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§ 1. Introduction 

The results' in this paper were motivated by a search for the answers to the 
following questions : When can a given partially ordered algebra be embedded in 
a complete partially ordered algebra in such a fashion that the original algebra 
is dense and that the operations acquire or maintain continuity properties? What 
type of identities are preserved under such embeddings? 

Properties of extensions and completions do not depend on the algebraic structure 
but only on the partial order. Thus in §§ 2-4 we consider extensions and comple
tions of partially ordered sets. 

We are led to the notions of order preserving mappings, order true mappings 
(2. 14), and abnormal extensions Z (2. 6) of a partially ordered set X. The analogue 
of the statement that a subset X of a topological space Z is dense in Z is the statement 
that Z is an abnormal extension of X. If oc is an X preserving order true mapping 
of an abnormal extension Z of X onto Y, then Y is an abnormal extension of oc(Y), 
and oc preserves suprema and infima (2.27). We construct a partially ordered set 
Z = {z: z EZ} of equivalence classes (2. 19) each class consisting of all elements 

' which can possibly be identified under X preserving order true mappings. We show 
that Izl ~ 3, for all z E Z (2. 20 and 2. 22). If Y is an .if' preserving order true image 
of Z, then the natural mapping 'l' of Z onto Z, which is order true, factors trough 
Y (2. 35) and Y is isomorphic to Z (2. 36). In fact in the linearly ordered case Z 
is essentially the unique normal extension of X (2. 42). 

The structure of abnormal extensions is completely determined in the case 
of a linearly ordered set X (§ 4): A universal abnormal extension fF f (X) is construct
ed such that every other s'uch extension is faithfully embeddable into it (4. 14). 
The question of which extensions are completions is also solved in that it is shown 
that they are essentially homomorphic images of fF f(X) (4. 11). It is further shown 
that there is ,a minimal completion, the normal completion (CLIFFORD [1]) which 
is both a homomorphic image of all completions and isomorphically embeddable 
in all completions. 

In the case of partially ordered sets it is not known to us if a maximal abnormal 
completion exists. 

Extensions Y of X in which every element of Y is a supremum of a subset of 
X are called superior extensions. The structure of superior completions of partially 
ordered sets is also given ( § 3): We construct a completion ,;reX) which is a superior 
extension of X. Every other superior extension is faithfully embeddable in f(X), 
(3. 19). All superior extensions which are complete are essentially homomorphic 
images of f (X) (3. 20). 
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The next problem (§§ 5-6) considered is that of extending the 'algebraic 
structure of partially ordered universal algebras to the completions. If (Q, S) is 
an universal algebra (with possibly infinitary operations) on S, then each operation 
OJ E Q can be extended to an operation on -! (S). 

Among all possible ways of ej<tending those operations we construct one of 
particular importance. This method always yields operations which preserve 
suprema (5. 13). These particular operations have the property that any other 
method of extending the operations yields a greater value when the operations are 
applied to a set of operands (5. 15). Further we show that many of the identities 
which have held in (Q, S) will remain valid in the extension (5. 30). Given an identity 
on (Q, S), we do not know necessary and sufficient conditions for this identity to 
remain valid in the extension (Q, J(S)). However if S is linearly ordered, all 
identities remain valid (6. 2): 

In the linearly ordered case it is possible to extend the operation to the universal 
abnormal completion :F J (X) (in many ways). There are two identity preserving 
methods of extending the operations which are of particular importance. One 
extension is lower semi-continuous, the other is upper semi-continuous (6.9). 
Unfortunately it is impossible in general to obtain a continuous extension. 

CLIFFORD'S theorem on normal completions of commutative semigroups (6. 15) 
is obtained in a more general setting (6. 14): We show that a linearly ordered uni
versal algebra has a unique extension to the normal completion if and only if it 
has a continuous extension to that completion, and that all identities are pre
served for that extension. We also obtain certain results on the nature of the iden
tities necessary to define an abstract group and other particular algebraic structures. 
We further obtain some results on the monotonicity of the many possible defining 
operations for linearly ordered groups. 

We append § 7, in which free universal algebras are constructed, for the reader's 
convenience. 

We mention below an alternate approach from which the same theory could 
be developed: Given a partially ordered universal algebra (Q, S) the operation 
can be extended to the set of subsets of S, 2s (5.6). In this new algebra one can 
say two sets are equivalent if they are cofinal. This equivalence is in fact a congruence, 
and the factor algebra so obtained is naturally isomorphic to the superior extension 
of (Q, S) to J(S). 

2. Partially ordered sets 

We begin with several definitions concerning both partially ordered and linearly 
ordered sets. 

(2. 1) DEFINITION. Let Z be a linearly ordered set. We define the order 
topology (KELLY [5] p. 57) to be the topology in which the intervals (a, =) = {z: z >-a} 
and (-=, a)={z : z<a} form a subbasis for the open sets. 

