab
defined as in S whenever a,b e S. The reader
can readily check that S U {1} is a semigroup.
S! will denote the semigroup S when S already
has an identity element or the semigroup S U {1}
just defined when S does not have an identity
element.

2. For ae¢ S we define the principal right

ideal R(a) generated by a by R(a) =aSl, the

principal left ideal I(a) by L(a) = S'a and the

principal (two-sided) ideal J(a) by J(a) = S'as!.

Proposition. In any semigroup a&b if and only
if R(a) = R(b) (and dually a&£b if and only if

L(a) = L(b)).

Definition. We can now define two more of
Green's relations as follows. Define a Qrb when-

ever J(a) = J(b) and ¥ by ¥ =&n L .
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Proposition. % and g« are equivalence rela-

tions on a semigroup S.

We define the product of two (equivalence) relations Q,

Wonset S by d-B=1{(a,c)e X8 | there is b ¢ S such

that (a,b) ¢ and (b,c) < (& }. We will now show that the

relations & and & defined above commute, i.e., & oL

=L-R.

(0.7)

Theorem. Let S be a semigroup. Then

RL =LK,

Proof. We will show that } oo(f - P4
leaving the other inclusion for the reader. Sup-
pose then that a A - <f c¢. Then by definition
there is a be¢ S such that a®b and bdc. If
b=a or b=c we are done since & and &£
are equivalence relations {(use the symmetric and
reflexive properties). If b#a and b #c then
by definition there are u,v,x,y ¢ S such that
ax =b, by=a, ub=c and vc =b. Let d = cy.
Then dx = {cy)x = ({ub)y)x = ulby)x = u(ax) = ub

=¢ and d = c{y) so that cy = d(gfc. Similarly,
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ua = u(by) = (ub)y =cy =d and vd = v(cy) =
(ve)y = by =a so that add. Thus afd&c

and (a,c)e L 2.

(0.8) Proposition. The product of two commuting equiv-

alence relations is an equivalence relation.

(0.9) Definition. We define the last of Green's equiva-

lence relations by 4 = R-L =LA .

Equivalence relations give rise to partitions of a set.
Green's relations defined above give rise to the so-called
egg-box structure of a semigroup the partitioning sets will be
the @—classes, %—classes, etc. One can picture & -
equivalent elements as lying in the same row (& -class) and
f—equivalent elements as lying in the same column. The in-
tersection of a row and a column when nonempty yields an A -
class, while the (intersecting) connected rows and columns

build a ¥ -class. Thus, perhaps:
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VA8 Rs

REE

will represent the structure of a given semigroup S.
(0.10) Proposition. In any semigroup %g L C OO’Q%.
Notation. Throughout this monograph we will
denote the ~C‘?—equivalence class of an element

ae S by Ra’ the J-class of ec S by Le etc.

The reader will recall from previous algebra courses that
one usually restricted the set of objects under consideration
in order to obtain a more fruitful theory; thus, e.g., solvable
groups when studying groups, or semi-simple rings in ring
theory. The same is true in the algebraic theory of semi-
groups. We will now try to reach what will be for us such an
interesting set throughout the remainder of the monograph—the
set of completely 0-simple semigroups. In order to do so we

will first have to give several definitions and results.

{0.11) Definition 1. A semigroup S is said to be requ-

lar if for each a ¢ S there is a x ¢ S such that
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a = axa.
2. Anelement e e S, a semigroup, is called

an idempotent if e? = e.

(0.12) Proposition. Prove that S is regular if and only

if a ¢ aSa for each ae¢S. If a = axa prove that
ax and xa are idempotents and that ax is a
left identity on Ra while xa is a right identity

on L .
a

Since ideals and especially minimal ideals figure heavily

in puzzling out algebraic structure we record the following

definitions:

(0.13)

Definition 1. A nonempty subset R[L] of a

semigroup S 1is said to be a right [left] ideal of

S if RS C R[SL € L]. A nonempty subset I of S
is called an ideal if it is both a right and left
ideal of S.

2. A right [left] ideal R[L] of a semigroup S

with zero, 0, is called O-minimal right [left] ideal

if no nonzero right [left] ideal of S is properly

contained in R[L].
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3. A similar definition is made for a O-minimal

ideal.

We may now inquire as to the relationship between 0-
(
minimal ideals and Green's equivalence classes. This rela-

tionship is given in the following proposition (and its dual).

(0.14) Proposition. If R is a 0-minimal right ideal in a
semigroup S with 0 prove that aS! = R for any
ae¢ R\ {0}. Then prove that if R is a 0-minimal
right ideal in a semigroup S with 0 that

R\ {0} is an ®-class.

(0.15) Definition. A semigroup S with 0 is said to be
0-bisimple if it has just one nonzero dJ¥-class.
A semigroup S with 0 is said to be 0-simple if
S%2 # {0} and {0} is the only proper two-sided

ideal of S.

(0.16) Proposition. In any semigroup Gg = {0} where

b is anyone of Green's relations.

The idempotents of a semigroup prove to be exiremely
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|
useful wedges in separating out its structure. It is sometimes

profitable to order them. Thus

(0.17) Definition. A partial order on a set S is a rela-

tion € which is reflexive transitive and anti-
symmetric, i.e., if aCb and bC a then a=b.

If aCb and a #b we will write a C b.

Now let S be a semigroup and let E = £(S) = {e e S |
e? = e} be the set of idempotents of S. Define a relation

<on E by e<f whenever e =ef =fe for e,fe E.

(0.18) Proposition. The relation < defined above on

&(S) is a partial ordering.

(0.19) Definition. A nonzero idempotent fe &(S) is
said to be primitive if whenever e < f either

e=0 or e =1 (where e« é(S)).

We are now ready to give the usual definition of a com-

pletely 0-simple semigroup.

(0.20) Definition. A completely O-simple semiqroup is

a semigroup S with 0 which is 0-simple and
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has at least one primitive idempotent.

We feel that it is far more preferable to depart now from
what would be the usual approach—in which one proceeds to
determine the element-wise behavior, i.e., where the prod-
uct of two elements lie, etc., to another definition which
takes, the ultimately determined behavior of a completely 0-

simple semigroup as its starting point.

(0.21) Definition. A semigroup S with 0 is said to be
absorbent if for any a,be S we have ab =0 or

n .
ab e Ra Lb

Since an W -class and an &£-class intersect precisely

when they lie within the same £’-class it is easy to check

the following:

(0.22) Proposition. In an absorbent semigroup each ¥+ -

class union {0} is an ideal.

(0.23) Proposition. A semigroup is completely O-simple
if and only if it is a regular O-simple absorbent

semigroup.
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The proof of this proposition is not hard. That a com-
pletely 0-simple semigroup (first definition) is absorbent is
just one of the derived results in the usual development, cf.
[2] Theorem 2.52. The converse follows immediately from [9]
Proposition 3.3. However, we will show directly that each
nonzero idempotent of an absorbent semigroup is primitive and

leave it to the reader to put together the few remaining steps.

(0.24) Theorem. If S is an absorbent semigroup then
every nonzero idempotent is primitive.
Proof. We must show thatif 0 #e <f (fore,
f idempotents) then e =1, i.e., { is primitive.
By definition, since e <f we have e =ef = fe.
By absorbency, since e # 0 we have ef ¢ Reﬂ L

f

and thus ef = e « Lf. Hence Le = Lf. (£ is an
equivalence relation!) Now any idempotent is a

right identity on its X -class (show this). Whence

it follows that e =fe =f and f ‘is primitive.

The absorbency condition also permits an easy proof of
the following partial converse of (0.14) (cf. [2] Corollary

2.49):
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(0.25) Proposition. Let S be an absorbent semigroup.
Then every nonzero principal right ideal of S is

O-minimal.

Indeed, it is now not difficult to combine (0. 14) and

(0.25) to show:

(0.26) Proposition. Let S be a semigroup with 0. Then
S is absorbent if and only if each nonzero princi-

pal right and left ideal is 0-minimal.

(0.27) Proposition. An absorbent 0-simple semigroup is

0-bisimple.

A few more observations about idempotents and subgroups
of S, one more definition and we will then be ready to get in-

to the monograph proper.

(0.28) Proposition 1. &Ris a left congruence in the
sense that if a®®b then sa &sb. Dualize this.
2. If e =e then He is a maximal subgroup
of S in the sense that no larger subgroup of S

properly contains He. Conversely, if an H-
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class H 1is a group it contains an idempotent

(cf. [2] Theorem 2. 16).

The following theorem is directly related to the absorbent

condition.

(0.29)

Theorem. ([2] Theorem 2.17) Let S be a semi-

group and” a,b ¢ S. Then ab e Ra n Lb if and

only if La 1 R, is a group, in which case

b
HaHb = Hab'
Proof. The proof of this theorem uses tech-
nigques similar to those of Theorem (0.7) and
Lemma (2.1). Since the proof of Lemma (2.1) is
independent of this theorem we will use that re-
sult here. Suppose then that for a given a,be S

we have that La N R, is a group. By Proposition

b

(0.28.2) La N R,, a group @ -class contains an

b?
idempotent e. Thus ad e@b. As in Proposition
(0.12) we can show that any idempotent is a left
identity on its & -class and a right identity on

its £ -class. Hence using Proposition (0.28.1)

and its dual we have abdeb =b and a = aeRab.
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It follows that ab e Ra N L . But the above argu-

b’
ment is the same for any a' e Ha and b' e Hb'

Whence HaH gHa . Now since %-classes

b b

within the same o¥-class have the same number
of elements and since by Lemmas (2.1) and (2.2)
the translations (multiplications) are 1-1 and onto

we can conclude that H H, = H .
a'b ab

Conversely, let us suppose that ab e Ra n Lb.

Then a®ab and as in Lemma (2.1) we can find

a b' such that (ab)b' =a and the mappings ka>

Py are mutually inverse, & -class preserving

between La and Lab :Lb. Now P maps b

into bb' ¢ La N R Now for any X ¢ La we

b’
= xbb' = x. Thus if we set x = bb!

have xp bp B!

it follows that bb' is an idempotent and that

= n i ifi
be, La Rb is a group by Proposition (0.28.2).

We shall eventually consider lattices:

(0.30)

Definition. A lattice L is a partially ordered set

which contains for every pair of elements a,b e L

a greatest lower bound (inf (a,b) = aAb) and a
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least upper bound (sup (a,b) = avb).
A lattice L is complete if any subset (includ-
ing the empty set %) has a greatest lower bound

(glb) and least upper bound (lub).

(0. \31) Proposition. The set of all subsets of a given
set, partially ordered by inclusion, is a lattice,
indeed it is a complete lattice. The set of all
congruences on a [semi]group is a complete lat-

tice under the inclusion ordering.



§1. SUMMARY AND NOTATION

In this monograph we will study the lattice 9 of proper
congruences on a completely 0O-simple semigroup S. Let H
be a nonzero group %-class of S. We denote by 'llT the
lattice of all normal subgroups of H, and by '13*['1:*] the
lattice of all equivalence relations on the set of ¥ -classes
[£ -classes] of S. We identify an initial segment R[L] of
B*[E *], such that C is isomorphic to a complete sublattice

E of 7/‘\ = R X§X£ (Theorems (7. 8) and (8.4)). We in-

vestigate well-ordered chains in 9 (e.g., Theorem (11.15)).

(1.1) Outline-and results. In §2 we associate with

every normal subgroup E of H a congruence
[(E) lying under ¥ ((2.6)), and in §5 we show

16
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that E—~ [ (E) is a complete lattice isomorphism of
N onto the lattice H of congruences on S lying un-
der # ((5.3)). In §3 we define an equivalence d

on the set of & -classes of S, and with every

equivalence r, rc fi we associate a congruence
'I"(L) on S {(3.5)) such that f"(L) N& =A, the
diagonal. In §6 we show that r *T’(L) is a com-
plete lattice isomorphism between the lattice of
equivalences lying under ,‘i and the lattice of con-
gruences f on S such that ,P n& =4 ((6.5)).
Dual results hold for an equivalence relation s on
the set of «-classes of S, and congruences(‘P

such that )b nt = A.

