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1. Introduction 

Let X denote a normed linear space over the real or complex field, X' the dual 
space of X, G(X) the set of all continuous mappings of SeX) into X, where SeX) is 
the unit sphere of X, i.e. the set of all xeX such that Ilxll =1. Given xeS(X), let 
D(x)={jeX' :f(x)=lIfll =1} ;and,given TeG(X), let V(T,x)={j[T(x)]:feD(x)} . 
The numerical range VeT) of a continuous mapping TeG(X) is defined by 

V(T)= U{V(T,x):xeS(X)}. 

In the special case when X is a Hilbert space and D (x) can be identified with {x}, 
the numerical range of a linear operator has a long history [7]. Under the name 'field 
of values', the concept has been extended by F. L. BAUER [1] to linear operators on 
all finite dimensional normed linear spaces. The numerical range of a linear operator 
on a semi-inner-product space has been studied by G. LUMER [4]. A normed linear 
space X has, in general, many semi-inner-products that correspond to the norm of X. 
The choice of one of these semi-inner-products corresponds to the choice of a mapping 
x--.f" of SeX) into X' such thatfxED(x) for each x. Then the numerical range WeT) 
for this semi-inner-product is given by 

W (T) = {fxCT x):xeS(X)}. 

Thus if Tis a continuous linear operator, VeT) is the union of all the numerical ranges 
WeT) in the sense of LUMER. 

When T is a continuous linear operator it is classical that VeT) is a convex set 
if X is a Hilbert space [7] , but an example is given in [5] of a linear operator on a 
two dimensional normed linear space for which VeT) is not convex. Our main result 
is that V( T) is connected for every normed linear space X and every TeG (X) (unless 
both Xis the real numbers and T( -tI)¥= -T(tI) where S(X)={tI, -tID. We give two 
proofs of this result and include an example of a (continuous) linear operator on a 
real or complex two dimensional semi-inner-product space for which WeT) is not 
connected. 
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Our first proof of the connectedness of VeT) depends on the upper semi-continuity 
of the set-valued mapping x-D(x) with respect to the weak* topology on X'. We 
show that this mapping is also upper semi-continuous for the norm topology on X' 
when X = (co), the sup norm space of sequences converging to 0, (and also of course 
when X has finite dimension) but not when X =( c), the sup norm space of convergent 
sequences, or for certain other spaces. As an alternative to upper semi-continuity we 
also work with a topology on the set of subsets of X', which, although it is probably 
less familiar than upper semi-continuity, permits us to use the class of continuous 
functions and their widely studied properties in place of the class of upper semi­
continuous mappings. Our second proof shows that when X is not the real numbers 
P={(X,f)EXX X':XES(X),fED (x)} is connected in certain topologies, and this may 
be of interest in itself. 

2. Connectedness of the numerical range 

Let ~ (U) denote the set of all su bsets of the set U. If E is a topological space, let 
{~(U): U£E; U is open} be a basis for the .-topology on ~(E). Adjectives used with 
reference to the .-topology will bear the prefix '.-', e.g .• -open. A mapping x-A (x) 
of a topological space F into the set of subsets of a topological linear space E is upper 
semi-continuous (usc) on F if and only if for every XEF and every neighbourhood U 
of 0 in E there exists a neighbourhood V of x such that for all YE V, A (y)£A (X) + U 
(cf. [6], pages 35-36). There are other definitions of upper semi-continuity currently 
in use (cf. [2]). In fact, what we are calling .-continuous is sometimes called upper 
semi-continuous. 

LEMMA 1. Let F be a topological space and let E be a topological linear space. If 
the mapping ~-A (x) is -r-continuous, then it is usc. lffor every x in F, A (x) is a compact 
subset of E, then the function A is -r-continuous if and only if it is usc. 

Proof' Assume A is -r-continuous. IfxEFand Uis an open neighbourhood ofOin E, 
then, since~(A(x)+ U) isa -r-opensubsetof~(E), it follows that A -l[~(A(x)+ U)] = 
{YEF:A(y)£A(x)+U} is an open subset of F. Hence A-l[~(A(x)+U)] is a V 
whose existence is required in the definition of usc, and A is usc. 