(2. 2) DEFINITION. Let X be a subset of a linearly ordered set Z. We call X 
dense in Z if and only if every· nonempty subset of Z which is open in the order 
topology meets X. 
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(2. 3) DEFINITION. Let Y be a subset of a partially ordered set Z. Then z is 
the suprem~lm of Y (z = sup Y) if and 'only if 

(i) For each y E Y, we have z ~y, and 
(ii) If, Z l ~y for all y E Y; then Zl ~z. 

The infimum of (z = inf Y) is defined by reserving the order symbols above. 
(2. 4) REMARK. A supremum of Y, if it exists, is unique. If z = sup Y, then z 

satisfies 
(iiI) If z >- W, then there exists y E Y such that w;:b. But (i) and (iiI) do not 

imply (ii). For example, let Z={a, b, c}, with a-<b and a-<c. Let Y={a}, then 
both band c satisfy (i) and (iiI), but neither satisfies (ii). If Z is linearly ordered, 
then (i) and (iiI) are equivalent to (i) and (ii). 

We introduce further definitions, some of which will not be used till the next 
section. However, since our definitions are all related, and some are required now, 
we prefer to state them together. Some similar notions have been considered by 
CLIFFORD [1] and FUCHS [3], p. 178. 

(2. 5) DEFINITIONS. Let Z be a partially ordered set, and let X be a subset of Z. 
Let z E Z. Then 

(1) z is called a superior element of X in Z if and only if z = sup Y, for some 
non-empty subset Y of X. 

(2) z is called an inferior element of X in Z if and only if z = inf Y, for some 
non-empty subset Y of X. 

(3) z is called a normal element of X in Z if and only if z is both a superior 
and an inferior element of X in Z. 

(2. 6) DEFINITIONS. Let Z be a partially ordered set, and let X be a subset 
of Z. Then 

(1) Z is called an abnormal extension of X if and only if each z E Z is either 
an inferior or a superior element of X in Z. 

(2) Z is called a superior extension of X if and only if each z E Z is a superior 
element of X in Z. 

(3) Z is called an inferior extension of X if and only if each z E Z is an inferior 
element of X in Z. 

(4) Z is called a normal extension of X if and only if each z EZ is a normal 
element of X in Z. • 

(2. 7) NOTATION AND REMARKS. Let Z be an extension of a partially ordered 
set X. Let zEZ. Set U= U(X, z)= {xEX: x~z}, L=L(X, z)= {xEX: x:;§;z}, and 
U*= U*(X, z)= U\{z}, L*=L*(X, z)=L\{z} . 

(1) If z~X, then U*=U, L*=L. 
(2) If Z is an abnormal extension of X, then either z = inf U or z = sup L. 
(2.8) NOTATION: Let Z be a partially ordered set. We use the symbols zlll Z2 

to denote that Zl is incomparable to Z2' i.e., neither Zl ~Z2 nor Z 2 ~Zl' 

(2. 9) LEMMA. Let Z be a partially ordered set which is an abnormal extension 
of a linearly ordered set X. Then Z is linearly ordered. 

PROOF. We suppose Zl' z2 EZ and z l llz2' We first show that there exists Xl EX 
such that x 11lz2 . The element Zl is either an inferior or a superior element of X in Z. 
We argue the case when Z l = sup Y, Y~X. If there exists ayE Y with Z2::§Y then 
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Z2~y~Zl' If for all yEY, we have Z2~y then, since Zl is the supremum of Y, 
Z2 ~Zl ' Hence if z l llz2, there must exist Xl E Y~X such that x l llz2. 

A repetition of this argument with Xl replacing Z2' shows that there exists 
X2 EXfor which xlii X2' This is a contradiction since X is linearly ordered. 

(2. 10) LEMMA. Let X be a subset of a linearly ordered set Z. Then X is dense 
in Z if and only if Z is an abnormal extension of X . 

PROOF. Let X be dense in Z and let zEZ\X. We assume that z is neither a 
maximal nor a minimal element of Z, and we show that z is either a superior or inferior 
element of X in Z. Let L * = L *(X, z) and U* = U*(X, z). Since Z is linearly ordered, 
L * U U* = X. Since z is neither maximal nor minimal, and X is dense in Z, it follows 
that L*=Xn( - ex>, z)7"'0, and u*=xn(z, 00)7"'0. If z=sup L* or z=inf U*, 
there is nothing to prove. We shall assume the contrary and derive a contradiction. 
In this case, since z7"'supL*, there exists an upper bound I of L* with l<z, and 
similarly there exists a lower bound u of U* with u >- z. On the one hand, since 
L * U U* = X, (I, u) n X = 0; on the other hand, by the denseness of X in Z, (I, u) n 
n X 7'" 0, a contradiction. 

If z is the maximal or minimal element in Z we replace (I, u) in the above 
argument by (I, 00) or (- 00, u) respectively, unless Z = {z}, in which case every
thing is trivial. 

Conversely, let Z be an abnormal extension of X. The open intervals, including 
the semi-infinite ones, are a basis for the order topology. Let (Zl' Z2) be a nonempty 
open interval where possibly Zl = - 00 or Z2 = + 00. It is sufficient to show that 
(Zl' z 2) nx 7'" 0. Let z E (Zl ' Z2)' If z EX, there is nothing further to prove. Other
wise, we know that z is either an inferior or superior element, and here argue the 
case in which z is a superior element. In this case z=sup L*(X, z) and hence there 
exists an element x EL*(X,z) such that Zl <x~z, whence XE(Zl , Z2) which esta
blishes the proposition. 

