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1. INTRODUCTION 

In [1] Amitsur proved that if R is a ring with no nil ideals, then the 
polynomial ring R[t] is semiprimitive, i.e., has {O} Jacobson radical. In [3] 
Bovdi proved that if R has no zero divisors and G is an SN group with a 
normal system whose factors are Abelian torsion-free, then the group ring 
RG is semiprimitive. We obtain both of these results as corollaries of a more 
general theorem concerning semigroup rings. Let D be a semigroup with 
two properties: the r property (Definition 2.4) and the 2Q property 
(Definition 2.17). We call such a semigroup a 2Qr semigroup, and we prove 
in Section 3 that if R is a ring with no nil ideals and D is 2:,,]r with identity 
element, then the semigroup ring, RD, is semiprimitive (Lemma 3.6). 

In Section 2 we investigate the 2Q and r properties. We show that the 
class of oriented semigroups (Definition 2.6), which includes all directed 
groups (Proposition 2.7), are r (Proposition 2.12). Every strict, fully ordered 
semigroup with more than one element is 2Qr (Theorem 2.22), and every 
SN group with a normal system whose factors are Abelian torsion-free is 
also 2Qr (Theorem 2.23). In [7] Kemperman conjectured that every 
torsion-free group is 2Q. It is conceivable that every torsion-free group is 
also r. 

In Section 4 we prove that if R is a ring with no nil ideals and G is a group 
such that the order of every element of finite order in G is cancelable in R 
(4.3) then RG has no nil ideals (Theorem 4.4). As corollaries we obtain two 
theorems of Passman [lO]. We then combine our two main theorems (3 .6 and 
4.4) to the special case of Abelian groups with at least one element of infinite 
order. We prove that if the upper nil radical of R is {O} and if every integer n 
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such that G has an element of order n is cancelable in R, then RG is 
semiprimitive. When R is commutative, this yields part of a theorem of 
Connell's [4]. 

2. SEMIGROUPS 

Throughout this section, D will denote a semigroup. If A CD we denote 
by ( A ) the smallest subsemigroup of D containing A. The cardinality of A 
is denoted by 1 A I. 

DEFINITION 2.1. A nonempty subset G of D is grouplike (in D) if 

(a) a, bEG imply abEG, 
(b) a,abEGimply bEG. 

DEFINITION 2.2. If A CD, A =f=. 4>, then {.A ) = n {G 1 A C G C D and G 
is grouplike}. 

Remarks. The intersection of a collection of grouplike subsets is 
grouplike. The set {.A } is the smallest grouplike set in D containing A. 
If D has identity 1 then 1 E {.A ) by Definition 2.l(b). If D is a group, a 
subset A of Dis grouplike if and only if it is a subgroup, and {.A} is just the 
subgroup generated by A. The following result will be needed later. 

PROPOSITION 2.3. Suppose cp is a homomorphism taking the semigroup D 
into a semi group E. Then 

(i) If His grouplike in E, then cp-l(H) is grouplike in D. 
(ii) If A CD, then cp({.A}) C {.cp(A)}. 

Proof. (i) If a, bE cp-l(H), then cp(a), cp(b) E H. Hence cp(ab) = 

cp(a)cp(b) E H, since H is grouplike, so ab E cp-l(H). Thus Definition 2.l(a) is 
proved. Further, if a, ab E cp-l(H), then cp(a), g:(a)cp(b) E H whence cp(b) E H, 
since H is grouplike. Hence bE cp-l(H) and Definition 2.l(b) is proved. 

(ii) By (i), K = cp-l( {. cp(A» ) ) is grouplike and clearly A C K, 
whence {.A} C K. It follows that {.cp(A») = cp(K) d cp({.A } ). 

Remark. The additive semigroup D = Z EB P where Z denotes the 
integers and P the non-negative integers furnishes an example for which 
there is proper containment in Proposition 2.3(ii). Just let E = Z and define 
an epimorphism cp: D --+ E by cp(n, p) = n + p. Then if A = {O} EB P, 
cp({.A ) = P =f=. Z = {.<p(A)}. Also, A is an example of a grouplike set for 
which cp(A) is not grouplike. 

The following definition is motivated by Herstein's proof ([6], p. 33) of 
Amitsur's theorem [1]. 
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DEFINITION 2.4. A semigroup D is said to be a r-semigroup if and only 
if it satisfies: 

(r) For all nonempty finite sets A contained in D, there exists 
gin D, such that for every finite set B contained in { Ag}> there 
exists an integer n = n(B), for which (Ag)nB n B = cp. 

Remark. If D is r then D satisfies: 

(r') For all finite sets A contained in D there exists g E D, such 
that for every finite set Bo contained in { Ag}> there exists an 
integer n = n(Bo), such that (Ag)n n Bo = cp . 