By considering factor semigroupsin §4, we define
for eachnormal subgroup E of H an equivalence re-

lation d(E) [E,(E)] onthe setof & -classes [d -

classes] of S. A permissible triple (r,E,2) isthen
defined as anelement of B*XEXI,;* such thati QQ(E)
and r&gs(E)\ ((4.4)). If T is the lattice of all permis-
sible triples, then we show in §7 that T and the

lattice C of all proper congruences on S are



18

Section 1

isomorphic complete lattices ((7. 8)).

Let R[L] be the initial segment of R _[L ]

consisting of all equivalences r under g(H),
[i under E(H)]’ and put '{J\ = B,X EXI:, In §8
we show that E is a complete sublattice of '{J\
((8. 4)).

In §9, we determine necessary and sufficient
conditions for the existence of a Brandt congruence
on S, ((9.8)), and we investigate the sublattice of
g consisting of all Brandt congruences. For ex-
ample we show that the lattice of all Brandt con-
gruences is a final segment of C ((9.9)).

In the last two sections of the monograph proper
we will discuss chains of congruences on g (or
T). In §10 we show that =, covers 7, in T if
and only if T, covers T, in ,{,\ ((10.3)). It
follows quickly that g is an upper semimodular
lattice ((10.5)) and hence satisfies the Jordan-
Dedekind chain condition. In §11, we investigate

ascending well-ordered (infinite) chains of con-

gruenceson S. If H has a well-ordered principal
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(1.2)

series, then for each proper congruence Cl’ on 5,
there exists in C a maximal ascending well-
ordered chain from A to a {, and all such
chains have the same length ((11.15)).

In §12 we break down and at last admit to the
reader that we have indeed heard of the Rees
matrix representation. We do this in order to con-
struct an example showing that an inequality in a

lattice that we have obtained may be strict.

Related Papers. Congruences on a completely 0-

simple semigroup have been considered before.
(Gluskin [6,7] investigated congruences on a
completely simple semigroup and showed that they
satisfied a Jordan-H&lder theorem.) Preston [16]
has obtained representations for congruences on

a completely 0-simple semigroup though his rep-
resentation of a congruence is not in general
unique. Tamura [20] has obtained a unique rep-
resentation in terms of a very special normaliza-

tion of a sandwich matrix for S. Our representa-
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tion is both unique and intrinsic. Preston [17]
(cf. also [2], Vol. 2) has also considered finite
chains of congruences on S. In the case of finite
chains of congruences, the results of our §11 re-
duce to Preston's. A recent paper of Lallement
[12] obtains similar results but again resorts to
the Rees matrix representation. Howie [8] has
also achieved these results starting with Tamura's

normalized sandwich matrix.

Notation. Qur terminology and notation is essen-
tially that of Clifford and Preston [2]. Relevant
definitions and notation can be found in §0.

When we consider a semigroup T, we shall use
lower case letters for elements of T and capitals
for subsets of T. Lower case letters, underlined,
such as g, I will denote equivalence relations
on the set of ¥ -classes and [ -classes of T.
We use lower case Gothic letters such as [ ,;U s
g’,‘r’ for congruences on T. Capitals, under-

lined, N, R, etc., will denote lattices.
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(1.4)

Special Conventions. In what follows we shall

assume that S stands for a completely 0-simple

(c-0-s) semigroup, and H stands for a fixed non-

zero group X-class of S. By e we shall de-

note the identity of H. If X C S, then &(X) will

be the set of idempotents in X.




§2. THE CONGRUENCE £ = [(E) ASSOCIATED WITH A

NORMAL SUBGROUP E OF A NONZERO GROUP % -CLASS

In (0.9) we saw that L and & commute. The technique

used in that proof can be used to prove the following modifica-

tion of Green's Lemma ([2] Lemma 2. 2). Indeed,

(2.1)

Lemma. Let a and as be W -equivalent ele-

ments of a semigroup T. Then the translation

P : X Xs is a bijectionof L_ onto L and
s a as

further x@xs for all x in La' Moreover, there

is an inverse mapping CINE y > ys' of Las onto

La where (as)s' = a. Dually, if bdtb, then

xt-. X~ tx is a bijection of R, onto Rt which

b b

is ¥ -class preserving: xJ.Ltx for x in Rb'

Again there is an inverse mapping xt, of Rtb

22
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onto Rb where t'(tb) = b.

Proof: Since a®as, there isan s' e T for
which (as)s' = a. Suppose x ¢ La’ say x = ua
and a =vx. Then clearly xs = u(as) and as =
v(xs) whence xs ¢ Las' Next note that x = ua =
uass' =xss'. If ye Las’ say y = was, then
ys's = wass's = was = y. Hence Py is the in-
verse map to P and so ps is a bijection of La

onto Las' Further, since xss' = x, it follows

that x@xs. The dual results are proved similarly.

From (0.25) we see that when S is a ¢c-0-s sémigroup,
every nonzero principal right ideal is 0-minimal (cf. [2] Cor-
ollary 2.49). It follows that if as # 0, then as®a. Similarly,
if ta #0 then tad a. Moreover we can then conclude from
(0.29) that if as # 0, then La N RS is a group. These re-
marks will be used very often_.\ In particular, the first two
are used in combining the two parts of Lemma (2. 1) into

(recall (1.4)):

(2.2) Lemma. Let ae¢ H andlet ¢ =tas. If ¢ #0,

then the translation )\tps is a bijection of H
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onto HC with an inverse of form )\t'ps' . In
every case, tHs is an %-class.

Proof. Indeed, if ¢ # 0, we have a@as Lt(as),
and the first assertion follows by (2.1). If tbs =
0, for all be H, then tHs = {0} which is an
%-class. If tbs # 0, for some b e H, then tHs

is an Y -class by the first part of the proof.

In order to fix the above result we should make the fol-

lowing:

(2.3) Definition. Let E be a nonempty subset of H.
We shall call a subset E' of S a translate of

E if and only if E' = tEs, for some t,s e S.

Note that E, tE, and Es are translates of E since

E = eFe, tE =tEe and Es = eks.

(2.4) Theorem. Let E be a normal subgroup of H.
Then the set & of translates of E partitions S
and (@ is itself a ¢-0-s semigroup under the

induced multiplication.

Proof. Let e be the idempotent in E. Then
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since § is O-simple SeS = §, and hence SES =8.
Thus UC = 8.

Now suppose that two translates tEs and vEu
have a nonempty intersection. Suppose that
0 € tEs N vEu. Thus 0 ¢ tEs C tHs, whence {0} =

tEs

tHs, by (2.2). Similarly vEu = {0} and so

tEs

vEu. If 0 ¢ tEs N vEu, then tes = ¢ where
c # 0. Then by (2.2), tHs = HC and for suitable
t', s' the mappings )\t" p s are inverse mappings
for the translations )\t’ P Hence E = t'(tEs)s' so
that t'(vEu)s' N E ¥ . However t'(vEu)s' =
(t've)E(eus'). But both t've and eus' are ele-
ments of H. Hence t'vEus' is a group coset of
E meeting E, and so t'vEus' = E. Now applying
)\t and ps we obtain vEu = tEs. We have shown
that €@ partitions S.

Now let tEs and vEu be elements in & .
Then (tEs)(vEu) = tE(esve)Eu = t(esve)Eu =
(tesv)Eu e , since esvee¢ H and E is normal

in H. But (tes)(veu) = (tesv)eu, and since

every element of S is of form tes, tes — tEs is
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a homomorphism of S onto (@ . Thus (@ is a
semigroup. It is now easy to show (cf. [2] Lemma
3.10) that a nontrivial homomorphic image of a
c-0-s semigroup is also c-0-s. This will com-

plete the proof.

An immediate consequence is:

(2.5)

(2.6)

Corollary. Let [ be the equivalence relation on
S whose equivalence classes are the translates
of a normal subgroup E of a nonzero N -class H.
Then [ is a congruence on S and e C W
Proof. Since € is a semigroup, [ is a con-
gruence. By (2.2) each translate tEs is con-

tained in an M -class, whence [ < %,

Definition. Let E be a normal subgroup of H,
and let [ be the congruence whose equivalence

classes are the translates of E. We shall call

[ the congruence on S associated with the

normal subgroup E of H and write [ = [ (E)

where convenient.
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(2.7) Remark. Clearly [(H) =% by (2.2). Thus %

is a congruence on S.



§3. THE CONGRUENCES # AND Z ASSOCIATED WITH THE

EQUIVALENCE RELATIONS LAND i

In this section we will define an equivalence relation, d,
on the R-classes of a c-0-s semigroup S so that for every
equivalence relation r defined on the & -classes with
rc ,C\], there is an associated congruence, #’ =7"’('£) on S
itself. We remark that an equivalence relation s can be de-
fined on the &£ -classes of S which is exactly dual to d
and the definition of 7 = Z(ﬁ) for an equivalence L Cs
is also directly dual to that for 77 = 7"'('5). Therefore, for
each of the following lemmas and theorems there is a right-
left dual.

We recall that £(X) is the set of idempotents in X.

(3.1) Theorem. Let R, and R, be two nonzero &-
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classes of S. Then the following conditions on

R, and R, are equivalent:

(1)

(2)

(3)
(4)

(5)

(6)

There exists an s in S such that £&(R;)

= s &(R;).

There exists an h in &(R;) such that

E(R,) = h E(R).

ER,) = ERD ER,).

a. For any Xf-class L we have L N R,
is a group if and only if .0 R, is a
group, and

b. There exists an s in S such that if
e, ¢ é(Ri), i=1,2, and e, £ e, then
se; #0 and se; = se,.

Condition 4a and

5b. There exists an h e &(S) such that

if e, e é(Ri), i=1,2 with e;Le,
then he; # 0 and he, = he,.

Condition 4a and

6b. Forall e « (f(Ri), i=1,2, with

elECe2 and for all g in é(S) we

have ge, = ge,.
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{7) Condition 4a and
7b. For all e, e g(Ri), i=1,2, with
e;Le, .and for all t in S we have

tel = tez.

Proof. We shall prove {2)<&> (3) and then
(1) = (7) =>(6) = (5) = (4) = (2) = (1).

(2) = (3). Assume (2). Since the idempotents
in R, are left identities on R, we have
ER:)ER,) = ER;). Hence &(R;) = h§R,) =
h E(R)ER,)) = hERNER,) =€ RER,).

(3) =(2). Assume (3) and let h ¢ &R;). Then
hE&R,) C &R ER,) = E(Ry). Now if e; ¢ E(R;)
then by (3) e; =e,'e, where e;' ¢ £(R,),

e, ¢ &(R;). Hence since he, # 0 we have
he,fe,'e, =e,. Butalso he,Re; whence
heZ%el and since both elements are idempotent,
he, =¢e;.

(1) = (7). {(a)Assume {l)and let L be a
given &£-class. An % -class is a group if and

only if it contains an idempotent ((0.28)). Hence
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if L N R, is a group then there is an idempotent
e, ¢ &(R, VL) and then se, ¢ &(R;). But se,Le,
and so se, ¢ &(R; NL) and hence R, N L is a
group. In almost the same manner one shows that
if LN R, is a group then L N R, is a group.

{b) Now suppose e « é(Ri), i=1,2 with
elfez. Let t be given in S. Since (7)a has
already been demonstrated we can use the absor-
bency of S and (0.29) to conclude that te;, =0
implies te, = 0. If te, # 0, then there is an
idempotent e,' e Lt N R,, and for some r e S,

t =re,). By (1), e;' =se,', for some e;' ¢ £(R;).
Thus there is an r such that r(se,') =re;' =t.
Hence te, = (rse,')e, =rse, =re; = {re,')e; =te,,
since se, =e;, as se, is an idempotent in R,
which is & equivalent to e,. Thus in every
case te; =te,.