(2. 11) PROPOSITION. Let X be a linearly ordered set. Then Z is an abnormal 
extension of X if and only if Z is linearly ordered and X is dense in Z. 

PROOF. Immediate from (2. 9) and (2. 10). 
. (2. 12) DEFINITIONS. Let Z be a partially ordered set and let z EZ. Then z+ 

(z-) is used to denote inf U*(Z, z)(sup L* (Z,z») when and only when inf U* (supL*) 
exists and is distinct from z. The element z+ is called the successor or z while z
is called the predecessor of z. 

(2. 13) REMARK. The above definitions ensure that the successor and predecessor, 
if they exist, are unique, and that there is no element strictly between z and z+ 
or strictly between z and Z-. 

(2. 14) DEFINITIONS. Let Z and Y be partially ordered sets. 
(1) A mapping a of Z into Yis called order preserving if and only if Zl, Z2 EZ, 

Zl ~ Z2 implies a(zl) ~a(z2)' 
(2) A mapping a of Z into Y is called order true if and only if a is order preserv

ing and a(zl»a(z2) implies Zl>-Z2' 
(3) A mapping is called an order isomorphism if it is 1-1 and order true. 

. (4) Let X ~ Z. An order true (order preserving) mapping a is called X preserving 
if a restricted to X is an order isomorphism. 
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(2. 15) REMARKS. (1) If Z is partially ordered, then the following are equi
valent: 

(i) rx is order true. 
(ii) rx is order preserving and if zl11 Zz then either 

rx(zl)11 rx(zz) or else a(zl) = rx(zz). 

(2) In the case when Z is linearly ordered, the concepts order true and order 
preserving are equivalent since (ii) above is vacuously satisfied. 

(3) If rx is an order true mapping of Z into Yand P is an order true mapping 
of Y into W, then the composite map prx of Z into W is 'also order true. 

(4) If rx is 1-1, then a necessary and sufficient condition for rx to be an order 
isomorphism is that rx(Zl)~rx(ZZ) if and only if Zl ~ zz. 

(2.16) DEFINITION. Let Z be an extension of X. Let w, z EZ. We shall say 
wand z are neighbors (in Z over X) if 

(i) either w ~ X or z ~ X, and 
(ii) either w=z+ and Z=W-, or. z=w+ and W=Z-. 

(2. 17) LEMMA. Let Z be an abnormal extension of X, and let z E Z. If z+ and z
both exist, then z E X. 

PROOF. Suppose z+ and z- both exist. Then z+ is a lower bound for U*(X, z) 
and z- is an upper bound for L*(X, z). By (2.7.2) either z=inf U(X, z) or Z= 
= sup L(X, z). Hence zEX, by (2.7.1). 

The corollary below follows immediately from the ,fact that successors and 
predecessors are unique. 

(2.18) COROLLARY. If zEZ\X, then z has at most one neighbor. 

(2. 19) DEFINITION. Let Z be an abnormal extension of X. We now define 
a class Z = Z (X) of subsets of Z 

(i) If x E X let x consist of x and all neighbors of x. 
(ii) If, for some x E X, z E x, then we define 2 = X. 

(iii) If for all x EX, z ~ x, then 2 consists of z and all neighbors of z. 
(iv) Z(X)={2:zEZ}. Where no confusion can arise, we shall write Z in 

place of Z(X). , 
Thus we have collapsed to one element all classes 2. 
(2. 20) REMARKS. Let Z be an abnormal extension of X. 
(1) If Zl ' Zz are neighbors, then 21 =2z . This follows from (2.18). 
(2) It follows easily from (2. 18) and the fact that the relation of being neighbors 

is symmetric, that Z partitions Z 
(3) Note that for any z E Z, 2 is linearly ordered and li e ~ 3. If 121 = 3, then 

z =x={x- , x , x+} where xEX, X-, x+ EZ\X, and x-+ =x=x+-. If Iii = 2, then 
i={w, w+} where w EZ, either w~X or w+~X and w+ --'=w. 

(4) If Z is a superior extension of X, then 
(a) Ii i ~2, 
(b) If inX=0, then i={z}, 
(c) If inX~ 0, then max iEX. 
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(2.21) LEMMA. Let Z be an abnormal extension of a partially ordered set X, 
and let a be an X-preserving order true mapping of Z into a set Y. If Z = inf U, whe re 
U~X, and a(z) Ea(U) then zEU. 

PROOF. Suppose a(z)=a(u), where uEU, and let vEU\{u}. Since v~z, we 
have a(v)~a(z)=a(u), and as a preserves X it follows that a(v»a(u). Hence as 
a is order true, v> u, and hence u = inf U = z. 

(2. 22) THEOREM. Let Z be an abnormal extension of a partially ordered set 
X. Let a be an X-preserving order true mapping of Z into a set Y. Then . 