Just let B = (Ag) U Bo and the proof is immediate. 

LEMMA 2.5. If D is a group, then D is r if and only if Dis T'. 

Proof. By the above remark, it suffices to prove that T' implies r if D 
is a group. Let (Ag)nB n B =1= cp for all integers n. Put Bo = BB-I. Then 
Bo k {Ag}> and we have (Ag)n n Bo =1= cp for all integers n, a contradiction. 

Our aim is to show that a certain class of partially ordered (p.o.) semigroups 
consists of r-semigroups. If in a p.o. semigroup D, a < b implies ac < bc 
and ca < cb for all c in D, we say that the partial order of D is strict or D is a 
strict p.o. semi group. (Fuchs [5], p . 153). We write a ~ A if a is a lower 
bound for the set A and A ~ b if b is an upper bound for the set A . Following 
Fuchs ([5], p. 154), we set 

and 

P z = {a E D I ax ~ x for all xED}, 

P r = {a E D I xa ~ x for all xED} 

N r ={a ED I xa ~ x for all XED}, 

N z = {a E D I ax ~ x for all xED}. 

Also Pr *, Pz *, N r *, N z * are defined similarly with the inequality being strict 
and P = Pz n P r , N = N z n N r , p * = P z* n P r *, N * = N z* n N r *. A 
partially ordered semigroup(group) which is a directed set is called a directed 
semigroup(group) . However, for us a useful generalization of directed groups 
to semigroups is given by: 

DEFINITION 2.6. 

(i) A positively oriented semigroup D is a p.o. semigroup with at least 
two elements, such that for all nonempty finite sets A contained in D there 
exists u, x in D for which A ~ u and Ax k P z • 
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(ii) A negatively oriented semigroup D is a p.o. semigroup with at least 
two elements, such that for all nonempty finite sets A contained in D there 
exist v, y in D for which v ~ A and Ay ~ N! . 

(iii) A semigroup D is oriented if it is either positively or negatively 
oriented. 

PROPOSITION 2.7. Let G be a group and let I G I > 1. Then G is directed 
if and only if G is oriented. 

Proof. Let G be directed and suppose <p =I- A ~ G, where A is finite. 
There exist v, u in G such that v ~ A ~ u. Hence Av-l ~ 1 and so 
Av-l ~ P! , whence G is oriented. The converse is trivial. 

Remark. An example of a strict oriented semigroup which is not directed 
is furnished by the additive half-plane {(Xl' X 2) : Xl ~ O} with (Xl' X 2) < 
(YI ,Y2) if and only if Xl < X2 and YI < Y2. Next let D be the upper left 
quadrant of the plane under addition, D = {(Xl' X 2) I Xl ~ 0, X 2 ~ O} with 
(Xl' X2) ~ (YI 'Y2) if and only if Xl ~ YI and X 2 ~ Y2 . Then P = {(O, x2)}, 

N = {(Xl' O)} and D is a commutative cancelative (hence strict) partially 
ordered semigroup with identity element (0,0) which is directed but not 
oriented. This last example is due to Charles Holland. 

In a strict fully ordered semigroup D, P! = Pr = P, N! = N r = N, and 
D = P u N* = N u p* (Fuchs [5], p . 159). 

PROPOSITION 2.8. Every strict fully ordered semigroup with more than one 
element is oriented. 

Proof. Let D be strict fully ordered and suppose D is not oriented. 
We shall derive a contradiction. Since Definition 2.6(i) is false, there exists 
a finite subset A of D, such that, for all xED, Ax n N =I- <p. Let a = min A. 
Then for all xED, ax E N*. Similarly, by negating Definition 2.6(ii), there 
exists b in D such that for all Y in D, by E P*. It follows that ab E N* and 
ba E P*, whence bah < band bab > b-a contradiction. 

DEFINITION 2.9. If D is a p.o. semigroup, let f(A) = {x E D I there 
exist c, c' E <A) with X ~ c and c'x E PI}. 

LEMMA 2.10. Let A be a nonempty subset of the p.o. semi group D. 

(i) If f(A) =I- <p, then f(A) is grouplike in D. 
(ii) If A ~ P!, then ~A) ~ f(A). 

Proof. (i) If x, Y E f(A), then there exist c, c', d, d' in <A) such that 
X ~ c, c'x E P! andy ~ d, d'y E p!. Hence d'c'xy ~ d'y, whence d'c'xy E p!. 
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Also xy ::::;; cd and hence, since d'c' and cd are in (A), xy E f(A). Thus, 
Definition 2.l(a) is satisfied. If x, XYEf(A), then there exist c'c',j,j' in 
(A) such that x ::::;; c, c'x E P! , and xy ::::;;j, 1'xy E (!I\ . Hence 1'cy ?::- 1'xy, 
whence l' cy E P! . Also Y ::::;; c' xy ::::;; c'f and hence, since c'f and l' c are in 
( A ) , y E f(A). Thus Definition 2.1(b) is satisfied and f(A) is grouplike. 