The implication {7) = (6) is obvious.

(6) = (5). Assume {6)b. To prove (5)b we need
only find an idempotent h ¢ S for which he; # 0.

But any idempotent in R; has this property.
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The implication (5) =>(4) is also obvious.

(4) =¥ (2). Assume (4)a. Then for each e; «
é(Rz) there is an J£-equivalent idempotent
e; ¢ E(R;). Let s be as in (4)b. Since se; #0
we have that LS N R; 1is a group and hence there
isan he z:',j(LS N R;) and an r in S such that
rs =h. Thus se; = se, implies e; = he; =
rse; =rse, = he, and so we have proved that
hERy) C E(Ry).

The proof of &£(R;) C h&(R,) is obtained by
interchanging e; and e;.

The obvious implication (2) == (1) completes

our proof.

Definition. The & -classes R; and R, are said

to be d-equivalent (written R; d R;) if and only

if condition (3.1.7) holds.

It is obvious that d 1is an equivalence relation on the

set of # -classes of S. Observe that the {0} @® -class is

d-equivalent only to itself. If R; and R, are d-equivalent

nonzero @ -classes then obviously each condition in (3. 1)

holds.
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(3.3)

(3.4)

Lemma. Let T be an arbitrary semigroup. If
s = sf and ffs then f* =f.

Proof. Since f£s we can find an r in T!
such that rs = f. Thus s = sf implies f=rs =

rsf = f2.

Theorem. Let R, and R, be d-equivalent & -
classes of S and let X, Ri’ i=1,2. If there
is an s such that sx; #0 and sx; = sx, then
tx; =tx, forall t in S.

Proof. Let X, ¢ Ri’ i=1,2, and s be given
as in the hypothesis. Since S is c¢-0-s, sx; =
sx, # 0 implies that LS n Ri’ i=1,2, are groups
and that x; &£%,. Thus there are &£ -equivalent
idempotents e, « é(LS N R), i=1,2. Since
e ¥ x,, there exist u and u' such that e, = x,u
and e;u' = x, and then the translations L and

pu’ are inverse mappings of LX and Le upon

1 1

each other by (2.1). These mappings are more-
over R -class preserving. Thus x,ue R, N Le
1

Now from sx; =sx, we have s = se; = sX;U = SX, U.
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By (3.3) x,u is the idempotent e, ¢ &(R, N LS).
Let t be given. Since R; dR, we have tfe; =te,.
Hence t(x;u) = t{x;u) implies t(x;uu') = t{x;uu'),

whence tx; = tx;.

Definition. Let r be an equivalence relation on

the set of ® -classes of S such that r Cd. We
define a relation #’=77(r) on S by x;%”x, if
and only if

1. R rR and
Xy~ X3

2. tx; =tx, forall te 8.

We say that "7”(r) is the equivalence associated

with r.

Remarks.

1. It follows from (3. 4) that in definition (3. 5)
we can replace (2) by the apparently weaker
condition

(2") sx; =sx, Z0 for some s in S or x; =x, =0.

2. It is obvious that 7= ﬂ,f,) is an equivalence
relation with " C £ .

3. Indeed 7’ N A = A. For suppose x, (7 N &)x,
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(3.7)

and let e, ¢ @(Rxl). Then x, =e;x; =
e1X, = X;.

4. We further remark that if R;r'R,, e; ¢ &(Ry)
and x, ¢ R, then x;7%, where x; =¢e,x,.
In particular if R;rR, and e ¢ 8,(Ri),
i=1,2, with e, £e, then te, =te, by def-

inition (3.1.7b). Whence e,#”e;.

Theorem. Let ,E], be as defined in (3.2) and let
r, rc ,E],’ be an equivalence relation defined on
the set of K-classes of S. Let #~ :T”(L) be
the associated equivalence on S as defined in
(3.5). Then # is a congruence.

Proof. In (3.6) we saw that # is an equiva-
lence relation on S. Suppose now that x;77x;.
let s ¢ S. We have sx, = sx, and therefore,
sx,#” sx,. Since tx, =tx, forall t, it follows
that t(x;s) = t{xzs). Thus (3.5.2) holds for x;s
and x,s. It is clear that x, £ x, and hence x;5 = 0
if and only if x;s = 0. In that case Xx;s?7'x;s.
Otherwise if x;s # 0, we have from (2. 2), Rxls =

R rR =R and again x;s*’x;s.
X]_N XZ Xzs



§4. THE CONGRUENCE [r,E,f ] ASSOCIATED WITH THE

TRIPLE (r,E,4)

Let f be a congruence on S such that;bgé? . If
aeS, we put a = aP , and then the relation &/p on S/p
is defined by a(®/p)b if and only if a®b. We claim that
in fact that C‘Z{J‘b is the ™ -relation on S/J) and the proof is
easy. It follows that the # -classes of S and those of S/ﬁp
are in a one-one correspondence under a natural map R — R'.
Where necessary we will use primes to distinguish between
§ and S/p .

To any equivalence relation r defined on the set of
A -classes of S there obviously corresponds an equivalence
relation r' on the & -classes of S{/'b defined by R;'r'R;'
if and only if Ry r Ry, and in the same manner to any rN‘ de-

fined on the -classes of S(p there corresponds an equiv-

36
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alence r defined on the #-classes of S. Because of this
natural correspondence we will write r for rN' In the sequel,
we shall be concerned with semigroups S/L , where [ C N.
Thus we shall write r for a relationonthe fl-classes of §

or S/F , but we will find it necessary to distinguish the as-
sociated congruences (cf. (3.5)) on these semigrou’ps. We
shall write 7~ for the congruence on S and 7’ for the con-

gruence on S/

(4. 1) Definition. Let E be a normal subgroup of the
nonzero N-class H, and let [ = [ (E) be the
associated congruence (cf. (2.6)). We denote
by d(E) the d-relation on tR-classes of S/[
defined by (3.2). The relation E,(E) is defined

dually on the &£-classes of S/L .

(4.2) Remark. We note that g(E) can be considered
as a relation on the set of @—classes of S
since [ = LEYC N CR. Moreover, we then
clearly have g(E) o} g(e) = ,‘i Indeed we can
define g(E) directly on S without going to

S/L . Thus condition (7a) of (3. 1) would remain
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the same while (7b) would read
(7b') For all e, ¢ é(Ri), i=1,2, with

elafez and forall t in S we have te, [ te,.

Observe that t& eit = (tei)D :t(ei': ) since [ is a

congruence and hence t(elt } = t(ezl: } so that the above con-

ditions are natural. Further if E = H, then by (2.7), LE) =

% But eléfez implies teIWtez, for all t e S. Hence

,d\,(H) is defined by (3.1.7a). More explicitly:

R,d (H)R, if and only if for any f-class 1, R, N L

is a group precisely when R, N 1L is a group.

(4. 3)

Lemma. Let 77, 7'Cc L be a right congruence
and 1, Z- c lﬁ, be a left congruence on an arbi-
trary semigroup T. Then Vel = Lo, 159
and 7 are congruences, then so is # o L and
#”. | is the smallest congruence containing
both 7~ and £.

Proof. The first assertion of the lemma gen-
eralizes the result that R - L = £ .®A and can
be proven as (0.7) making use of the first obser-

vation and dual of (0.28). The second assertion
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(4. 4)

follows immediately since # ¢ 1 is an equiva-
lence by (0.8). A special case of our lemma is

found in Munn [14], Lemma 3.

Definition of Permissible Triple and the Asso—

ciated Congruence.

(a) Let H be the fixed nonzero group % -
class of S and let E be a normal subgroup of
H. Let [ = D(E) be the associated congruence,
cf. (2.6). Let g’(E) and E(E) be the equiva-
lence relations on the set of R -classes and
L-classes, respectively, of S (or S/L), cf.
(4.1). Let I and £ be equivalence relations

defined respectively on the same sets. Then

(r,E, £) is said to be a permissible triple if
and only if I gg(E) and £ _gg(E).

(b) Let (r,E,f) be a permissible triple.
Let?"! :1*"('5) and 7' = l(ﬁ) be the congruences
on 8/L , [=[(E), associated with the equiva-
lences I and £ respectively, cf. (3.5). Then

(f/' ° 1’ )t is said to be the congruence on S
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associated with (r ,E, £). This congruence

will be denoted by [r, E, 4]

(4.5) Remark. Note that for x and y in S,
X[L,E,i]y if and only if x[:(f" o Iyl o1t
follows from Lemma (4.3) that [r,E,f] is in-
deed a congruence. Thus [,5’ E,i] is the kernel

of the composite mapping

s~ S/b —~s/b /151,

(4.6) Observation. We observe from (3.6) and its
dual that 77 "collapses' exactly those #-
classes which are L—equivalent and is £ -
class preserving, while Z "collapses' X -
classes which are i—equivalent and is & -
class preserving. Moreover, it is clear that
null %/-classes can only go onto null %-
classes and group ¢ -classes onto group X -

classes.
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(5.1) Theorem. Let ‘5” be a congruence on S such
that Z" g@% . Let e be the nonzero idempo-
tent in H and put E = e‘éﬂ Then E is a normal
subgroup of H and ¥ - £ (E), the congruence
associated with E.

Proof. Since Z’ restricted to the group 9 -
class, H, is a congruence on H, it follows that

k

e = E is a normal subgroup of H and by
(2. 6) there is an associated congruence L = [(E).
We must show that ?’ = [ . Itis enough that
every Z”—congruence class is a tranélate of E.

¥

Let ae¢ S. If a =0, then a@ = {0} =0EO.

Suppose a # 0. Then, since ad¥e, there exist

41
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s,t,s',t' such that tes =a and t'as' =e. Let
A= aj"' . Then A = (tes)} = tzﬁ ESZ/ > tEs, and
similarly E D t'As’. Thus A D tEs D tt'As's =

A, by (2.2), whence A = tEs.

We remark that we have proved that if T is O-bisimple,
and 1” is a congruence such that Z" C %, then every con-
gruence class is of the form t B s, where B is a fixed non-
zero congruence class. In this more general case, we do not

know if every t B s 1is a congruence class.

(5.2) Remark. If the set E of normal subgroups of

i H is ordered by set inclusion, then E is a
complete lattice (cf. (0.30) and (0.31)). The
set of all congruences on S is also a complete
lattice (cf. [3], p. 86). Since [ (H) =% is a
congruence on S, the set H of all congruences

lying under WU is also a complete lattice.

(5.3} Theorem. Let 'I;I bé the set-of congruences ly-
ing under %, and let N be the complete lattice

of normal subgroups of H. Then E and H are
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isomorphic complete lattices under the mappings
E~> L(E) and [~ ek .

Proof. Let e be the identity of H, and let
@: C—eb , and 8 : E~> [(E) be mappings on
the two sets mentioned above. By (5.1), aof is
the identity on the set of congruences under %¢.
Let E be a normal subgroup of H. By (2.6),
the image of E under Ba is a translate of E
and clearly contains e. Hence EBa = E and so
a and B are mutually inverse. It is clear that
a and B are order-preserving. Hence ([3],

p. 22) a and f$ are complete lattice isomorph-

isms, and the corollary holds.
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(6.1)

Lemma. Let f be a congruence on S such

that pN&® = A.
(1) If e =e and x/’,‘be then x% = x.
(2) If X1 P X then tx; =1tx, forall t in S.
(3) If xl;pxz then x;&x,.