(1) Ztllz2 if and only if a (zl)1I a (Z2), 
and 

(2) a-I(a(z))~z. 

PROOF. We show in (i) below that a-I(a(z)) is linearly ordered and that 
la -I( a (z)) 1 :§ 3. In (ii) we prove (1), and in (iii) we complete the proof of (2). 

(i) Let K=a-I(a(z)), zEZ. Suppose that ZI EK, ZI ~X, and that ZI is an 
inferior element of X inZ, say ZI =inf U, U~X. We shall show that ZI = sup K. 
For, suppose a(zl) Ea(U). Then by Lemma (2.21), ZI E U~X, contrary to assumption 
Hence, for all uE U, a(zl)-<a(u). Let yEK. Then a(y) =a(zl)-<a(u), whence y-<u, 
for all uE U. It follows that y:§inf U=ZI' Hence ZI =supK. We now deduce that 
K\X contains at most one inferior element, ZI, and if such a ZI exists, ZI =sup K. 
Similarly, K\X contains at most one superior element Z2, and if such a Z2 exists, 
Z2 =inf K. Clearly Z2 :§ZI' But as a is 1--1 on X, KnX contains at most one element, 
say x. If ZI and such an x exist, then X-<ZI, if Z2 and x exist then Z2 -<x. Bence 
K = a-I(a(z)) is linearly ordered and IKI:§ 3. 

(ii) Since a is order preserving, it is immediate from the definition that 
a(zl)lla(z2) implies z lllz2' Suppose ()((zl)~a(z2)' If a(zl»a(z2), then since d is 
order.true ZI >Z2' If a(zl) = a (Z2) then, since a-1(a(zl)) is linearly ordered, ZI and Z2 
are comparable. Hence (1) follows. 

(iii) Suppose, WI' W2, W3EZ. If a(wI)=a(lv2)~a(w3)' then W3>WI if and 
only if W3 >W2, and, similarly, W3 -< Wi if and only if W3 -< W2. For if W3 >W1 then 
a(w3) >a(wl), whence a(w3) >a(w2) and so W3 >W2' It follows that if WI' W2 are 
in K=a-I(a(z)) and are neighbors in Kover XnK, then WI' W2 are neighbors 
in Z over X and hence (2) follows. 

(2. 23) REMARK. If a is a mapping from a partially ordered set Z into a partially 
ordered set Y, then the following are equivalent: 

(i) a is order true and z I llz2 if and only if a(zl)lla(z2)' 
(ii) a is order true and if z Illz2 then a(zl)lIa(z2)' 

(iii) a is order preserving and ifzlll Zz then a(z1)11 a(z2)' 
(iv) a is order true and a- 1 (y) is linearly ordered for each y E Y. 
(2. 24) NOTATION. If Z is any set, we shall denote the identity mapping of 

Z onto Z by BIZ. If a is any mapping defined on Z, and U~Z, then alU denotes 
the restriction of a to U. 

(2.25) DEFINITION. If a is a mapping of a set Z onto a set Ywe call the mapping 
/3 of Y into Z a right inverse of a if and only if a/3 (y) = y for all y E Y. That is, a/3 = B I Y. 

Of course, a right inverse of a exists if and only if a is onto Yand then /3 is 1-1 . 
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(2. 26) LEMMA. Let Z and Y be partially ordered sets and let rx be an order 
true mapping of Z onto Y. Then every right inverse j3 of IX is an order isomorphism 
of Y into Z. 

PROOF. Let Yl,YzEY, and suppose Yl>YZ. Since rxf3(Yl)=Yl>YZ=rxj3(yz) 
and rx is order true, we infer that j3(yl»j3(yZ). Clearly therefore, Yl~YZ implies 
that j3 (y 1) ~ j3 (vz) and so fJ is order preserving. 

N ow suppose that j3(Yl) > j3(yz). Then Yl = aj3(Yl) ~aj3(yz) = Yz, since IX is 
order preserving, whence Yl ~Yz. But, obviouslY'Yl ~Yz; and so Yl > Yz. It follows 
that j3 is order true and, of course, 1-1. 

(2. 27) PROPOSITION. Let Z be an abnormal extension of the partially ordered 
set X . Let a be an X-preserving order true mapping of Z onto a partially ordered set Y. 
If W~Z, and sup W (inf W) exists then sup a(W) (inf a(W)) exists and 

a(sup W) = sup a(W) (a(inf W)=infrx(W)). 

PROOF. Let w = sup W. Since a is order preserving, clearly a (w) is an upper 
bound for a(W). Let Y be any upper bound for a(W). We shall show that Y ~a(w). 
Let Zo = max a-l(y), which exists by (2. 22. 2) and (2. 20. 3). Let u E W. If a (zo) = 
=y=a(u), then by definition of zo, zo~u. If a(zo)=Y>O:(u), then zo>u, since 
a is order true. Hence Zo is an upper bound for W, and so Zo ~ w = sup W. Since 
a is order preserving, Y = a(zo)~a(w). It follows that a(w) is the supremum ofrx(W). 