(ii) Let x E A C p!. Then c = x and c' = x satisfy the 
requirements of Definition 2.9. Hence A C f(A) and so by (i), « A ) C f(A). 

Remark. Ij D is a p.o. group and A ?::- 1 then f(A) is the convex subgroup 
generated by A. 

LEMMA 2.11. Let D be a strict p.o. semigroup. Ij D is positively oriented, 
then jor all finite subsets A oj D there exists an x in D such that Ax C P!*. 
Ij D is negatively oriented, then there exists an x in D such that Ax C N!*. 

Proof. Assume D is positively oriented. We first prove that P!* =f= 1>. 
There exist two distinct elements a, b in D. Either a < b or b < a or a is 
incomparable to b, in which case, by definition, there exists c such that a < c. 
Hence there exist two comparable elements g, h; say g < h. There exists x 
such that gx E P! . For all y E D (hx)y > (gx)y ?::- y, whence q = hx E P!*. 

Now let A be a finite subset of D . For some z, Az C P! . HenceAzq ?::- q 
and so Azq C P!*. 

A similar argument proves the statement concerning negatively oriented 
semigroups. 

PROPOSITION 2.12. An oriented semigroup D with a strict partial order 
is a r semigroup. 

Proof. Assume D is positively oriented. Let A be any finite subset of D. 
By Lemma 2.11 there exist x, u in D such that A::::;; u and Ax C P!*. Then 
ux ?::- Ax so UX E P!* and also ux < Axux ::::;; (UX)2. Letting g = xux, a = ux 
we obtain a < Ag ::::;; a2, where Ag C P!* since a E P!* . Note that 
an < (Ag)n ::::;; a2n. 

Now suppose Be « Ag) and B is finite. Then by Lemma 2.10(ii) 
Be f(Ag), since Ag C P!*. Hence for every bi E B there exist Ci' c/, in 
( Ag) for which bi ::::;; Ci and c/bi E P! . The Ci and c/ are words in elements 
of Ag, and suppose m is the maximum of the lengths of these words. Then 
Ci ::::;; a2m and c/ ::::;; a2m, for all bi E B. Hence bi ::::;; Ci ::::;; a2m, and we have 
shown that B ::::;; a2m . 

We next show that, for suitable n, dE (Ag)nB implies that d ~. a2m. Since 
c/bi E P! , and a2m > c/ for all i, observe that (Ag)2mB C P! . Now let n = 4m, 
and suppose dE (Ag)nB. Then d = hp, where h E (Ag)2m and p E a2mB C P! . 
Since (Ag)2m > a2m, it follows that h > a2m. Suppose d::::;; a2m. Then 
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a2my < hy ~ hpy = dy ~ a2my for y ED, and this is absurd. Hence 
d 4; a2m. Since B ~ a2m, we conclude that (Ag)nB n B =F 1>. 

COROLLARY 2.13. A directed group with more than one element is a r 
semigroup. 

Proof. Obvious by Proposition 2.7. 

LEMMA 2.14. Let D be a semi group such that for every finite nonempty 
subset of A there exists an element h, such that for some semigroup D' with 
<A h) ~ D' ~ D, there is a homomorphism f(!, taking D' onto a r semi group. 
Then D is a r semi group . 

Proof. Let A be a finite nonempty subset of D. Let f(!, h, and D' be as in 
the hypotheses. Let F be the epimorphic image of D'. There exists f in F 
such that for all finite sets B contained in f( f(!(Ah)f ); there exists n, such that 
(f(!(Ah)f)nB n B =1>. Now f(! is onto, so there existsfED' with f(!(f) =/. 
Let g = hf. Then if B is a finite set such that B ~ f(Ag); , we have, by 
Proposition 2.3, f(!(B) ~ f(!( f(Ag); ) ~ f(f(!(Ag» ); = f( f(!(Ah)f ); . Hence for some n, 
(f(!(Ag»n f(!(B) n f(!(B) = 1>, and therefore (Ag)nB n B = 1>. 

COROLLARY 2.15. The inverse image of a r-semigroup is r. 

COROLLARY 2.16. If every finitely generated subsemigroup (grouplike subset) 
of D is the inverse image of a r-semigroup, then D is r. 

Remark. There exist r groups with subgroups which are not r, e.g., 
Z EB Z2 , where Z are the integers and Z2 the integers (mod 2) under addition. 

DEFINITION 2.17. A semigroup D is said to be a 2Q-semigroup if and 
only if for all pairs of finite nonempty subsets A, B of D with I A I + I B I ?;: 3, 
there exist at least two elements c in AB which admit exactly one 
representation c = ab, with a E A, bE B . We say that such c E AB is uniquely 
expressible with respect to A, B . 