Assume that A is usc. Let ~ (U), with U an open subset of E, be a basic .-open set. 
If xEA- 1 (~(U») then A (x) £ U. The compactness hypothesis now provides a neigh­
bourhood of 0 in E, denoted G, such that A(x)+G£ U (see [3] pages 35 and 36 for 
the details). Since A is usc there is a neighbourhood V of x such that for each YEV, 
A (y)£A(x)+G£ U. That is, A(Y)E~(U). ThusxE V£A- 1 [~(U)]. SoA- 1 [~(U)] 
is open and A is -r-continuous. 

An application of the Hahn-Banach Theorem shows that for each XES(X) we 
have D (x) "# 0. In the weak* topology, D (x) is a closed subset of the (solid) unit ball 
in X' and hence is compact (cf. [3] page 155). Since D(x}is convex, D(x) is connected 
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in any topology which makes X' a topological linear space, because in any such 
topology (J.-+(J.f +(1-(J.) g, o~ (J. ~ 1 is a continuous function. 

LEMMA 2. Let S(X) have the norm topology and let X' have the weak* topology. 
Then the mapping x-+D(x) is ,-continuous and usc. 

Proof' Since D(x) is compact in the weak* topology, Lemma 1 shows that it is 
sufficient to prove that x-+D(x) is usc. Suppose that the mapping is not usc. Then 
there exist xeS (X) and a weak* neighbourhood U of ° in X' such that for every 
positive integer n there exists YnES(X) andfnED(Yn) satisfying llYn-xii <1/n and 
fn¢D (x) + U. Since Ilfnll =1, there exists a weak* cluster point g of {fn} with Ilgll ~ 1. 
Then 

Ig(x) - 11 ~ Ig(x) - fn(x)1 + Ifn(x) - fn(Yn)1 
~ Ig(x) - fn(x)1 + IIx - Ynll. 

Since Ilx-Ynll < l/n and g is a weak* cluster point of {fn}, the righthand side can be 
made arbitrarily small by correctly choosing n, and so g(x) =1. Therefore geD(x). 
However, since g is a weak* cluster point of {fn} and U is a weak* neighbourhood 
of 0, we have fneg+ Us;; D (x) + U for some n, which is contradictory. 

LEMMA 3. Let TEG(X), and let the scalar field have its usual topology. Then the 
mapping x-+ V(T, x) is a ,-continuous and usc mapping of S(X) with the norm topology 
into the set of subsets of the scalar field. 

Proof' Observe that V(T, x), for xeS(x) and TeG(X), is compact, because it is 
the image of the weak* compact set D (x) under the weak* continuous mapping 
f -+ f(T(x)). Therefore, by Lemma 1, it suffices to prove that x-+ V(T, x) is usc. 

Let xeS(X) and B>O, and let U={gEX' : Ig(T(x))1 <B/2}. Then U is a weak* 
neighbourhood of 0, and so, by Lemma 2 and the continuity of T, we may choose 
<»0 such that for every yeS(X) with Ilx-YII <<> it follows that II T(x)-T(Y)II <B/2 
and D(y)S;;D(x)+ U. So if yeS(X), IIx- yll <<>, andfED(y) thenf =g+u for some 
geD(x) and UE U. Since g(T(x))e V(T, x) the distance from f( T(y)) to V(T, x) is 
at most If(T(y))-g(T(x))1 and I f(T(y))-g(T(x))1 ~ If(T(y))- f(T(x))1 + IU(Tx)1 
< II T(y)-T(x)11 +B/2<B. But f(T(Y)) was an arbitrary point of V(T, y), and so 
V(T, y)£ V( T, x)+ {t E scalar field: It I <B}. Thus x-+ V(T, x) is usc. 