(2.28) COROLLARY. Let Z be an abnormal (superior, inferior, normal) extension 
of a partially ordered set X, and let a be an X-preserving order true mapping of Z 
onto a set Y. Then Y is an abnormal (superior, inferior, normal) extension of a (X). 

PROOF. Let z E Z be a superior (inferior) element of X in Z. Since a is onto Y, 
by (2.27) a(z) is a superior (inferior) element of a(X) in Y. It follows from the 
definition that Y is an abnormal (etc.) extension of a (X). 

(2.29) COROLLARY. Let Z and Y be linearly ordered sets, and let X be a dense 
subset of z. If a is an X-preserving order preserving mapping from Z onto Y, then 
a(X) is dense in Y. 

PROOF. Since X is a dense subset of the linearly ordered set Z, it follows that Z 
is an abnormal extension of X, by (2. 10). Since Z is linearly ordered, it follows 
by (2. 15. 2) that a is order true. Hence this corollary follows from (2. 28). 

(2. 30) PROPOSITION. Let Z be an abnormal extension of a partially ordered 
set X. Let a and j3 be two X-preserving order true mapp~ngs of Z onto Y. If aiX = j3IX, 
then a = (3. 

PROOF. Since Z is an abnormal extension of X, for each wE Z, either w = sup W 
or w=infW, where W~X. Hence by (2.27) a(w)=supa(W)=supj3(W)=j3(w) 
or a(w) = infrx(W) =inf j3(W)=j3(w) respectively. 

(2.31) PROPOSITION. Let Z be an abnormal extension of X. Let w, Zl' Zz EZ. 
If W ~Zl =Z2, then W> Zl if and only if W>Z2, and similarly, W< Zl if ·mid only 
if W < ZZ. 
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PROOF. Let W>Z1. If Z2 ;§Z1, then by transitivity, W>Z2. If Z2 >Z1, then either 
Z2 = zt, or Z2 = zt +. But IV> z 1 implies W ~ zt. However, IV 7'" zt , since, in this 
case zt.Ez1. Hence w>zt. If Z2=Zt , this completes the proof. If Z2=Zt+, then 
w~zt+, since w>zt. Again we see that W~Z2' since W~Z2. Hence W>Z2. The 
rest follows py symmetries. 

(2.32) DEFINITION. (1) Let Z be an abnormal extension of X. We order 
Z = Z(X) as follows: Let a, b E Z, a ~ b. Then a> b if and only if there exist yEa, 
z Eb such that y>z. 

(2) The mapping given by y(z) =2, is called the natural mapping of Z onto Z. 
(2.33) REMARKS. (1) In view of (2. 31), the relation of (2.32. 1) is well-defined 

and anti-symmetric. . 
(2) The set Z is partially ordered by the above relation. 

(2. 34) THEOREM . . Let Z be an abnormal extension of X. Let y be the natural 
mapping of Z onto Z. Then y is an X-preserving order true mapping. 

PROOF. Follows immediately from the above results. 

(2. 35) THEOREM. Let Z be an abnormal extension of a partially ordered set X. 
Let IX be an X-preserving order true mapping of Z onto Y. Then: 

(1) There exists an order true mapping P of Y onto Z sllch that the natural 
mapping y factors: y = PIX. 

(2) The mapping P has a right inverse A of Z into Y such that AylX = IX IX. 

COMMENT. Intuitively, this theorem asserts that Z is the order true image of Z 
which is minimal in two senses: (i) Every order true image of Z in which X is preserved 
can be mapped onto Z in an X-preserving order true fashion; arid (ii) Z can be 
embedded order isomorphycally into every order true image of Z in a fashion that 
preserves X. 

PROOF. (1) If IX(Z) = IX (w), then 2 = w by (2. 22. 2). Hence we may define a 
mapping P of Yonto Z by PIX(Z) =2, whence Prt.(z) = y(z) and P is 1--1 on IX(X). 

We shall now show that P is order true. Suppose Y1 = IX (Z1) >1X(Z2) = Yz. Then 
z 1 > Z 2, since IX is order true, and so P (y 1) = 2 1 ~ Z 2 = P (Y2) and so P is order preserv
ing. Next, suppose P(Y1»P(Y2). Therefore PIX(Z1»Prt.(Z2) whence Z1 >22 • Thus 
Z1 >Z2 and so Y1 =1X(Z1)~IX(Z;)=Yl. But Y1 ~Yz, hence P is order true. 

(2) By (2. 28), Y is an abnormal extension of IX (X). We now define a mapping 
A of Z into Y which is a right inverse of P as follows: For all x EX, A (x) = IX (x). 
If z EZ, and for all xEX, z~x, then ,1,(2) c:an be chosen to be any element IX(W), 
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with w EZ. It is clear that A is a right inverse of P and that AY(X) = A(X) = IX (x), for 
x E X. By (2. 26), A is order true. 

z/:~y 
r I 1 ~ 

, . 
Z .. Y 

I( 

(2. 36) PROPOSITION. Let Z be an abnormal extension of a partially ordered 
set X. Let IX be an order true mapping of Z onto Y. Let Y be the '!atural mapying of 
Z onto Z(X) = Z and let 11 be the natural mapping of Yonto Y(o:(X)) = Y. Then 
there exists an order isomorphism" of Y onto Z such that "11IX = y. 