Remark. In [Il], Rudin and Schneider defined an Q-group to be a group 
such that for all pairs of finite nonempty sets A, B there exists at least one 
element in AB uniquely expressible with respect to A, B. Earlier, 
Kemperman [7], conjectured that every torsion-free group is 2Q. If this is 
so, then the three concepts coincide for groups, for a 2Q-group is certainly Q, 
and it is easily seen that Q implies torsion-free. We also note that every 
2Q-semigroup D is cancelative and n =F m and an = am imply a is an 
idempotent. If D has 1, then 1 is the only idempotent in D. In addition 
one can show that every fully right ordered cancelative semigroup is 2Q. 
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In particular, a fully right ordered group is 2Q. We do not know if such a 
group is r. 

LEMMA 2.18. Let D be a cancelative semigroup. Suppose that for all pairs 
of finite nonempty subsets A, B of D with I A I + I B I ~ 3 there exist elements h, 
k, and a homomorphism rp taking <hA, Bk> into a 2Q-semigroup such that 
I rp(hA) I + I rp(Bk) I ~ 3. Then D is a 2Q-semigroup. 

Proof. Let A and B be finite sets with n = I A I + I B I ~ 3. We must 
show that there exist two elements in AB uniquely expressible with respect 
to A, B. We proceed by induction on n. 

If n = 3, the cancellation laws guarantee that the two elements in AB are 
uniquely expressible. Suppose n > 3. Let h, k be as in the hypotheses. Let 
E = hA, F = Bk. Since the cancellation laws hold, it is sufficient to prove 
that there exist two elements in EF uniquely expressible with respect to E, F. 
By assumption, I rp(E) I + I rp(F) I ~ 3; so, for i = 1,2, there exist r i E rp(E), 
Si E rp(F) such that r1s1 -=1= r2s2 and r;si are uniquely expressible with respect 
to rp(E), rp(F). Clearly, either r1 -=1= r2 or Sl -=1= S2' Suppose r1 -=1= r2 . Let 
Ei = rp-1(ri) n E, Fi = rp-1(Si) n F, for i = 1, 2. Then Ei -=1= E and 
I Ei I + I Fi I < n, for i = 1,2. Either I Ei I = I Fi I = 1 or I Ei I + I Fi I ~ 3 
and the induction hypothesis applies. In either case there exist ei E Ei ,fi E Fi 
such that eJ1 -=1= eJ2 and e;ji is uniquely expressible with respect to Ei , Fi 
for i = 1,2. But then e;ji is uniquely expressible with respect to E, F. For, 
if ef = e;ji' then rp(e)rp(f) = rp(ei)rp(fi) = risi and hence rp(e) = r i and 
rp(f) = Si . Thus e E E i , f EFi and therefore e = ei , f = fi . 

DEFINITION 2.19. The semigroupDis a2Qr-semigroupif it is both 2Qandr. 

By combining Lemmas 2.14 and 2.18 we have the following. 

PROPOSITION 2.20. Let D be a cancelative semigroup. Suppose that for 
all pairs of finite nonempty subsets A, B of D with I A I + I B I ~ 3 there exist 
elements h, k, a subsemigroup D' of D containing <hA, Bk), and a homomorphism 
taking D' onto a 2Qr-semigroup, such that I rp(hA) I + I rp(Bk) I ~ 3. Then D 
is a 2Qr-semigroup. 

COROLLARY 2.21. Let G be a group and suppose every finitely generated 
subgroup of G can be mapped homomorphically onto a 2Qr-group. Then G is a 
2Qr-group. 

Proof. Let A, B be finite nonempty subsets of G with I A I + I B I ~ 3. 
Choose h-1 E A, k-1 E B. Then 1 E hA, 1 E Bk. Let rp be a homomorphism 
taking { hA, Bk} onto a 2Qr-group. Then rp({ hA, Bk} ) -=1= {I} so there 
exists x in hA V Bk such that rp(x) -=1= 1. Hence I rp(hA)1 + I rp(Bk) I ~ 3and 
the corollary follows from Proposition 2.20. 
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THEOREM 2.22. Every stdct fully ordered semi group D with more than one 
element is a Wr-semigroup. 

Proof. By Proposition 2.8, D is oriented, and hence by Proposition 2.12 
it is r. Let A, B be nonempty finite subsets of D and let al = max A, 
bl = max B, a2 = min A, b2 = min B. Then ~bl' a2b2 are uniquely 
expressible with respect to A, B, whence D is 2Q. 