The two proofs of the connectedness of the numerical range which we give use 
the connectedness of S(X). Since S(X) is disconnected only when X is R, the real 
numbers, that case is treated separately. In fact when X=R, V(T)={l/(J.T«(J.)}u 
{-1/(J. T( -(J.)} where S(X)={(J., -IX}. This gives: 

PROPOSITION. If X=R, V(T) is connected if and only if T( -IX)= -T«(J.), where 
S(X)={IX, -IX}. In particular, if T is linear, V(T) is connected. 

Both proofs also use the following fact: If {Lx} is a family of connected subsets 
of some topological space and if G1 uG2 = ULx is a decomposition of ULx into two 
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non-empty disjoint sets, GI and G 2 , open in the relative topology, then for each x the 
entire set L.~ lies in either GI or G2 • 

THEOREM 1. Let TEG(X). If X#R then V(T) is connected. 

Proof" Suppose X#R and V(T) is disconnected. Then V(T)c;;Ht vH2, where HI 

and H2 are open sets giving a decomposition V(T)=GIVG 2 of V(T) into disjoint, 
non-empty, relatively open sets Gj=V(T)(\Hj for i=l and 2. By Lemma 3, the 
mapping x-+ V( T, x) is r-continuous, and therefore, for i = 1 and 2, the inverse image 
Uj of the r-open set &(HJ under x-+ V(T, x) is an open subset of S(X), the domain 
of the mapping. For XES (X), the set V(T, x) is connected, being the image of the 
set D (x), which is connected in the norm topology, under the norm continuous 
mappingf -+ f(Tx). Hence, by the sentence preceding the theorem, V(T, x)cGtc;;Ht 
or V(T,x)c;;G2c;;H2. Thus XEUt or XEU2, but not both. We deduce that S(X)= 

UIVU2, where U1(\U2=0. But this is impossible, since S(X) is connected, and the 
theorem is proved. 

Here we begin our second proof of the connectedness of V(T). Let P denote 
{(X,J)EXX X' :XES(X),JED(x)}. We shall first prove the following general theorem: 

THEOREM 2. Let X # R, and let X have the norm topology. Let X' have a topology 
satisfying 

(a) X' is a topological linear space, 

(b) x-+D(x) is uscfor all XES (X), 

(c) D(x) is compact,for all XES(X). 

Then P is connected as a subset of X x x' with the product topology. 

We shall then deduce: 

COROLLARY. Let X # R, and let X x X' be topologized by the product of the norm 
topology and the weak* topology. Then P is connected, as a subset of Xx X' . 

Finally we shall show that this implies Theorem 1. 
Proof of Theorem 2: We shall first show that every sequence {/;} in X' which is 

eventually in every neighbourhood of D(x) has a limit point g in D(x). For suppose 
this is false, then D (x) has an open covering by sets each containing only finitely many 
Rs. Since D (x) is compact it has a finite covering by such sets. But the union of the 
sets in this finite covering is a neighbourhood of D(x) containing only finitely many 
Rs. Since this is a contradiction, the /;'s must have a limit point g in D (x). 

Let n:P-+S(X) denote the projection mapping (x,J)-+x. Then n is a closed 
mapping. For suppose K is a closed subset of P and x is a limit point of n (K). Then 
there exists {(x j,/;)} c K such that x =limxj =lim n(x;,/;). Since t-+D(t) is usc, {D(xj)} 

is eventually within each neighbourhood of D (x). SincehED (Xj),{/;} is eventually in 
each neighbourhood of D(x) and hence has a limit point g in D(x). Thus (x, g)E 

{(xj,h)}C;;K, whence xEn(K), and so n(K) is closed. 
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Suppose that P = G1 uG2 where the G/s are non-empty, disjoint, open and closed 
subsets of P. For each XES (X) the set n- 1 (x) is connected because it is homeomorphic 
to D (x). The set n- 1 (x) must thus be a subset of either G1 or G2• It follows that 
n (G 1)rm (G2 ) =0. Since n (G1) and n (G 2 ) are closed and cover SeX), this contradicts 
the connectedness of SeX). Hence no such G;'s can exist and therefore P is connected. 