Proof. (1) If e = 0 the result is trivial.
Let e #0. If xpe then e’p expx?, hence
x;b x* since e® = e. But then x*® x; whence
x = x%, by]?ﬂﬂf = A,

(2) If XI,P x, then txl}) tx, . Since ;D is
proper tx; = 0 implies tx, =0. If tx; # 0,
then tx, ® t® tx, and whence tx, =tx, since

Pﬂ&{ = A,

44
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(6.2)

(6.3)

(3) This is an immediate consequence of (2).

Definition. Let q’ be a proper congruence on
S. Let r(¢9 be arelation on the A -classes
of S defined by Rir ({)RZ if and only if there
are x, e Ri’ i=1,2 such that xli" X,. We

define { (Q” ) dually.

Remark. Let ¢ be any congruence on S, and
suppose yi Q”yz. If x, is any elementin S
with x, @Ay, then one readily sees that there
exists x; with x, &y, such that x, ¢ %, and
x; & X,. For proof, observe that x, = y,t for
some t in S and put x;, =y, t.

The relation ,5(6() defined in (6. 2) is clearly
reflexive and symmetric. That L(g’) is also
transitive is an easy consequence of the obser-
vation in the preceding paragraph. Thus L(q‘)
is an equivalence on the set of & -classes of

S, which will be called the equivalence relation

induced by q/ .



46

(6. 4)

Section 6

Theorem. Let ]9 be a proper congruence on S

such that }7 NA =A. Let r =£(]9) be the
equivalence relation induced on the set of & -
classes of S as defined in (6.2). Then r c g
and j? ='7"'(£) (cf. (3.5)), the congruence asso-
ciated with r.

Proof. Let R, r R;. Suppose e, ¢ ER,).
By (6.2), there is an e, ¢ R, such that eI}D e,.
By (6.1), e, ¢ £(Ry) and e;f e,. We can
draw two conclusions from this.

First, suppose L is an X-class for which
Ry N L is a group. Then there is an idempotent
e;eR; N L (0.28.2). But thene, ¢ R; N L so
that R; N L is a group. Similarly, ifR, N L is a
group, so is R; N L and (3.1.4a) is verified.

Second, let e, « @(Ri), i=1,2, ande;fe;.
By the first part of the proof, there is an idem-
potent e,' ¢ R, such that erp e, and e, £ e,'.
Hence e,%e,', and as each  -class has at
most one idempotent, e, =e,'. Thus eljJ ez,

whence by (6.1.2), te; =te,, forall t in S.
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(6.5)

This verifies (3.1.7b), whence R, EIJ R,.

‘We have shown rc Ei

By the definition of # and (6.1.2) it is im-
mediate that ;P c =7"’(£). Suppose now that
X7’ %x;. Then by (6.3) there is an x;' € R, such
that X\ p X;'. Since P C 77, we have x;7”x,'
and hence x,7°x,'. Thus x,(#’N&)x,'. But
by (3.6), 7" NA = A, whence x, = x,'. Thus
x,P %, and it follows that 7 C ]9 . This com-

pletes the proof.

Theorem. Let B be the set of equivalence re-
lations on the &R -classes of S which are under
EIJ and let R be the set of all congruences p
on S such that ;P NAR =a4a. Then R and P
are complete lattices isomorphic under the map-
pings r 7"(1) and ]J -’L(’p).

Proof. We will show that the mappings
@ r *TH(L) defined in (3.5) and B :}) > (p)
defined in (6.2) are mutually inverse mappings

between R and P. By (6.4), Ba is the
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identity on ,lf, That ref Cr is immediate
from the definitions of 7"'(,5), cf. (3.5.1), and
L(P)’ cf. (6.2). If Rl,f, R;, then by (3.6)
there exist x; ¢ Ry and x; ¢ R; such that
xﬂ"(L)xz. It follows that r gllrizﬂ, whence

af 1is the identity on E

When R and P are ordered in the usual fash-
ion it is clear from the definitions that « and B
are order-preserving, and that R is a complete
lattice. Since 1"(/(1) = ,cia' is the maximal element
of P it follows that P is closed under arbitrary
intersections whence P is also a complete lat-
tice. The conclusion is now immediate since «
and p are order-preserving inverse mappings
(3], p. 22).

Since all of the above results can be dualized, we have
that the set of equivalence relations, E on the -classes
of § which are under s and the set Q of all congruences,
q> on S, such that i’ﬂ L= 4, are also isomorphic complete

lattices.



§7. THE CORRESPONDENCE BETWEEN PROPER CONGRUENCES

AND PERMISSIBLE TRIPLES

In this section we will finally show that the association
of (4.4b) from the set of permissible triples to the set of con-
gruences on S is 1-1 and onto. We will do this by factoring
the given congruence, ,‘Jb through ¥ —as JD NN =L —and
then factoring p /L on S/L as the circle, - , product of
two congruences *~ (r) and 1%)

We begin with two preliminary results.

(7.1) Theorems. Let { be a proper congruence on S.
Then # =4 nd and 1 =¢ N & are proper
congruences.

Proof. From the definitions, we have that #
is a right congruence (cf. {0.28.1)) and 1 is
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a left congruence, and both are proper. Suppose
x7’y so that x¢gy and x&y. Then for any s,
sx{sy. Thus sx = 0 if and only if sy = 0. In
that case sxPMsy. Otherwise we have

sxd x Ly £Lsy, whence sx# sy. The proof for

Z is dual.

Theorem. Let 2 be a proper congruence on S.
Then ¢ = (g'N Lo (g'n R).

Proof. By (7.1), ('{ﬂff and q NA are
congruences which commute by (4. 3). Hence
(¢'ﬂ,‘;(’, Yoo ({ﬂ R) g{ by the last part of (4. 3).

Conversely, suppose a{b, and a #0. Then
since S 1is regular, we can find an idempotent
e, Y -equivalent to a. Hence a ¢'b implies
ea =a Z’eb. Thus eb # 0 and both ebfl e@ a
and ebX b. But bc{a~ Q’eb implies b g'eb.
Combining these, we see that for a #0, ag'b
implies a(q’ NAR )eb and eb(g N £ )b, which is
obviously also true for a = 0. We deduce that

c[g (q nt). (‘Z NR ) and the equality follows.
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For the sake of clarity, we shall now use primes to indi-

cate relations on a factor semigroup S/L , where [ is a

congruence (see beginning of §4). For example, &' is the

A-relation on S/ . If [ C 9 then it is easy to check that

R' =R/t , L' =L/L and N =%/ . Further, if P isa

congruence on S, then (P/C)D =I) and if :P' is a congru-

ence on 'S/LC then (_‘P't)/[: =}')'. However, if R is an

@R-class of S then the corresponding Cﬂ—class of S/ will

still be identified with R.

(7.3)

Lemma. Let L[ be a congruence lying under A

Then for any proper congruence }9 we have
L(?) ='£((jD Nn&)/L) where r{ ) is defined in
(6.2). Dually ,{l,('P) = L((p NA)/L).

Proof. Let r =I(p) and r' = r((pNL)/P).
If Ry r' R, then there exists Xit ¢ R, i=1z2,
such that xlt ((JD nd )/C)xzt. Hence
x (PN &L )x, and clearly R, I R;. Conversely,
if Ry r Rz then there are v, ¢ Ri’ i=1,2
such that Y1j7 y,. But by (6.3) we can then

find xie Ri with x,£ x, such that X1}7 X5 .
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Hence x, (P n £)x, and xlt ((’P ng )/l:)xzt

whence R; r' Rp. The equality follows.

Theorem. Let 'p be a proper congruence on §
and let
1y = PN
2) r=r(p)
(3) £ = £(p).
Then (r,E,£) is a permissible triple and
P=l5,ELL

Proof. By (5.1), E is a normal subgroup of H,
and P(E)= pnH¥ =T, say. By (7.3), we have
r=r((pn&)/p). Now (pnLy/bnd =
(pn&n R)/b = (PNH)/T = A" and similarly
(PNAR/L N L =4 By (6.4) 1 ©d' =d(E)

and also £ C s'

= s (E), sothat (r,E,f) isa
permissible triple.

Now put #°' =#7(r) and }'=71(2) on 8/F.
Then by (6.4), 7' = (pN&L)/L and 1' =
(PnA)/E . Hence (e )= (p/L n Lo

(}7/& n gy =jo/t by (7.2). It follows that
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(7.5)

[r,E,2]= ¢ 0" =P,

~

Lemma. If }7 and { are proper congruences

on S suchthat P of = go b then (p-g¢)n
,,‘(,’:(‘pnof)a(([n.,ﬁ):(J;ﬂ.f,)\/(a[ﬂi) and

(b-q) neR = (pndt) o ({n@) = (}mCR) V
(gN&) (cf. (0.30) énd (0.31)).

Proof. By (7.1), (p.g)Nn&, pnd, and
g n& are all congruences. smcejoni c
(ped)NL and gnL S(peqind we
clearly have (pNnZ). (gnL)yc(pnf)v
(z[n.f Yo (p o) N X . Conversely, suppose
x((p-g)N&)y. Then xLy and x(P-q)y.
Hence, there is a z such that xPzqy. But if
X &(LX), we have x =xepzedye =y and
heﬁce ze« L . Thus x(p N )ze(¢ N £ )y and
therefore x(p ntyo (¢n L)y. Hence
(peg)n Lcpnd).(dn), and
(pndyeotgndy=(p-grnd = (pnL)v
(¢ N £) follows. Dually one obtains the other

equality.
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Combining the above results and that of (4.3), we have

(7.6) Corollary. If JJ and Cf are commuting con-
gruences on S, then any pair of the following
congruences commute: P, c[ , Pﬂ?ﬁ , {ﬂf ,
PR, R, pnH andgnH.

In order to state our main theorem, we order the set of

permissible triples in an obvious fashion.

(7.7) Definition. If T is the set of permissible trip-
les on S, then we partially order T by
(r,E,4) C (,r\",E',,l\") if and only if r Cr',

ECE' and £C /.

(7.8) Main Theorem. Let C be the set of proper

congruences on S, and let T be the set of
permissible tripes. Then C and ,I\" are iso-
morphic complete lattices.

Proof. Let @ map T into g by (,E’E’,g,)a
=[r,E,2] and B map C intoT by
;Pﬁ = (£ (p), epnw,i(}))), where [L’E’i] is

defined by (4. 4) and L(P) and i(’p) by (6. 2).
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Theorem (7.4) asserts that Be is the iden-
tity on g We shall now prove that a8 is the
identity on T. Solet (r,E, 1) T, and let
P=(r,E e = 0"« [N, where £ = L),
¥ =7(r) and ' = H4).

By (2.5), [ €94, and so we observe that
(pnLy/Tt=p/ nLr=@"-1ynL =
(' nLYye(1T'n L) by (7.5). Since by (3.6)
and its dual, 7°'C L' and F'n L' = A", we
obtain that p N £/L =4"'. Now p NHN/L =
P/E N = (p/ nLHNR = PIn @ = A,
and so [ =Pﬂ%. By (5.2), E = el> , and
E= epn% follows.

Again, since T C % we have by (7.3) that
L(P) = r(pON/T) = x ('), where 7' =7(x)
on S/ . Hence by (6.5), L(,P) = r. Similarly
5(}9) =£, and hence off 1is the identity on E

We have proved that o« and B are bijections
between E and g, and from the ciefinitions it
is clear that they preserve order. Thus « and

B are order isomorphisms. Clearly (i (H), H,£(H))
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is the maximum element of T, whence

(d (), H, £ (H))e =[ d (), H, £ (H)] =Hrz, say, is
the maximum element of C. But the collection
of all congruences on S is a complete lattice,
and C consists of all congruences under 77z ,
whence g is itself a complete lattice. Since

B is an order isomorphism, it follows that T is

an isomorphic complete lattice.



§8. THE LATTICE STRUCTURE OF T

In the previous section we have shown that T is a

complete lattice under the natural ordering. It is of interest

to describe explicitly the lattice operations on T.