We now show that a rather wide class of groups consists of 2Qr-semigroups. 
A normal system for a group is a complete ordered system of subgroups {N",} 
such that, whenever ~ has successor ~ + 1, Not is normal in N",+l . A group G 
is an SN-group if the factors N",+l/N", are Abelian (cf. Kurosh [8], pp. 171 
and 182). 

The following theorem includes the case of SN-groups with torsion-free 
Abelian factors since torsion-free Abelian groups can be fully ordered 
(cf. Fuchs [5], p. 36). 

THEOREM 2.23. If G is a group with a normal system with fully ordered 
factor groups, then G is a Wr-semigroup. 

Proof. Let H be a finitely generated subgroup of G, say H = ((gl , ... , gn"); ' 
Let {N",} be a normal system of G with fully ordered factors. Then for 
i = 1, ... , n there exist Next such that gi 1= N",;, but gi E N",,+1' Let ~ = 
max{~i I i = 1, .. . , n}. Then N", n H is a proper normal subgroup of Hand 
H ~ N"'+l' Then group H' = H/(N", n H) is fully ordered since 
H(N", n H)'-"" HN",/N", ~ N",+1/N"" and N",+1/N", is fully ordered. Further 
H' is nontrivial since N", n H -=1= H. Hence by Theorem 2.22, H ' is 2Qr. 
The result now follows from Corollary 2.21 . 

3. SEMIGROUP RINGS 

If D is a semigroup and R is an associative ring, let RD denote the semigroup 
ring of Dover R. Thus RD consists of all functions from D into R which 
are zero off a finite set. We write elements of RD as finite formal sums 
x = ~ldl + ... + ~dn' where x(di) = ~i E R. Addition is pointwise and 
multiplication is convolution. Thus, if x, y E RD, then 

xy(d) = I x(a)y(b). 
ab= d 

The support of x, written Supp(x), is {d E D I x(d) =j=. a}. We write Coeff(x) 
for the range of x. Note that although the semigroup D may have a zero, 
~ = 0 if and only if ~ = O. 

If A is a subset of the ring R, we write [A] for the subring generated by 
the elements of A. As usual, x 0 y = x + y - xy. An element x of R is 
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right-quasi-invertible if there exists x' in R such that x 0 x' = 0, or equiv
alently where R has identity if and only if 1 - x is right-invertible. LetJ'(R) 
denote the Jacobson radical of R (cf. McCoy [9], p. 112). Every element x of 
J'(R) has a unique right quasi-inverse x', and x' EJ'(R). By .9'(R) we denote 
the prime or McCoy radical [9] . It is well known ([9], p. 70), that .9'(R) is 
a nil ideal. By I1lI(R) we denote the upper nil radical, namely the union of all 
nil ideals in R and by .P(R) we denote the Levitzki radical, the union of all 
locally nilpotent ideals. The following relationships hold: 

.9'(R) h .P(R) h I1lI(R) h J'(R). 

LEMMA 3.1 . Let r be a nonzero element in RD. If r 0 x = 0, then r o y = 0 
for some y such that Supp(y) h ~Supp(r)}. 

Proof. Define y by 

y(d) = !~(d) if d E ~Supp(r)} 

otherwise. 

Case 1. g E ~Supp(r)} . Then y(g) = x(g). Let ab = g. If rea) = 0, then 
r(a)x(b) = 0 = r(a)y(b). If r(a)::/= 0, then a,ab E ~Supp(r)} , whence 
b E ~Supp(r)} andy(b) = x(b) . Hence, in either case r(a)x(b) = r(a)y(b). Thus 

(r 0 y)(g) = reg) + y(g) + L r(a)y(b) 
ab~g 

= reg) + x(g) + I r(a)x(b) = (r 0 x)(g) = o. 
ab= g 

Case 2. g ¢o ~Supp(r)} . Then r(g) = y(g) = O. Let ab = g. Then either 
a ¢o ~Supp(r)} or b ¢o ~Supp(r)} , so r(a)y(b) = O. Hence r 0 y(g) = O. 

The following corollary was observed for group algebras by Amitsur [2]. 

COROLLARY 3.2. If both Rand D have identity and rx = 1 then ry = 1 
for some y such that Supp(y) h ~Supp(r)} . 

Proof. The proof follows immediately by letting 

r" = 1 - r, x" = 1 - x sInce ~Supp(1 - z)} = { Supp z} 
for all z E RD. 

LEMMA 3.3. Let D be a r semigroup . Let R be a ring with identity and S a 
subring of R. If Y EJ'(RD) n SD, then there exists x EJ'(RD) n SD such that 

(i) the quasi-inverse x' of x is inJ'(RD) n SD; 
(ii) if D has identity 1, then 1 ¢o Supp(x) and; 

(iii) Coeff(x) = Coeff(y). 
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Proof. If y = 0, then let x = O. If y =1= 0, let A = Supp(y). Clearly 
A =I=~, whence by Definition 2.4 there exists g in D such that, for every 
finite B ~ ~Ag» , there exists n = nCB) for which (Ag)nB 11 B = ~. 