The Corollary now follows immediately from Theorem 2, in view of Lemma 2 and 
the compactness of D(x) in the weak* topology. 

Let X x X' have the product topology formed from the norm topology of X and 
the weak* topology of X'. If X is infinite dimensional, it can be shown that the 
mapping (x,J)-4 f(x) is not continuous on Xx X', because it is unbounded on every 
open subset of Xx X'. However: 

LEMMA 4. Let F be a norm-bounded subset of x'. Let X x X' have the product 
topology formed from the norm topology of X and the weak* topology of X'. Then the 
mapping (x,J)-4 f(x) defined on Xx X ' is a continuous mapping of the set Xx F with 
the relative topology. 

Proof: Suppose that F is contained in a ball of radius r centered at the origin of X'. 
If(xi,J;) is a net in Xx F, 

Ifi(xi) - f(x)1 ~ Ifi(x - xi)1 + Ifi(x) - f(x)1 
~ r IIx - xiii + Ifi(x) - f (x)l. 

Thus J; (Xi) will converge to f(x) if both X/-4X in the norm topology and J;-4 f in the 
weak* topology, i.e. if (x i ,f.)-4(x,J) in X x X'. 

Second Proof of Theorem 1. Let X x X' be topologized as it was in the Corollary 
to Theorem 2 and Lemma 4. We view the mapping (x,J)-4 [T(x)] defined on P as 
the composition of the continuous functions (x,J)-4(T(x),J)-4 f[T(x)]. (Lemma 4 
shows the continuity at the final step.) Since by the Corollary to Theorem 2, P is 
connected, it follows that VeT) must be connected, as it is the image of P under a 
continuous function. 

However, the numerical range WeT) need not be connected: 

EXAMPLE. Let X be R2 or C2 with the norm given for each X=(~l' ~2)EX by IIxll = 
max(l~ll, 1~21). Given a = (<x 10 «2)ES(X), and X=(~l' ~2)EX, letfa(x), Tbe defined by 

fa{x)=~~l;l lif:f II <Xl I =1, TX=(~l'O) ' 
~~2"'2 <X11<1. 

ThenfaED{a), and T is a continuous linear operator. Also 
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Therefore the numerical range W( T) in the sense of Lumer for the semi-inner-product 
space corresponding to the mapping a-+ fa is the set with exactly two elements, 1 and o. 

3. Upper semi-continuity and .-continuity of the mapping x-+D(x) 
with the norm topology on X'. 

If X has finite dimension, the norm topology coincides with the weak* topology 
on X', and so, by Lemma 2, the mapping x-+D(x) is upper semi-continuous and 
.-continuous with respect to the norm topology on X'. We show that the mapping 
x-+D(x) is also upper semi-continuous and .-continuous in this sense when X=(co), 
but not for certain other spaces X including the space (c). 

Let F denote either the real or the complex field, and P the set of all positive 
integers. We denote by (m), as usual, the Banach space of all bounded mappings of 
Pinto F with the sup norm 

IIxll oo = sup{lx(n)/:nEP} (xE(m)), 

and by (c) and (co) the subspaces of(m) consisting of all sequences that converge and 
converge to zero respectively. Also, as usual, we denote by (ld the Banach space of 

ao 
all mappings x of Pinto F such that Ilxlll = L Ix(n)1 <00, normed by 11·111. 

n= 1 

THEOREM 3. Let X=(co). Then the mapping x-+D(x) is a usc and .-continuous 
mapping of S (X) into subsets of X' with respect to the norm topologies in X and X'. 