PROOF. Since 11IX is an X-preserving order true mapping of Z onto Y, by (2. 35) 
there exists an order true mapping" of Y onto Z such that "11IX = y. We must show 
that" is 1-1. So let .Y!, Y2 EY and suppose "(Y1)="(Y2). Then "11(Y1)="11(Yz) 
and, as "11 is an IX (X) preserving order true mapping from Y , Y1 E ("11)-1("11)(Y2) ~Y2' 
by (2. 22. 2). Hence Y1 = Y2, and the result is proved. 

(2.37) COROLLARY. Let Z be an abnormal extension of a partially ordered 
set X. Let IX be an X-preserving order true mapping of Z onto Y. Then there is an order 
isomorphism P of Yonto Z such that PIX = y if and only if for all y E Y, Y = {v}. 

PROOF. By (2. 35) there exists an order true mapping P from Y onto Z such 
that PIX = y, and since IX is onto Z, this mapping P is unique. Hence P = "11, where 
",11 are defined in (2. 36); and so Pis 1-1 if and only if 11 is 1-1. But, by definition 
of Y, 11 is 1-1 if and only if y = {y}, for all y E Y. 

(2.38) COROLLARY. Let Z be an abnormal extension of a partially ordered 

set X. Thenfor all a E Z, a = {a}, i.e. Z is \ sornorphic to Z under the natural mapping. 

PROOF. Put Y=Z, IX=y , and p=e in (2.37). 

(2. 39) PROPOSITION. Let Z be a normal extension of a partially ordered set X. 
Then, for all Z E Z, z = {z}. 

PROOF. Let Z l' Z2 E Z. We shall show that Z 1 and Z2 are not neighbors. If both 
Z1 EX and Z2 EX, then the conclusion follows immediately from definition (2 ~ 16). 
So suppose z14X. If z111z2, then again the conclusion f<;>llows. Suppose Z2 < Z1' 
Since Z is a normal extension of X, z 1 = sup L *(X; z 1) whence by (2. 14) zl ¢ Z2' and 
so ZJ is not a neighbor of Z2. The case Zt <zz is similar. 

(2. 40) DEfINITION. Let Sand T be linearly ordered sets. Then Sand Tare 
of the same type (at infinity) if S has a maximal element if and only if T does, and 
S has a minimal element if and only if T does. 
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(2.41) PROPOSITION. Let Z be an abnormal extension of a linearly ordered set X. 
Then Z is a normal extension of X if and only if the natural map of Z onto Z is an order 
isomorphism and Z is of the same type as X. 

PROOF. Half the proposition follows from (2. 39), and the fact that a normal 
extension must be the same type as the set it extends. Let the natural mapping 
y be 1-1. Let z E Z. If z E X, then z is a normal element. Suppose z E Z\X. Then 
L*(X, z) =L(X, z) =L, is non-empty, since z is not minimal. If z;;t:sup L then, 
since X is linearly order ed, sup L exists and equals z-, a neighbor of z. But this is 
impo ssible, since y is 1-1. Hence z = sup L, a superior element. Similarly z is an 
inferior element, whence z is normal. 

(2.42) COROLLARY. Let X be a linearly ordered set and let Z be an abnormal 
extension of X of the same type as X. Then Z is a normal extension of X. 

PROOF. Follows from (2. 38) and (2.41). 

(2. 43) LEMMA. Let Z be an abnormal extension of X, and suppose CI. is an order 
true mapping of Z into Z l-I'hich is the identity on X. Then 

(1) U(X, z) ~ U(X, o:(z)). and L(X, z) ~L(X, o:(z)). 
(2) o:(z) is comparable to z. 

(3) 0:2 = 0:. 

PROOF. (1) Let zEZ, and let x~z,xEX. Then x=o:(x)~C(z), whence U= 
= U(X, z) ~ U(X, 0:(=)). Similarly, L =L(X, z) ~L(X, o:(z)). 

(2) Thus o:(z) is both a lower bound for U, and an upper bound for L. Since 
either z = inf U or z = snp L, it follows that o:(z) and z are comparable. 

(3) If o:(z) EX, or o:(z)=z, then obviously 0:2(Z)=0:(z). So suppose o:(z)$.X, 
and o:(z);;t:z. Let xEX and x~o:(z). Then x=o:(x»o:(z), and since 0: is order true, 
x>z. Hence U(X, z) ~ U(X, o:(z)). By (1), we conclude that U = U(X, z) = U(X, o:(z)). 
Similarly L =L(X, 0: (z)). By (2) we may supposewithoutloss of generality, thato:(z) >z. 
Then z=supL and o:(z)=infU. Further since o:(z»z, we have 0:2(z)~0:(z). But 
U(X, 0:2(Z))~ U(X, o:(z)), and hence 0:2(Z) is lower bound for U, whence 0:2(Z);§0:(z). 
Thus 0:2(Z) = o:(z). 