Let x = yg. Then x Ef(RD) 11 SD. If D has identity 1, then 11= Ag = 
Supp(x). Whether or not D has 1, Coeff(x) = Coeff(y). 

We have found an x Ef(RD) 11 SD satisfying (ii) and (iii). To complete 
the proof we must show that the unique right quasi-inverse x' of x lies in SD. 

By Lemma 3.1, Supp(x') ~ ~Supp(x)> = ~Ag» . Now x + x' - xx' = 0, 
whence x' = -x + xx'. Iterating we obtain, x' = -x - x2 - ••• - xn + xnx'. 
Now letting B = Supp(x') we see that for n = nCB) we have 

(Supp(x))n (Supp(x')) 11 Supp(x') = (Ag)nB 11 B =~. 

But Supp(xnx') ~ (Supp(x))n (Supp x'). Hence Supp(xnx') 11 Supp x' =~. 
Then if dE Supp(x'), xnx'(d) = 0, whence x'(d) = (-x - ... - xn)(d) and 
so Coeff(x') ~ [Coeff(x)] = [Coeff(y)] ~ S. Therefore x' E SD. 

LEMMA 3.4. If the ring R with identity has no zero divisors and the semigroup 
D with identity is 2Q, then all the units in RD have one point support (i.e., if x 
is a unit then I Supp(x)I = 1). 

Proof. Suppose x, y E RD and xy = 1. Let A = Supp(x), B = Supp(y). 
If I A I > 1, then I A I + I B I ~ 3, so that there exists a E A, bE B such 
that ab =1= 1 and ab is uniquely expressible with respect to A, B. Hence 
xy(ab) = x(a)y(b) =1= O. This is a contradiction. Hence I A I = 1. 

LEMMA 3.5. Let D be a semi group and R a ring and let RI be the canonical 
nng extension of R having an identity element. Then f(RID) = {O} implies 
f(RD) = {O}. 

Proof. Clearly RD is an ideal of RID and hence ([9], p. 115) f(RD) = 
RD Ilf(RID). 

THEOREM 3.6. Let D be a 2Qr-semigroup with 1, and let R be a ring. 
Then OlI(R) = {O} implies f(RD) = {O}. 

Proof. Note that OlI(R) = {O} implies OlI(RI) = {O}, so by Lemma 3.5 we 
may assume R has an identity element. If f(RD) =1= {o}, pick a nonzero w 
inf(RD) of minimal support. Suppose w = Y!Cl + ... + Yngn' 

Since OlI(R) = {O} the ideal generated by YI is not a nil ideal, so putting 
y = Li aiWTi = cxlgi + ... + CXnCn with ai' Ti in R, we may assume cxt is not 
nilpotent. Also CXiY - YCXi Ef(RD) and has less support than y. Hence 
CXiY - YCXi = O. Therefore CXiCX; = CX;CXi for all i,j, and hence S = [1, cxt ,,,., cxn] 
is a commutative ring with identity and y Ef(RD) 11 SD. By Lemma 3.3, 
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there exists x E/(RD) n SD with (i) x' E SD, (ii) 1 rt Supp x, and (iii) 
0:1 E Coeff(x). Since &(S) is a nil ideal, and 0:1 is not nilpotent, there exists a 
prime ideal P in S such that 0:1 rt P . Let S = SjP and let eX denote the image 
of 0: under the canonical homomorphism. The mapping taking z = 
f11d1 + ... + f1ndn into z = P1d1 + ... + Pndn is a homomorphism of SD 
onto SD. Hence (l - x)(l - x') == 1 implies (1 - x)(1 - x') = 1. Now 
since eXl =1= 0 and 1 rt Supp x, 1 - x has at least a two-point support, 
contradicting Lemma 3.4, since S is an integral domain. Hence/(RD) ={o}. 

Remark. If either R is commutative or R has no zero divisors, then our 
proof can be modified to show that the conclusion of Theorem 3.6 holds 
for all 2,Q-semigroups with 1. 

COROLLARY 3.7. If D is a 2,Qr-semigroup and R a ring, then /(RD) h 
O//(R)D. Equality holds if !l'(R) = O//(R). 

Proof. RDjO//(R)D is isomorphic to (RjO//(R))D which has zero Jacobson 
radical by Theorem 3.6. Hence /(RD) h O//(R)D. In general, !l'(R)D h 
/(RD), for !l'(R)D is a nil ideal in RD. Hence if !l'(R) = O//(R), 
/(RD) = O//(R)D. 