(8.1)

Notation. Let ’IELJ be a lattice and let A be an

index set. If {ka}aeA is a family of elements
in X, then the infinum and supremum of

{ka}aeA in X will be denoted by AK ka and

~

VK ka respectively. The index set A will be
in’:plicit in this notation. Since we shall have
to refer to many lattices, we give a list here:
R—the lattice of equivalences on the ®A.-
classes of S, lying under g(H);

57
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(8.2)

(8.3)

Section 8

L —the latticeof equivalences on the XL~
classes of S lying under i(H);
N = }S(H)——the lattice of normal subgroups of

H.

K

>

= RXNXL;
T—the lattice of permissible triples;

g—the lattice of proper congruences on S;
E—the lattice of congruences on S which lie

under N .

Remark. By (5.2), E —> L (E) is a complete lat-

tice isomorphism of N(H) onto H. Thus for
any family {Ea}aeA of normal subgroups of H,

E(AEEQ) = A,Iji PE) and B(VEEQ) = VEF(EQ).

Observe that unless A is empty AH can be

replaced by A_, but if A is empty /\HD(EQ) =

C’

~

A while /\C D(Ea) is the maximal proper con-

gruence on S.

Lemma. Let {E } be a collection of normal
e o’ aeh

A =
subgroups of H. Then Bg(Ea) g(/\NEQ

/‘\ygma) = s (B, VR4 E ) Cd(VyE,) end

)

~
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\/Li(Ea)g i(nga)’ where ,Ei, and s are
defined as in (3.2) and its dual.

Proof. Let d =N\ d(E ) and d_=dA_E ).

~ EN o ~ L ~ ,]S, o
5%
Then R; d R, if and only if R, and R, satis-
fy (3.1.7a) and for e € @(Ri), with e; £e, we
have te, L(Ea)tez forall te¢ S and each « ¢ A.
Hence R, ’cf R, 1is equivalent to
tel(/\HD(Ea))tez forall t in 8. But Ry d, R,
if and only if R; and R, satisfy (3.1.7a) and
for e; and e, as above we have
A =

te, Do NEa)teZ for all t. But D(/\EEQ)

~

AH D(Ea) by (8.2) and the first assertion fol-
lo’;’vs. The second is dual.

The final two inequalities are immediate,
since for normal subgroups E and F of H

with E C F it follows that g(E) - g(F) and

s (E) Cs (F).

It will be shown by an example in the appendix, §12,
that the last two inequalities of the lemma are sometimes

strict.
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(8. 4)

Section 8

Theorem. Let T,R,N, and L be defined as in
(8.1). Then T is a complete sublattice of

RXNXL=

~

Proof. We will show that if {(r ,E ,£ )}
~Q [ akad

a “gel

is a collection of permissible type triples, then

(AE’E’Q, /\,lll " kia) and (VB,"r'a, VEE“, vgfa ,
are in T and Az(r yEp L) = (/\Er , /\,NEQ,
Ak“ﬂ"’) = AQ(LQ,Eaz ) and Vg(ra’ E L) =
(VN'LQ/, VIILIE&’ V,I:Jfga) - v,:/}(fia’ Ea’Na)

Since each triple is permissible, L, c g(Ea)

and £ C s(E ) foreach @e¢ A. Thus A.r C
~ ~ o R~

~

E_) by (8.3) and dually /\Lz c

,lll ~x

A A A
s (AGE ). 1t follows that (A r /\NEa, 2

~ ~ ~ ~

is in I Since I is a complete lattice by

A =
(7.8), we may put T(La,Ea,ﬁa) (’5

,E,,ﬁ)-

~

Thus r Cr for all @ ¢ A, whence r chA_r .
~ ~ Y RNQ

>

Similarly E c;/\NEa and ¢ C A 4, it follows

L
A A
that (r,E, 1) C (ARLQ’ NEp T\ 4,0 But

~
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(8.5)

/\ .
(ARLQ” EEa, Akﬁa) is a lower bound for
A =
{(fsa’Ea’féa)}aeA and T(La’Ea’ia)

A A
(/\RLQ” Ea, Lf&a) follows. The proof of

~

I4

~

the second equality is similar.

Remark. Observe that R X ’lg XL = A is an
initial segment of ’}3* X ’l\l X ’E* = ,‘/}* where
R, [’I:ﬂ,] is the lattice of all equivalences on
the set of R- [£]-classes of S. Thus, except
for empty intersections, lattice operations in

A and ’{}* coincide and we see that Z is es-

sentially a complete sublattice of the Cartesian

product '}3* X ’I\L X ’I:’



§9. THE LATTICE OF BRANDT CONGRUENCES ON S

‘We will now determine necessary and sufficient condi-
tions for the existence of a Brandt congruence on S and show
that the set of Brandt congruences B (if nonempty) on S
forms a complete lattice contained in the lattice of all con-

gruences.

(9.1) Definition. 1. A semigroup, T, with zero, 0, is

a Brandt semiqgroup if (a) for each a #0, ae T,

there are unique elements e and f such that
ea = a, af =a and a unique element a' such
that a'a =1, and if (b) for any nonzero idem-
potents e, f of T we have eTf # 0.

2. A congruence, Zf‘ , on a semigroup, G,

62
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is a Brandt congruence if and only if G/¥ is

a Brandt semigroup.

One readily checks that the elements e and f above
are idempotents. This follows from their uniqueness (e?a =
ea = a, efc.). Indeed aa' =e since (aa')a =afa'a) = af = a.
It is easily seen that a® e and a£f. Nowlet b# 0 be
any other element in T; let f be the right identity for b and
let e be the left identity for a. Then by (9.1. 1b) we can
finda ¢ £#0 in eTf. Since e and f are idempotent ec =
c = cf and we have, as above, cf e and cLf. Thus
a®e® cX f£Lb and it follows that adrb. Now if e and f
are nonzero idempotents of T, then just from e =ee =fe we
can conclude e ={ (unigueness) so that each nonzero idem-
potent of a Brandt semigroup is primitive (cf. p. 9). Thus it
can be seen that a Brandt semigroup is completely 0-simple.

The reader should now be able to complete the proof of
the following lemma which provides a characterization for
Brandt semigroups (cf. [2] Theorems 3.9 and 1.17). In what
follows the reader may wish to think of Brandt semigroups in

terms of this characterization.
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(9.2)

(9.3)

(9. 4)

Section 9

Ilemma. A semigroup T is a Brandt semigroup

if and only if it is completely 0-simple and the
idempotents of T commute; or equivalently, if
and only if it is completely 0-simple and each
®- and X-class of T contains exactly one

idempotent.

Definition of Condition Br. The semigroup S

will be said to satisfy condition Br if and only
if {Ri n L], }, i,i =1,2, never contains exactly
three distinct groups for any two &-classes

R,;, R, and any two £ -classes L,,L;.

Lemma. Let S(c-0-s) be given, and suppose
the @ -classes R; and R, of S contain two
L-equivalent idempotents. If S satisfies Br
then R, g(H)RZ.
Proof. Let L, be the & -class of the

e, ¢ é(Ri), i=1,2, and let L, be any o -
class. Since Ri NL,, i=1,2 contains an
idempotent, both R; N L, and R, N L, are

groups. Hence, by Br, if L, #L,, then
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(9. 5)

(9.6)

Ry N L, is a group if and only if R, N L, is a
group, and this is trivial if L, =L;. It now

follows by (4.2) that R, d (H)R,.

Lemma., If Z" is a Brandt congruence on S and

R; and R, contain a‘lf—equivalent idempotents
then R; r(F)R,.

Proof. Let Ri’ i=1,2 and Z" be as above
and suppose that the idempotents e, belong to
R, NL, i=1,2, for some K£-class L. Then
e;"” £ ez‘l’u in 8/¥ since a congruence respécts

Green's relations and whence by (9. 2) elj’"ez .

It follows that R; r (})R, by (6.2).

Theorem. Let (’5, E,i) be a permissible triple

on S and let #:[L,E,N]. Then ¥ is a Brandt
congruence if and only if
(1) S satisfies Br and
(2) r :g'(H) and i =§'(H).
Proof. Suppose \g" is a Brandt congruence

on S. Let Ri’ i=1,2, be #-classes and

suppose that Ri NL, i=1,2, is a group, for
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some nonzero J&-class L. Observe that

R, N L

i i =1,2 each contains an idempotent

b

and el‘fez. Whence R; L(Z"’)Rz by (9. 5).

e
But by (7.4) and (7. 8), r =£(Z”), hence
R; r R;.

Now, (i) let R,,L., i=1,2 be & and £ -
classes and suppose R; N1 L;, R, N L; and

Ry N L, are groups. Then R, r R, , whence

gg(E) cC g(H). Hence by

r
~

Ry d (H)Rz, since
(4.2) R, N L, 1is a group. Dually, (ii) if Ry N L,,
Ry N L, and R, N L; are groups, so is R, NL,.
Hence S satisfies Br, and (1) is proved. Next
let Ry d (H)R;. For some £-class L, Ry N L
is a group. By (4.2), R, N L is a group.

Hence by the first part of the proof, R; r R;.

" Thus g(H) cr, whence g(H) =r. Thus (2) is

proved.

Conversely, suppose (1) and (2) hold. Let
e;' and e, be -equivalent nonzero idem-
potents in S/;*’, say e e L', i=1,2, where

L' isan & -class of S/§. It is easy to prove
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that there is an L-class L, in S whose
image under Z“ is L'. Then there exist X, € Li’
i=1,2 with xilr =ei'. Further the x, belong
to group ¥ -classes Hi of S, since they can-
not be nilpotent. But Z“ restricted to Hi is a

[

group congruence, hence it follows that e:,L =

ei' , where e  is the identity of H,. Let

Hi =Ri NL;, i=1,2 andlet L, beany L-
class. Since S satisfies Br, and Ri N Ly,
i=1,2 are bothgroups, R; N L, is a group
precisely when R, N L, is a group. Hence by
(4.2), R, g(H)Rz, and so by assumption

Ri r Ry, and this relation also holds in S/L
where [ = [(E). Hence, applying (3.6) to
S/l , we obtain elt 'r\" eg , where 77! =9 (r)
in S/L. Since F = (e 1')1: , we obtain
elz’ e,. It follows that e;' = e,', and so each
¥Y-class of S/Z“ contains exactly one idem-
potent. Dually, the same is true for R -classes

of S/}*, and it follows by (9.2) that & is a

Brandt congruence.
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The following corollaries are now immediate:

(9.7)

(9.8)

(9.9)

Corollary. If S satisfies Br, then the maximal
proper congruence [,El, (H), H, s (H)] is a Brandt

congruence.

Corollary. There exists a Brandt congruence on

S if and only if S satisfies Br.

Corollary. Let B be the collection of Brandt
congruences on S, and suppose E is nonempty.
Then there is a minimal normal subgroup F of

H such that g(F) = g(H) and i(F) = i(H)' The
collection E consists of all congruences
[g(H),E,i(H)], where E D F. Further, B isa
complete lattice which is a final segment of C,
and is isomorphic to a final segment of E(H).

If = [g(H), F,E(H)] and 77t = [g(H),H,i(H)]
and if ¥« B then S/¥ is a homomorphic image
of S/7z and can be mapped homomorphically

onto S/77%.

(9.10) Corollary. Let S be a completely simple semi~~

group with 0 adjoined. Then B is nonempty and
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for every Z”e B, s/¥ is a group with 0.

(9.11) Corollary ([18] Theorem 6). If S is a completely
simple semigroup with adjoined 0 and if F is
the minimal normal subgroup of H such that

d(F) = ’ci(H) and i(F) = i(H) then for

~

b

image of S with adjoined zero.