(2. 44) PROPOSITION. Let Z be an abnormal extension of X. Let 0: be an order 
true mapping of Z into Z which is the identity on X . Then for all z E Z, either o:(z) = z 
or o:(z) and z are neighbors in Z 'over X. 

PROOF. By (2. 22.2) and (2.39) we obtain 

2 ~ 0:-1( 0: (z)) = 0:- 1 (0:2(Z) ), 

whence z, o:(z) EZ. If z n X = 0, the result follows immediately from (2. 20. 3). 
If 2 = {x-, X, x+}, x EX then either z=o:(z) or o:(z) mnst equal x, by (2.43. 1), 
whence z and o:(z) are neighbors . . 

(2. 45) COROLLARY. Let 0: be an order true mapping of Z into itself which is 
the identity on X. Then for all zEZ, 0:(z)E2. 

PROOF. Immediate, by (2. 44). 
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(2. 46) LEMMA. Let Z be an abnormal extension of a partially orderea set X. 
Let IX be an X-preserving order true mapping of Z into Y. Let fJ be an IX (Z)-preserving 
order true mapping of Y into Z such that PIX IX = e IX. Then IXfJlX = IX. 

PROOF. Let y = fJlX. Then y is an order true mapping of Z into Z which is the 
identity on X. By (2.43.3) y2=y, namely, fJlXfJlX=fJlX. Since fJ is I-Ion IX(Z), 

we obtain IXfJlX = IX. 

(2. 47) PROPOSITION. Let Z be an abnormal extension of a partially ordered set X. 
Let IX be an X-preserving order true mapping of Z onto Y. Let fJ be a 1-1 mapping 
of Y into Z such that fJlX IX = e IX. Then fJ is order (rue if and only if fJ is a right inverse 
of IX. Furthermore, such a right inverse fJ exists. 

PROOF. By (2.26) if j3 is a right inverse of IX, then fJ is order true. Now suppose 
that fJ is order true. By (2.46), IXfJlX = IX. Let y E Y. Since IX is onto Y, we have that 
y = IX (z), for some z E Z. Hence afJ(y) = afJa(z) =a(z) = y, and the equivalence of 
the two conditions follows. We can .construct such a fJ as follows: Let 

{

X, if y = a(x) 

fJ(y) = z, where zEa- 1 (y), if y~a(X). 

(2.48) REMARKS. (1) A function fJ may be effectively defined without the implicit 
use of the axiom of choice by setting fJ(y) = max cc 1(y), for y~a(X), since 1X- 1(y) 
has at most two linearly ordered elements by (2. 22. 2) and (2. 20. 3). 

(2) The number of distinct fJ satisfying the conditions of (2. 43) is 
H{la- 1(Y)I: yE Y\a(X)}, which is always less than or equal to 2IY\,,(X)I, since 
la- 1(Y)lo§2, if YEa(X). 

(2.49) PROPOSITION. Let Z be an abnormal extension of X. Then IZI o§ 2· (2IXI-l). 

PROOF. Since Z is abnormal, each zEZ is either the supremum or the infimum 
of a non-empty subset of X. Since every subset of X has at most one supremum and 
one infimum, we see that IZlo§2·(12XI-1)=2.(2IX1 -1). 

(2. 50) REMARK. The above is best possible in the sense that given any infinite 
cardinal number there is a partially ordered set of that cardinality for which equality 
holds. 

3. Superior completions 

(3. 1) DEFINITIONS. Let S be a partially ordered set. A subset I of S is called 
an initial segment of S if I is non-empty and if s E I and t o§ s imply that t E 1. A subset 
F of S is called a final segment of S if F is non-empty and if s E F and t?= simply 
that tEF. 

The set of all initial segments of S will be denoted by f (S), the set of all final 
segments of S by ff (S). 

(3.2) DEFINITIONS. Let S be a partially ordered set. If sES, then 

t(s)={tES: to§s}, t-(s)={tES: t<s}, 

<p(s) = {tES: t?=s}, <p+(s)={tES: t>s}. 
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(3. 3) LEMMA. The set J (S) is partially ordered by inclusion. The mapping 
l is an order true embedding of S into J(S). If S is linearly ordered, then J(S) is 
linearly ordered. 

PROOF. The proof is a straightforward verification. 
(3.4) REMARKS. (1) Note that for all sES, l(s)EJ(S), and unless s is a minimal 

element of S, l-(s)EJ(S). 
(2) We note that l- is an order preserving mapping of S into J(S) U {0}, 

where 0 is taken as the minimal element. However, l- need not be I-lor order 
true unless S is linearly ordered. 

(3) If s is not a minimal element in S, then l(S)- exists (cf. Definitions 2. 12) 
and l-(S) = l(S)-. Further if r exists then also l-(S) = l(S-) = l(S)-. If s+ exists 
then l(S)=l-(S+), and if l-(S)+ exists then l(S)=l-(S)+. Starting with these, one 
can prove inductively, under the proper existential hypotheses, that two expressions 
of the above type are equal whenever the differences between the number of plus 
signs and the number of Ininus signs in each expression are equal. 