COROLLARY 3.8. If D is a strict fully ordered semigroup with identity and 
with more than one element, then O//(R) = {o} implies /(RD) = {O}, 

Proof. Immediate by Theorem 2.22. 

COROLLARY 3.9. (Amitsur [1]) O//(R) = {O} implies /(R[tJ) = {O}. 

Proof. R[t] is just the semigroup ring of R over the cyclic semigroup 
which is strictly ordered and hence the result follows by Corollary 3.8. 

COROLLARY 3.10. If G is an SN group with a normal system whose factors 
are Abelian torsion-free, then O//(R) = {O} implies /(RG) = {O}. 

Proof. Immediate by Theorem 2.23. 

COROLLARY (Bovdi [3]) 3.11. If G is an SN group with a normal system 
whose factors are Abelian torsion-free and R a ring without zero divisors, then 
/(RG) = {O}. 

Proof. Obviously O//(R) = {O}. 

COROLLARY 3.12. If G is a torsion-free Abelian group and o/f(R) = {O}, 
then/(RG) = {O}. 
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4. THE UPPER NILRADICAL OF GROUP RINGS 

In this section, we shall show that, under very simple conditions, relating 
the ring R and orders of the elements of a group G, IlI/(R) = {O} implies 
IlI/(RG) = {O}. An element in a group G is a p-element if it is of order pk, for 
somek > O. 

LEMMA 4.1. (Passman [10]): Let S be a commutative ring, and let G be a 
group. Let q = pk, where p is a prime. If x E SG, and if Supp x contains no 
p-element, then xq(l) = x(l)q - p{3, where {3 E S. 

Proof. We observe that xa( I) = :L {X(gl) ... x(g q) I glg2 ... g q = I} . Now note 
thatg1g2 ••• gq = I implies that any cyclic permutation gHl ... gqgl ... g; = 1. 
It is easily seen that the number of distinct cyclic permutations divides q 
and hence this number is either I or pI, I ~ 1. In the first case, all gi are 
equal, whence by our assumption on Supp x, gi = 1, i = 1, .. . , q, and 
X(gl) ... x(gq) = x(l)q. In the second case, the sum of coefficients over all 
cyclic permutations of gl , ... , gq is pIX(gl) ... x(gq). The lemma follows. 

LEMMA 4.2. Let F be afield, let G be a group, and let x EFG.lf char F = 

P > 0, suppose that Supp x contains no p-element. If x is nilpotent, then x(1) = O. 

(Remark: Note that if char F = 0, Supp x may contain elements of any 
order.) 

Proof. Case 1: char F = P > O. Let q = pk, and suppose q is sufficiently 
large so that xq = O. By Lemma 4.1,0 = xq(l) = x(l)q since p{3 = 0, whence 
x(1) = O. 

Case 2. char F = O. Let Q be the rational field, and let K be the 
extension of Q given by K = Q({x(g) I g E G}) = Q({x(g) I g E Supp x}). Since 
K is finitely generated over Q, it follows from standard field-theoretic results 
([12], Vol. I, Chap. 5; [13], Vol. I, Chap. 2) that K = K'(f3) where 
K' = Q(<Xl , ... , <Xm ), the <Xi are algebraically independent over Q, and {3 is 
algebraic over K'. Letl' = Z[<Xl , ... , <Xm] where Z denotes the rational integers, 
and let I be the integral closure of l' in K. Clearly K' is the quotient field 
of l' and hence, for each g E G there is an a E l', a =f. 0, such that a x(g) E I 
([12], VolI,p.78). Thus there is a nonzero pEl' such thaty=pxEIG. 
If x is nilpotent, then so is y, and it is enough to prove that y( I) = O. 

Let y(1) = T, and let p be any prime larger than the order of every element 
of finite order in Supp y, and such that yP = O. By Lemma 4.1,0 = yp(l) = 
T P - p{3, where {3 EI, whence -rP = p{3. For TJ E K, denote by N(TJ) the norm 
of TJ in Kover K'. Then since l' is a unique factorization domain and therefore 
integrally closed in its quotient field, it follows that N( TJ) E l' whenever TJ E I 
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([13], Vol.I, pp. 260,261).HenceN(r)P=N(rP) =N(pf3) =N(p)N(f3) =ptN(f3) 
where t is the degree of Kover KI. Since l' is isomorphic to a polynomial 
ring in n indeterminates over Z, and p is prime in 1', it follows that p divides 
N(r) in 1'. It follows that N(r) is divisible by an infinity of primes. Since l' is 
a unique factorization domain, we deduce that N(r) = O. We conclude that 
y(l) = r = 0, whence also x(l) = O. 

DEFINITION 4.3. (i) An integer. n is called cancelable in the ring R if, 
for <X E R, n<x = 0 implies <X = O. 

(ii) A group G is cancelable with respect to R if and only 
if every integer n such that G has an element of order n is cancelable 
in R. 