1o

(F), P,’s\l(F)] S/# is the maximal group



§10. TFINITE CHAINS OF CONGRUENCES ON S

For the sake of completeness, we give two lattice

theoretic definitions, cf. [1], [19].

(10.1) Definition. In a partially ordered set, E) a is

said to cover b (written a >—Kb or b—<Ka)

~ ~

if a > b but there is no ¢ such that a > c¢c > b.

(10.2) Definition. A lattice, £ is (upper) semimodu-

lar if whenever a >_KC and b >—Kc where

~ ~

a #b, then aVvb >, a and avVvb> b
We shall show that the lattice g of proper congruences
on S is semimodular. This will be done by considering T,

the lattice of permissible triples of S (cf. (7.8)).
70
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(10.3) lLemma. Let 2 be the lattice of permissible
{ triples of 5, and let A =R X NX L, where

E 0.)

B},E,’I\JJ are defined in (8.1). If T, = (.5 i

i7

e T, (i=1,2) then =, >

~

T, if and only if

" T1 >—ATZ .

~

Proof. Since TCA, 711> ,T implies

A

~

t1 > T2

T
Suppose conversely that T; does not cover

T2 in A, say (rip,Ei,2:1) > (r,E2)>

(.57-’ E, ,52). There are three possible cases:

(1) E; DEDE, (we use DO for proper contain-

ment), or (2) E; =E, or (3) E; DE=E,. In

case (1), o, = (,E,Z’E’f,z) € Z and in case (2),

0, = (N’E7.£) € 2 In case (3), o5 = Q,Z)Ely,gf. )

¢ T and either r>rp, or £ >1,. Thus for one

of i=1,2,3, o, e T and T, >0, > 7, SO that

71 does not cover T, in T. This contradiction

completes the proof of the lemma.

(10.4) Lemma. The lattice R X E XL = ﬁ,\ is semi-

~

modular.
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(10.5)
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Proof. The lattice E of normal subgroups
of H, is modular (cf. (10.7) and (10. 8)), and
it is easily shown that a modular lattice is also
semimodular. Now ’B[’E] consists of all equiv-
alences on the set of & [£]-classes which lie
under d (H) [i(H)]. It is not hard to see that
the lattice of all equivalences on a set is upper
semimodular (cf. {10, 9)) so are R and L. But
one easily verifies that semimodularity is pre-
served under direct products, and this completes

the proof.

Theorem. The lattice- g of all proper con-

gruences on S is semimodular.

Proof. By the isomorphism theorem (7. 8) it
is enough to prove that the lattice I of all
permissible triples is semimodular. By (8. 4),

T is a sublattice of é =R X NXL and for

T, € T, i=142, T2 if and only if
T >_ATZ by (10.3). But by (10.4) A is semi-

~

modular and the theorem then follows imme-

diately.
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See also Lallement [12].

(10.6) Corollary. The Jordan-Dedekind Chain Condi-
tion holds on g; viz, all finite maximal chains
between two elements of C have the same
length.

Proof. This follows directly from the semi-

modularity of C (cf. [7], Theorem 8.3.4).

(10.7) Definition. A lattice L is said to be modular
if whenever a>c¢ in L then a A(bwvc) =

~

(aAb)vc forany be E‘

(10.8) Lemma. The set, E, of normal subgroups of a
(fixed) group G is modular lattice under the
inclusion relation.

Proof. It is easily shown that E is a lattice.
Now suppose A D C for A,C e E and let B ¢ ’lﬂ
We must show A A(BV C)= (A AB)V C. Since
ADANB, ADC and BVCDOANAB, BVCD2D
C wehave AABVC)D AAB)VC so that

we need now only check the reverse containment.
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(10.9)
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In order to show AA(BVC)C ARAB)YC
we make use of the lattice operations in E
checking that N; AN, =N,; N N, and
N, VN, =N;N, = {n;n, | n; ¢ N, n, ¢ N, } for
N;,N, ¢ N. Thus we must show AN (BC) C
(A N BYC. Let xe¢ AN BC. Then X = ae¢A and
x =bc for be B, ce C. From x =a = bc, we
have b=ac ' ¢A since ADC. Thus be ANB

and x = bc e (A N B)YC and the result follows.

Lemma. The set, E, of all equivalences on a

set is a semimodular lattice.

Proof. Let E be the set of equivalence re-
lations on a fixed set X. One readily verifies
that E is a lattice under the inclusion ordering.
Let a,b,ce £ where a>-c and b>- ¢ and
a #b. It is obviocus that a > ¢ (and b > c¢)
precisely when a (and b) identifies exactly
two equivalence classes, say X;, X;, (say X,
X4), induced by ¢ on X, so that the equivalence

classes of a are those of ¢ excluding X; and
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X, butincluding (X; U X,). Since a #b either
three or four equivalence classes of c are
identified by a and b. Suppose then there are
just three equivalence classes identified and

X, = X3. Then the equivalence classes of aVv Db
are those of ¢ excluding X;,X, and X; but
including (X; U X, U X3) and it is then clear
that avb>a and aVb> b. The proof of

the other case is similar.



§11. WELL-ORDERED CHAINS OF CONGRUENCES ON S

In this section we will examine well-ordered chains of
congruences on S. We will show that under a certain condi-
tion all maximal well-ordered chains in g are of the same
length. Some general lattice theoretical definitions must be
given and then we must first consider the lattices N, of
normal subgroups of H, and };J\g (X)—the lattice of equiva-
lences on a set X.

Recall that a partial ordered set, P, is well-ordered if
every nonempty subset, Q, has a first element q,, i.e., there
isa g; ¢ Q such that q, € q forall ge Q. A chain is a
partially ordered set P in which any two elements are com-

parable, i.e., for p,qe¢ P either p<q or g<p.

76



Kapp and Schneider 77

(11.1) Definition. Let K be an arbitrary lattice with

minimum element A and maximum element v.

(1)

(2)

Let A be a well-ordered index set. A col-

lection {ka} of elements of K will

aeh’

be called an (strictly) ascending well-

ordered chain, indexed by A if and only if

k CkF3 in K whenever « <8 in A. For
a ~

short, {ka} will be called a chain

ael
(indexed by A).

If in K {ka} is an ascending well-

achA
ordered chain indexed by A, then the

cardinal |A| -1, is said to be its length.

(3) An element k ¢ K will be called accessible

if and only if there exists an ascending well-
ordered chain {k } from A to k

a’aeA
which is maximal in K. Here k)\ =k
precisely when M\ is the maximal element
in A. The lattice K will be called acges-

sible if and only if every element in K is

accessible.
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(4)

(5)

(6)

(7)

Section 11

If keK is accessible and if all ascending
well-ordered maximal chains from A to k
are of the same length, then we will say
that the height, “ k“ , of k is the common
length of these chains. If v has height
then we say that the height ||§J|| of §J is
vl

The lattice K will be called an accessible

lattice with height if and only if every

k e K is accessible and has height.

If k<k' in K, then k' is said to be ac-
cessible from k if there is a maximal
ascending well-ordered chain from k to k'.
If every such maximal chain is of the same
length that common length will be called
the height of k' over k and will be writ-
ten |k /&ll.

If H is a group then a maximal ascending
well-ordered chain to H in the lattice of
all normal subgroups, (E(H)——cf. (8.1)),

will be called a principal series for H.
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(11.2)

(11.3)

Remark. (1) When convenient, our index set A

will be totally ordered, but possibly not well-
ordered.

(2) If A is a well-ordered set we will write
W = W(A) to be the collection of all elements
in A which have a predecessor in A, i.e.,
W@) = {be A | thereisan ae¢ A with a —< b}.
It is easy to verify that |W| = |A| - 1. In par-
ticular, when A is infinite |W| = |A|

(3) It will be seen that our definition of
principal series coincides with that of Kurosh
([10], p. 173). Indeed, H has a principal
series if and only if it is accessible in 'Ij =
'Ij(H). Moreover, we shall show that the acces-

sibility of H in Ql 1s sufficient to guarantee

the accessibility of g

Lemma. Let {H } be a chain in N indexed
a” weh ~

by A and Ee¢ N. Then (\/ H)AE =
a<p *
V (H AE) for B e A.
a<p @
Proof. Clearly (V H)YAEDV (H AE).
a<B @ a<p *
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Conversely, we note that \/ Ha = U Ha .
a<f a<B

Thus if he (Y H )AE then he H A E for
a<p * v

some y <p. Hence he \ (Ha/\E). Thus
a<p

(V Ha)/\ EC V (HQ/\ E) and the equality
a<B a<p

follows immediately.

(11.4) Theorem. Let {Ha }aeA be a principal series
for H. Then for each E ¢ N there is a suit-
CA ! i
able subset B CA such that {Hﬁ }ﬁeB is a
maximal well-ordered ascending chain to E in
N(H), where H' =H AE.
~ a 23
Proof. Let B ¢ B if and only if B is the
smallest @ of A such that Ha' = Hy' with
vy € A. Clearly, B is well-ordered. If
1 : . :
{Hﬁ }peB is not maximal we can find an F ¢ N
such that for some ye B, FC Hy' and Ha' CF
for all a < y.
Case 1) Suppose y has a predecessor & in

A, By the construction of B, it follows that

H«S' = H(\3 ANECPF. (We do notclaim that &6 ¢ B
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but of course there is a &' ¢ B with HG' = H:S")

We will now produce a contradiction. We
! = A = =
clearly have H6 A HY H6 HY NE H6 ANE

H% and hence we can also readily deduce

H ANF=H'. From FCH' CH we have
<} 5 Y Y

c c i i i-
H6 CF \/H6 - HY and since {ch}aeA is maxi

mal FVH_ =H or FVH_=H_. In the former
§ Ty § 6

case, it would follow that H'Y \ H6 = HY. Thus
we have a five point sublattice as in Fig. 1.
By [3], p. 66, 67, N is nonmodular and this

is a contradiction. Hence FV H6 = H6 , whence

FC H6 ANEC H'Y , again a contradiction.

Figure 1
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Case 2) Suppose vy has no predecessor in A,
Then since {H } is maximal we must have
o’ ach
V H = H . Butthenby (11.3), H! =
a<y Y
V (Ha AE)= H; . But for each o <y,
a<y a<y
H' CFCH', whence H' = \/ H' CFCH',
a Y a<y @ Y

a coniradiction. This completes the proof that

{H'} is maximal.

B BeB

] t ' . .
It is easy to see tha {HB }56]3 is a strictly

ascending chain. Whence we can conclude that

{Hé }[3eB

chain to E and so E is accessible in N .

is a maximal, well-ordered ascending

(11.5) Corollary. A group H 1is accessible in N(H) if

(11.6)

and only if IS’(H) is an accessible lattice.

Theorem. Let E be a normal subgroup of H

which is accessible in §(H). Then E has
height.

Proof. Consider E as a group with operators,
where the set of operators consists of all inner

automorphisms of H restricted to E. Itis
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proved in Kurosh [10], p. 175, that any two
(well-ordered) principal series of an arbitrary
group with operators are isomorphic and hence
have the same length. But such principal series
for E are precisely the maximal well-ordered
ascending chains in g(H) to E, and the result

follows.

Since the triples in T involve equivalences on sets we
will first develop the necessary theory of Eg(X), the lattice

of equivalences on a set X before proceeding to T.

(11.7) Definition. Let { be an equivalence on a set
X. A transversal Q for q will be a subset of
X consisting of precisely one element from each

equivalence class determined by q:

(11.8) Proposition. Let A be a well-ordered set and
{¢a}aeA be a (strictly) ascending chain of
equivalences on X from ¢, = A to ?")\ =g".
If Q is a transversal for Z" then |A] -1 <

IxNQl < Ixl - L.
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Proof. We well-order X and put

Qa = {x|x is the first element of a q’a—class
of X}.