Proof· To each elementf of X' corresponds a sequence P'k} of elements of F such 
00 . 

that L IAkl = II f II and 
k=l 00 

f (x) = L AkX(k) (XEX). 
k=l 

Given XES(X), let Ex={kEP:lx(k)1 =1}. Then Ex is a non-empty finite set. 
Let aES(X) and e>O. Since the set {kEP:la(k)I~1/2} is finite 

sup {Ia (k)l: kEP\Ea} = 1 - 1'/ 

with 1'/>0. Choose C> with O<c><min(e, 1'/), let bES(X) with Ilb-allao<c>, and let 
fED (b). The sequence {Ak} corresponding to f satisfies 

ao 00 

L IAkl = L Akb(k) = 1. 
k= 1 k= 1 

Therefore Ak =0 (kEP\Eb) and Ai< = IAkl b (k) for all k. Let fJ.k = lAkl a(k) (kEP), and let g 
be the element of X' corresponding to the sequence {fJ.k}' Since Ilb-ali ao <1'/, we have 
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Eb~Ea, and therefore la{k)1 = 1 whenever Ak;60. Therefore 

'" 00 

Ilgll = L Illkl = L IAkl = 1, 
k=l k=1 
00 00 

g{a) = L 11k a (k) = L IAkl = l. 
k=1 k=1 

Thus gED{a). Also 
00 

IIf - gil = L IAk - 11k I 
k=1 

00 

= L IAkllb{k) - a{k)1 :::;; lib - all ", < e . 
k=1 

Sincefis an arbitrary element of D{b), gED{a), andf=g+{f-g), this proves that 
D{b) ~D{a)+ {hEX': Ilhll <e}. Thus x-+D (x) is usc with respectto the norm topologies 
in Xand X'. Furthermore x-+D{x) will be ,-continuous if each D{x) is compact. For 
each XES{X), D{x) is a subset of {fES{X'):support (f)~E-,J which is homeo­
morphic to the compact set S{Fk), where k is the order of Ex; and Fk has the norm 

II{tl' .. . , tk)11 = L Itil· Therefore since D{x) is closed in the norm topology, it is compact. 
That P is connected when X =( co) and X' has the norm topology is a special case 

of Theorem 2. 

THEOREM 4. Let X be a linear subspace of (m) such that ( c) ~ X. Then the mapping 
x-+D{x) is not upper semi-continuous with respect to the norm topologies in X and X' 
(and therefore not ,-continuous). 

Proof" Given nEP, let en, a, bn denote the elements of X defined by 

{
l if k = n 

en(k) = 0 if k;6 n' 
1 

a{k) = 1 - - (kEP) , 
k 

b (k) = {a{k) if k <n 
n 1 if k ~ n 

Let/" be the element of X' defined by fn{x)=x{n) (XEX). Given gED{a), we have 

g{en) = O{nEP); 

for we have lIa+ ~enll '" = 1 whenever I~I :::;; lin, and so 

1 ~ Ig{a + ~en)1 = 11 + ~g{en)1 (I~I:::;; lin), 

which is impossible unless g(en) =0. Therefore, for all gED{a), 

IIfn - gil ~ l(fn - g)(en) I = 1 (nEP). 

However /"ED{bn) and Ilbn-all", =lln. Thus bn tends to a, but D{bn)$D(a)+ UI , 

where UI = {f EX' : II f II < 1}, and the result follows. 

THEOREM 5. Let X={ll). Then the mapping x-+D{x) is not upper semi-continuous 
with respect to the norm topologies in X and X' (and therefore not ,-continuous). 
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Proo):· Given nEP, let a, bn be the elements of S(X) defined by 

a (k) = 1/2k (k E P), b (k)=\2
n
/(2

n
-l)2

k (k~n) 
n /0 (k>n). 

Then 
n 00 

1 

Letfn be the functional defined by 
n 

fn(x) = L x(k) (XEX). 
k=l 

and let gED(a). Since a(k»O(kEP), we have 

00 

g(X) = L x(k) (XEX). 
k= 1 

AlsofnED(bn) and II fn-gll = 1 (nEP). Thus the mapping x-+D(x) is not upper semi­
continuous with respect to the norm topologies in X and X'. 

Note added in proo}:" Our lemma 2 is known, cf. Theorem 4.3, D. F. CUDlA: The 
Geometry of Banach spaces. Smoothness. Trans. Amer. Math. Soc. no, 284-314 
(1964). 
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