THEOREM 4.4. Let R be a ring, and G a group. Suppose that G is cancelable 
with respect to R. Ifo/i(R) = {O} then o/i(RG) = {O}. 

Proof. Suppose o/i(R) = {O} but o/i(RG) *" {O}. As in the proof of 
Theorem (3.6) we produce a commutative ring S such that Xl = <xlgl + '" 
+ <Xntn E o/i(RG) n SG and such that <Xl is not nilpotent. Then x = 

xlg)? E o/i(RG) n SG and x(l) is not nilpotent. Since S is commutative, 
&(S) consists of all nilpotent elements of S, and S/&(S) is a subdirect sum 
of integral domains Ii: S /&(S) r-.J LIi . ([9], pp. 70--72). Let <X--£x be the 
natural homomorphism of S onto S /&(S), and £x -- £xi the natural projection 
of S/&(S) onto Ii , and let Ki be the quotient field of I i . If Supp x has no 
element of prime power order, let n = I; otherwise let n be the product of all 
primes q such that, for some g E Supp x, g is a q-element. The product of 
cancelable integers is cancelable, and so by our assumption n is cancelable 
in R and therefore in S. Set r = x(I). Since r is non-nilpotent, we have 
nr ¢: &(S), and therefore there is an indexj such that n1'; *" O. If char K; = 0, 
Lemma 4.2 applies to F = K; . Suppose char K j = P > O. If n = I, clearly 
Supp x contains no p-element. If n > I, then p is prime to n, and again 
Supp x contains no p-element. Thus in every case, Lemma 4.2 applies to 
Xj = L x(g)jg, which is nilpotent since LZ(g)g -- LZ(g)jg is a homomorphism. 
Hence 1'j = 0, but this is a contradiction. We deduce that o/i(RG) = {O}. 
The theorem is proved. 

Remark. If a group G contains an element of order n, then G contains 
a p-element for every p dividing n. Hence Theorem 4.4 is unchanged if we 
merely suppose that all primes p for which G has a p-element are cancelable. 

COROLLARY 4.5 (Passman [10]). Let R be a commutative ring having no 
nonzero nilpotent elements. Suppose that char R = m *" 0 and that G has no 
p-elements for any prime p dividing m. Then O!t(RG) = {O}. 



14 SCHNEIDER AND WEISSGLASS 

Proof. If G has an element of order n, then the hypothesis implies that 
nand m are relatively prime. Hence 1m + 1m = 1 for some integers k, I. 
Thus na = 0 implies a = O. Thus n is cancelable and we can apply 
Theorem 4.4. 

COROLLARY 4.6 (Passman [10]). Let R be a commutative ring without 
nonzero nilpotent elements. Suppose the additive group of R is torsion-free. Then, 
for any group G, O/t(RG) = {O}. 

Proof. All integers are cancelable in R. 
We conclude this paper with a theorem which Improves a result of 

Connell [4J. 

THEOREM 4.7. Let R be a ring and let G be an Abelian group with at least 
one element of infinite order. IfO/t(R) = {O} and G is cancelable with respect to R, 
thencf(RG) = {O}. 

Proof. Suppose g is an element of infinite order in G and x is a nonzero 
element in cf(RG). Let H = ~Supp(x) U {g}~ . Then x Ecf(RG) n RH C 
cf(RH) by Connell [4J, Eq. (24). We will show thatcf(RH) = {O} and thereby 
obtain a contradiction. 

The group H is finitely generated and contains an element of infinite 
order. Hence H = A X B where A is a finite Abelian group and B is a 
torsion-free Abelian group . Since RH is isomorphic to (RA)B ([11J, 
Theorem 1.4) it is enough to provecf((RA)B) = {O}. Clearly A is cancelable 
with respect to R, and so by Theorem 4.4, O/t(RA) = {O}. By Corollary 3.12, 
cf((RA)B) = {O}. This is the required contradiction, and hencecf(RG) = {O}. 

COROLLARY 4.8. Let Rand G be commutative and suppose G has at least 
one element of infinite order. If g(R) = {O} and G is cancelable with respect 
to R then cf(RG) = {O}. 

Proof. If R is commutative, g(R) = O/t(R) . 
Corollary 4.8 coincides with one direction of Connell [4J, Theorem 6(ii). 

COROLLARY 4 9. Let G be an Abelian group with at least one element of 
infinite order and suppose R is a ring with O/t(R) = {O}. Then RG is semi primitive 
if and only if G is cancelable with respect to R. 

Proof. If G is cancelable with respect to R then RG is semiprimitive by 
Theorem 4.7. Conversely, cf(RG) = {O} implies g(RG) = {O} and the rest 
of the proof coincides with lines 2-6 of Connell's Theorem 5 [4]. 
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