Without loss of generality we suppose Q = Q)\.
Let T =XN\Q_ . We observe that T, = ¢ and
that {Ta}aeA is a strictly ascending chain.

Let W =W(A) (cf. (11.2)) andif Be W
let [3* be the predecessor of B. Since

o < T NT . #%. Let x(B) be the first
Tox<Tpr T Tpx P)

Since M\ is the greatest

element of TB\ TB*.
element in A, we have X\ Q)\ = T)\;) TF3 for
all B in A, whence {X(B)}QEWQT)\'

If B,ye W with y <p then x(y)e TY - TB*
but x(8) /TB*. Thus x(y) # x(3) and so the
map B > x{B) of W into T)\ is 1-1. Since
Al -1 = |w] , the first inequality follows.

The second inequality is trivial.

Theorem. Let X be a set and let EJq(X) be the

lattice of equivalences on X. Then Eq(X) is

an accessible lattice with height and, for
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{6 Eq(X), I ([“ = |X\Q| where Q isa
transversal for ¢,

Proof. We again well-order X and let Q
consist of all first members of equivalence
classes. Let T=X\Q. Let «/ be the set of
initial segments of T, ordered by inclusion.
Since X is well-ordered, sois o/ . For I e/
define an equivalence zi on X by x%y if
and only if either (1) x,yve I U Q and xi’y or
{2) x =y. Thus {tZ’I}Ieuo is an ascending
chain in Eg(X) from A = C[ﬁ to ({: cZ’T . Now
{([I }I€ J is clearly a well-ordered chain which
is maximal and || - 1= 1| =|xX\Q]l.

Now let {{a }01GA be a maximal ascending
well-ordered chain of equivalences from A to
l[= C[)\' We define Qa, Ta’ W and x(8) as
in (11.8). As in the proof of that proposition,
the mapping B~ x(@B) from W to Tx is 1-1.
We shall now show that it is in this case also
onto.

let x ¢ T)C Let B be the first element of
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of A for which x e Tﬁ' Since T, =4, p ¥ 0.

Suppose, contrary to our hopes,  has no pre-

decessor. Then {(Z’a} = % by the maximal-

a<p

ity of the given chain. Hence N {Q } =Q
a<p « P

andso T, = U {T } . Butthen xe T for
g a @
a<p

some a < B, a contradiction. Thus $f has a
predecessor p and x ¢ Tﬁ\ Tp*' Indeed, since
the chain is maximal, ({ﬁ identifies exactly two
([[3* classes, from which it follows that T[3 \ T[3 %
= {x} and therefore x(8) = x. The map B —~ x(8)
is therefore a bijection of W onto T)\. ‘Whence
lwl =1z | =Ix~eQl. But |Al -1=|wl,
whence |A| - 1= |X\Ql| and this is true for

all maximal well-ordered chains. Hence by def-

inition (11.1. 4) H({II exists and Hcfh = |X \Q|.

(11.10) Corollary. The lattices R and L are acces-

sible with height.
Proof. The lattice R 1is an initial segment of
the lattice R " of all equivalences on the set of

-classes of S, and R, 1is accessible with
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(11.11)

height by (11.9). A similar argument proves the
result for L.
Lemma. Let K and K' be two lattices. If
k e E’ k e L(' are accessible with height, then
(k, k') is accessible in rISX rlg' with height and
e, k00 = Tkl + Tl

Proof. Let {kﬁ }peB and {k; }yeC be maxi-
mal well-ordered ascending chains for k and
k' in K and K' respectively. We suppose that
B and C are disjoint except that the last ele-
ment of B is the first element of C. Let
A =B U C. Define

(k_,A) if ac B

@ (k,k') if a e C.
o

It is clear that {p } is a maximal ascend-
a” ach
ing well-ordered chain for (k, k') in E X ,IS' and
that Al -1=(IBl-1+ (lcl-1 =[xkl + Ixl.
1 : —
Let {(ka, ka)}aeA be any maximal well
ordered chain for (k,k'). For § ¢« A put B in

B if and only if ka =k, implies a > 8, when

B
a ¢ A, Similarly put vy in C if and only if
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ké = k;{ implies & > vy. It is then easily seen

{

and that {k'Y} is a maximal well-ordered chain

kB }BG B is a maximal well-ordered chain for k,
for k'. Let & ¢ W(A), and suppose (kY’ k;{) —<

1 : — 1 1
(k6,k ). Then either kY = ké and kY —< ké or

)
kY —<k6 and kY=k2_’. Since vy <§&, either
§e¢B or 6§ €« C but not both. Now, if A is
finite, then W =A N\ {0}, where 0 is the first
element in A, and BNC = {0}. Thus

Al -1=1|wl| =l@®UC)N{o} =|BUC|-1 =
(el -n+dcl -v=1l«l + lxl.

Otherwise, if |al is infinite, then
WCBU C CA and |W| = lA| Hence |A| =
|B| + lcl. Thus |Al-1=1|al =8| +]|cl| =
Bl -1+ [cl -1=1xll+ k. The result

follows.

Clearly, if K and K' are accessible lattices with
height, then (11.11) implies K X E‘ is also an accessible

lattice with height.
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(11.12) Lemma. If {Taf }aeA is @ maximal ascending
well-ordered chain to T in T, then it is also
a maximal ascending well-ordered chain to T
in ,j}
Proof. This is immediate from the (8.4) and

the ""covering lemma" (10.3).

(11.13) Theorem. Let g be the lattice of proper con-
gruences on S. Let j) = [,E’E’,%] e C. Then"p
is accessible in g if and only if E is acces-
sible in E(H) where H is the fixed subgroup
of S. Moreover, in this case

Pl = Iel+ el + 12l

Proof. By (7.8) there is a complete lattice
isomorphism between 9, and E We will thus
consider the acce$sibility of = (r,E, £)in T.

Suppose T is accessible, and let {Taf}ae =

A

{(La’ Ea,,rg‘a,)}o[GA be a maximal well-ordered
chain to 7. Obviously, for a suitable B con-

tained in A, {E } is a maximal well-
o aeB

ordered chain for E in E(H)‘ Hence E is
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accessible in E(H).

Suppose now E is accessible in E(H). To
show that T is accessible we begin as in
(11.11). Since by (11.10), r and ’£ are also

accessible, we can find maximal well-ordered

ascending chains Qy}wc , {Eﬁ}ﬂeB’ and
{16}6eD to r, E, and £, respectively. We

assume moreover that the last element of B is
the first element of C, that the last element of
C 1is the first element of D and that B, C and
D are otherwise disjoint. Let A=BU CU D
and order A in the obvious way. Define

(A,F ,4) if acB

T =

. (1 EA)if acC

(L’E’,&a) if e D.

is easy to see tha i imal
It is easy e t {Ta }aeA is a maxima

well-ordered ascending chain in T. Whence -

i ible in T. By (11.12 i
is accessible in T v ( ) {Ta}aeA is

also a maximal well-ordered chain to T in

A = RXEXL. By (11.6) E has height, and

~

since r and £ also have height it follows by
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double use of (11.11) that [A| - 1 = [|r || + | E]l

+ ||£|| . This proves the theorem.

(11.14)Corollary. Let :p be a proper congruence on S
such that there exists a finite chain of con-
gruences (of length n) to }9 which is maximal.
Then all chains to Jp have at most length n and
all maximal chains to P have precisely élength
n.

Proof. By (11.13) all well-ordered chains to
;p have length at most n, and all maximal well-
ordered chains have length n. Suppose there is
a totally ordered chain to }7 of length greater
than n. Then we can select a subchain of length

{(n+1) which is a contradiction. The result

follows.

(11.15)Theorem. Let g be the lattice of proper con-
gruences on S and let H be the fixed subgroup
of S. Then C is an accessible lattice with
height if and only if H is a group with principal

series. Moreover, if }3 =[r,E,£] ¢ C, then
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bl = lel+ Nzl + 1 gl
Proof. Let E be a normal subgroup of H.
By (11.4), E is accessible in E(H). The

theorem now follows by (11.13).

(11.16)Remark. By slight generalization of our argu-
ments we can obtain results for well-ordered
chains from :p to ;p' in C. Thus (11.13)

would become

(11.13)" Theorem. Let JD = [L’E’,{,] and Jo’ = [{:;E’;£]
be in C, and let ’]D _C_"jb'. Then Jo' is acces~
sible from :P if and only if E' is accessible
from E in N(H). Moreover in this case,

Ipt/pll = We/ell + leel + e sal.

Then (11.15)would become a theorem due to Preston

[17].

(11.15)" Corollary. Let }? and :P' be proper congruences

on 8 such that there exists a finite chain of

congruences (of length n) from p to (‘p' which
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is maximal. Then all chains from P to ;P'
have at most length n, and all maximal chains

from J) to J:)' have precisely length n.



§12. Appendix. The Regular Rees Matrix Semigroups

Of great importance in the study of ¢c-0-s semigroups
are the regular Rees matrix semigroups. It can be shown that
these semigroups are c-0-s and every c-0-s semigroup is
isomorphic to a semigroup of this type (cf. [2], Theorem 3.5).
These semigroups were first introduced by D. Rees {(On Semi-

groups, Proc. Cambridge Philos. Soc. 36(1940), 387-400).

We will briefly develop some of this theory in order to give an
example of the lattice operations involving permissible triples
in T and to give an example in which the strict inequality

is obtained in Lemma (8. 3).

(12.1) Definition. 1. Let I, A be index sets and let

G be a group (G is written multiplicatively

94
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and 0¢ G). A AXI matrix P with entries in
G U {0} is called reqular if P has at least one
nonzero entry in each row and column (P is called
a matrix over G U {0}).

2. Let S be a collection of I X A matrices
over G U {0} such that each A ¢ S has at
most one nonzero entry in G. Let P be a
regqular A X I matrix. For A,Be S, define
A - B = APB, where the latter is the regular ma-
trix product. Then S is called a Rees I X A

matrix semigroup, and is denoted by 2.°(I, G, A; P).

Note that we can write A = (i,g,\) for A e
M°(1,G,N;P), if g, the unique nonzero entry,
occurs in position (i,\). Also, M °(I, G, A; P)
is clearly a semigroup since (A -B)°C = (APB)PC

= AP(BPC) = A ° (B°C).

The structure of S =91°(1,G, A; P) is easily determined.
If we let [Xi] be the entry in P in position (\,i), then
direct calculation shows that A<B = APB = (i,g, \)P(j, h, p) =

(i, g[xjlh, u) where A = (i,g,\) and B = (j,h,p). Thus the
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product A+B is 0 if and only if [Xj] =0. Using the regu-

larity of P one can easily check the following theorem.

(12.2) Theorem. Let S =9°(I,G,A;P) be a regular

Rees matrix I X A semigroup. Then

(1) Ri: {i, g, \) | g e G, \e A} isan &R-
class for each i e I.

2) L)\: {i,g, N l ge G, ieI}is an f-class
for each X e A.

(3) Hix = {({i, g,\) | ge G} is an N -class for
each ieI, N ¢ A.

(4) £(m°) = {4, [)\i]_l,)\) | the )xith entry in P,
[Zi] # 0}

Proof. For example, we show (i,g,\) & (i,h,p).
Since P is regular, there is a nonzero entry in
the )\th row, say [\j] #0, and a nonzero entry
in the ch row, say [pk] #0 (remember P is a
A X1 matrix). Then direct calculation shows
(1,9, M0, M] g 'h,w) = (1,h, p) and

(A, h, W&, [uk] 'h g, N = @4, g, 0.
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(12.3)

Theorem. The regular Rees matrix semigroup

S =9n°(1, G, A;P) is completely 0-simple.
Proof. We will verify the conditions of

Proposition (0.23). The regularity of S is a

direct consequence of the regularity of P. If

A =(i,g,\) and [\j] #0, [pi] #0, then

(1,9, M0, M1 e ], 0,0 =6, 9,0,

If B = (k,h,v) then we have (k,h,g ‘[pi] 1, p)-

(i, 9, N\, [)xj]_l, v) = (k,h,v) and in a similar

fashion we can find X,Y ¢ S such that XBY = A,

It readily follows that S is O-simple. Now the

#® and XL-classes of S are precisely those

determined in Theorem (12.2) so that the absor-

bency condition will follow directly from the

definition of A°B which, if not 0, is

(i, g[Ak]h, v)e R N L =R, N L, where A, B

are as above. Thus S =9M°(,G,A;P) is a

completely 0-simple semigroup.

Rees' theorem is (mainly) the converse of (12.3): Let

S be a completely 0-simple semigroup. Then there exist
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index sets I and A, agroup G, and a regular A X1
matrix P such that S = #°(1,G, A;P) ([2], Theorem 3.5).
Further ([2], Corollary (3.12), suppose 9 °(,G, A, P) =
M° (', G', A';P") thenthere exists a bijection i~i' of T onto I',
a bijection A\~ \' of A onto A', and an iscmorphism
g—~>g' of G onto G' such that the element of P' in position
(\',i") is u)\[)\i]'vi where {u)\ | Ae¢ A} and {vi lie 1}
are families of elements in G. Conversely, if the above con-
ditions on the various mappings dencted by ' are all satis-
fied, then 20°(1, G, A; P) = n° (', G', A's P').

We shall not prove the results, as, after all, in all our
theory we have proceeded intrinsically, i.e.

, without refer-

ence to representations.

We will now proceed to construct the example promised
after Lemma (8.3). Let S =2°(I,G, A;P) be a regular Rees
matrix semigroup where I and A contain a common element
1, H;; =R; N L, is a group, and where in P we have
[11] = e, the identity of the group G. The H fixed in (1.4)
will be identified with H,;.

It is easy to check that g > (1,g,1) is an isomorphism
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of G onto H,;. Indeed, we can also check that
g~ (i, g[)\i]_l, \) is again an isomorphism of G onto the
group @ -class Hi)\, since Hix is a group H-class pre-
cisely when [Mi] #0 in P. Moreover, we have that E is
normal in G precisely when (1,E,1) is normalin (1,G,1) =
H;:.- Thus the nonzero translates, tEs of (2.3), are of the
form (i,gE,\) for some ge G, ie I, XNe A, The partition-
ing of S by the translates of E = (1,E, 1) is now obvious.
Furthermore, we can now check directly on P the con-
ditions of (3.1.7) and (4.2). For E normal in H =H;; =G,

we have:

(12.4) B'i g(E)Rj (i,j ¢ I) if and only if
(@) [vi] = 0 precisely when [vj] = 0; and
(b) for some g ¢ G, [}.Li]_l[p,j] ¢ gE whenever
[pi] # 0.

A dual formulation can be given for L)\ s(E)L .
~

It iseasytoderive (12.4.b) from (4.2.7b%). Suppose that
L)\ﬂ Ri and L)\ n Rj are groups for some fixed \. Then they contain
the idempotents e, = (i, [Xi]_l,X) and e = {3, [XJ']_I, A,

respectively. Thus under the congruence [ = [(E), we have
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el = @, E] LN and eJP = (5, Eqn] 1, N). Now if [pi] 0
(then also [unj] #0 by (12.4.a), let t =(k,e,pn) and compute
tel :tejD to obtain (k, [pi]E[M] Y, N) = (k, [WIEDN] L, 0.
Equating middle coordinates we have [p.i]E[)\i]—l = [p.j]E[)\j]_l.
Since E is normalin H =G = Hy,, we have [M] ‘[MIE =

B ] = [wil M[w]E and it follows that [pi] [wi] ¢ gE

for all such [pi] # 0 where g =[)\i]—l[)\j].

A dual formulation can be made for L)\'sV(E)LH.

We remark that P can be normalized so that certain
"'leading' entries are e, the identity of G (Tamura [20]).
In that case condition (12. 4. b) may be replaced by (b'):

[wil }[wi] € E, whenever [pi] #0 (cf. Howie [8]).

The reader should now recall the lattices of (8.1).

(12.5) Example. Let G be the cyclic group Z°. LetI =

{1,2,3}, A={1,2},

e e e
e &% a |

and let S =Mm°(,G, A;P).

P =

Let E, = {e,a%,a*} and E, = {e,a’}. First
observe that (12.4.a) does not apply since P

has no zero entries. Next note that
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_1 -
[12] = e¢E, and [21] l[22]e E, so that

[11]
Ry d(E;)R,. On the other hand [ll]_1[13] =eek
determining the coset eE; of (12. 4. b) while
[21]_1[23] = a ¢ eE, and it follows that R, and

R, are not Q(El) equivalent. Thus the equiva-
lent classes for d(R,) are {Ry, R, } and {R; }.

In a similar fashion one sees that the ''lead-
ing" entries of P in the first row (and in posi-
tion (2, 1)) will always fix E, as the coset of E,
determined in (12.4.Db). But in this case
(211 Y [221¢E,, [21] '[23] /E, and [22] (23] € E,
so that the equivalence classes of Q(Ez) are just
{Ry}, {R;}and {Rs }. Hence VRg(Ei) = d(E,),

~

(the supremum being taken over {l,2}). But

VN(Ei) =G, and by (12.4.b) R, d(G)R, for all

i and j. Thus g(G) is the universal congruence
on {R,, R, Rs } with the one equivalence class
{R,,R,,Rs }. It follows that \/Rg(Ei) c d(VE)

and thus the containments of (8.3) are some-

times proper.



REFERENCES

1. Birkhoff, Garrett, Lattice Theory, revised edition, Am.
Math. Soc. Colloquium Publ. 25, 1948.

2. Clifford, A. H. and Preston, G. B., The Algebraic Theory
of Semigroups, Vol.1,2,Math. Survey 7, Am. Math. Soc.,
1961, -1967.

3. Cohn, P.M., Universal Algebra, Harper and Row, New
York, 1965.

4. Gluskin, L. M., Completely simple semigroups, Uc. Zap.
Kharkov Ped. Inst. 18 (1956), 41-55 (Russian).

, Normal series in completely simple semi-
groups, Uc. Zap. Kharkov Ped. Inst. 21 (1957), 99-106
(Russian).

6. Green, J.A., On the Structure of Semigroups, Annals of
Mathematics, Vol. 54 (1), 1951, 163-172.

7. Hall, Marshall, Jr., The Theory of Groups, The Macmillan
Company, New York, 1959.

8. Howie, J.M., The lattice of congruences on a completely
0-simple semigroup, mimeographed notes, Dept. of Math.,
University of Stirling, Stirling, Scotland.

102



Kapp and Schneider 103

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Kapp, Kenneth M., On Croisot's theory of decompositions,
Pacific J. of Math. (to appear).

Kurosh, A.G., The Theory of Groups, 2nd ed., translated
from the Russian by K. A. Hirsch, Vol. 2, Chelsea Pub-
lishing Co., New York, 1956.

Lallement, G., Congruences et equivalences de Green
sur en demigroupe regulier, C. R. Acad. Sc., Paris 262
(1966), 613-16.

, Demi-groups reguliers, Annalidi Matematica
pura ed applicata, 1967, LXXVII, Series 4a, 47-131.

Munn, W.D , Brandt congruences on inverse semigroups,
Proc. London Math. Soc., (3) 14 (1964), 154-64.

, A certain sublattice of the lattice of con-
gruences on a regular semigroup, Proc. Cambridge Philos.
Soc., 60 (1964), 385-91.

Preston, G.B., Congruences on Brandt semigroups, Math.
Annalen 139 (1959), 91-4.

, Congruences on completely 0-simple semi-
groups, Proc. London Math. Soc. (3) 11 (1961), 557-76.

, Chains of congruences on a completely 0-
simple semigroup, J. Australian Math. Soc., V (1) (1965).
76-82.

Stoll, R.R., Homomorphisms of a semigroup onto a group,
Amer. J. Math., 73 (1951), 475-481.

Szasz, Gabor., Introduction to Lattice Theory, 3rd ed.,
translated from Hungarian by Dr. B. Balkay and G. Toth,
Academic Press, New York, 1963.

Tamura, T., Decompositions of a completely simple
semigroup, Osaka Math. J. 12 (1960), 269-275.






LIST OF SYMBOLS

A, L, 2; 9', X, 3;4, 5 Green's relations

Ra’ Lb’ He’ 6 Green's equivalence classes

R(a), L(a), T(a), 3 Principal ideals

s, 3 Semigroup with adjoined identity

&B), 95 £X), 21 Set of idempotents in S, X

AV, 14, 57 Inf and sup operations in a
lattice

S, lé, 21 A given fixed completely 0-
simple semigroup

H, 16, 21 A fixed nonzero group % -class
of S

C, 16, 54 Lattice of all proper congruences
on S

N, N(H), 16, 42 Lattice of normal subgroups of H

105



106 List of Symbols

R[L_ ], 16, 18 Lattice of all equivalences on
e the set of & [£]-classes of S

R[L], 16, 18, 47, 48 Initial segment of R [L ]

A=RXNXL, 16 Cartesian product lattice

T, 16, 54, 57ff Sublattice of A of permissible
triples ~

H, 17, 42 Lattice of congruences on S lying
under 2

C, 24 Set of translates

d, r, 17,32; d(E), L(E)’ 17, Egquivalence relations on the
34; [, £, s(E), ¢ ®)] set of & [£L]-classes of S

~

L(E), 16, 26 Congruence associated with E

v, ) F, FH)], 17,34 Congruence associated with

e[4]
(r,E, £2), 17, 39 Permissible triple
[r,E, 2], 40 Congruence associated with per-

missible triple

(g, 20, 45 Induced equivalence relations

B, 62ff Lattice of Brandt congruences

Br, 64 Condition Br

>, 70 Covers

E’g(X), 76, 84 Lattice of equivalences on the
set X

W@A), 79 Set of predecessors in the set A
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|al, 77 Cardinality of the set A
lkll, 77 Height of k in a lattice
m° (1, G,A;P), 95 Rees I X A matrix semigroup
(i,g,\), 95 Element in 97°(1, G, A;P)

: . th
[Ai], 95 The entry in the \i~ position in

the matrix P
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chain, 76, 77
—ascending well ordered, 77
—length, 77

condition Br, 64

congruence, 2
—associated with E, 26
—associated withr[£], 34, 35
—associated with (r,E, £), 39, 40
Brandt —, 63 ff
left —, 12
— under %, 41 ff
— under® , £, 44 ff

cover, 70
duality, left-right,2
Green's Lemma, 22

ideal (left, right), 7
principal (right, left, two-sided)—, 3, 12
0-minimal (right, left) —, 7, 8, 12
idempotent element, 7
primitive —, 9
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Jordan-Dedekind Chain Condition, 73
lattice, 14, 57, 58

accessible —, 77

complete —, 15

— of equivalences on a set, 61, 83
modular —, 73

(upper) semimodular —, 70

— with height, 78
— with principal series, 78

matrix
Rees I X A matrix semigroup, 95
regular —, 95

order
partial —, 9
— set, 9
well —, 76

permissible triple, 17, 39
predecessor, 79

relation, 1
antisymmetric —, 9
equivalence —, 1
Green's —, ®, £, 2, §, A, 3, 4, 5
induced equivalence —, L(z’), i(g'), 45

reflexive —, 1
symmetric —, 1
transitive —, 1

product of —, 4

semigroup
absorbent —, 10ff
adjoined identity —, 3

Brandt —, 62ff

completely 0-simple —, 9, 10
Rees matrix —, 94 {f

regular —, 6, 7

0-bisimple —, 8, 12
O-simple —, 8

subgroup He’ 12, 13
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translate, 24

transversal, 83