(4) If l-(S)=l(t), then t=r. 
(3. 5) DEFINITION. Let S be a partially ordered set. Then S is (conditionally) 

complete if and only if every subset of S which is bounded above has a supremum. 
(see KELLEY [5], p. 14). 

(3. 6) REMARK. A standard argument shows that S is complete if and only if 
every subset of S which is bounded below has an infimum. 

(3. 7) DEFINITION. Let S be a partially ordered set. A complete set T is called 
a completion of S under IX if and only if IX is a 1-1 and order true mapping of S into T. 
We call T an abnormal completion of S under IX if and only if T is a completion of 
S under IX which is an abnormal extension of IX (S). Superior, inferior, and normal 
completions of S under IX are defined similarly. 

If IX is the identity mapping, we simply say T is a completion of S. 
(3. 8) DEFINITION. Let T be a partially ordered set. By T + we mean T if sup T = 

= + 00, say, exists, and TU { + oo} if sup T does not exist, where + 00 is adjoined 
as the supremum of T. By T _ we mealJ T if sup T = - 00, say, exists, and TU { - oo} 
otherwise, where - = is adjoined as the infimum of T. We define T ± = (T +)_ = (T _)+. 

(3. 9) REMARK. If T is complete, then every subset of T + has a supremum in 
T +, and every subset of T _ has an infimum in ' T _. If T is also linearly ordered, then 
T ± is compact, and is usually called the two point compactification of T. 

(3. 10) LEMMA. For every partially ordered set S, the set J(S) is complete. 
If 0 is adjoined as the minimal element of J (S), then J (S) U {0} is a lattice under 
union and intersection, complete in the lattice theoretic sense and, for every 
J~j'(S) U {0} 

supj'= Uj', inf j' = nj' 
in J(S)U {0}. 

PROOF. We note that the union of a set of initial subsets is initial, and the inter- .\ 
section of such a set is initial or empty. The lemma follows easily. 

(3. 11) COROLLARY. If S is a linearly ordered set, then every closed subset of 
J(S) which is bounded below is compact in the order topology. 
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PROOF. We recall that a linearly ordered set is complete if and only if every 
closed bounded set is compact (KELLY [5], p . 162). By (3. 3), §(S) is linearly ordered 
and by (3 . 10), §(S) is complete. Since, §(S) has S as maximal element, every 
set which is bounded below is bounded, and the result follows. 

(3. 12) LEMMA. If S is a partially ordered set, then §(S) is a superior extension 
of £(S). 

PROOF. Let 1E§(S). We note that for sEl, we have S E £(s)~I. By (3: 10) we 
obtain the equality 

1= U {£(s):s El}= sup {£(s): sEll, 

and the lemma follows. 
The lemmas (3. 3), (3. 10) and (3. 12) yield the following theorem. 

(3. 13) THEOREM. 1fS is apartially ordered set, then §(S) is a superior completion 
of Sunder £. 

(3.14) CoROLLARY. If S is linearly ordered, then £(S) is 'dense in §(S) in the 
order topology. 

PROOF. Since a superior extension is abnormal, the corollary follows ' from 
(3. 13) and (2. 10). 

A dual theory can be developed for the set g; (S) of final segments of S. The 
partial order is defined by Fl :§ F2 if and only if F2 ~ Fl. We state below the dual 
of (3. 13). The proposition dual to (mon) will be denoted by (mon)*. 

(3. 13)* THEOREM. If S is a partially ordered set then ff(S) is an inferior 
completion of Sunder <po 

Let us further note that in (3 . 10)* the irifimum is the union, more precisely, 
if :It ~ ff (S) then inf::f{ = U::f{. If ::f{ is bounded above, then sup::f{ = n::f{. 

(3. 15) EXAMPLES. (1) Let Z be the set of integers. Then feZ) =£(Z) U {Z}, 
so that § (Z) is order isomorphic to Z U { ~ 00 }. 

(2) Let R be the set of real numbers. Then §(R)=L(R)U£-(R)U{R}, where 
L-(r) is the immediate predecessor of £(r). Thus §(R) is essentially the reals with 
positive infinite element and with each number split in two. 

Example (3. 15.2) is put into its proper perspective by the following proposition. 

(3. 16) PROPOSITION. Let S be a complete linearly ordered set, and let St be the 
set of non-minimal elements of S. Then §(S) = (S) U £- (St) U {S}. 

PROOF. Clearly §(S)~£(S)U£-(St)U{S}. Let 1E§(S). Either I=S, or, 
since I is initial, I is bounded above. Since S is complete, in this case 1has a supremum, 
say, s. Either 1=£(s) or 1=£-(s), since I is initial. If 1=£-(s), then clearly sESt. 

The following theorem is stated in terms of ff (S) and <p, because this is the 
more natural setting for this result. 

(3.17)* THEOREM. Let S be a partially ordered set. Then <p(S)= ff (S) if and 
only if S is well-ordered. 

PROOF. Suppose <peS) = ff (S) , and let FE ff (S). By hypothesis, there exists 
an sES such that F=<p(s), and this s is clearly the unique minimal element of F. 

Acta Mathcmdl ica Acadcmiae Scient iaTltfll Hrmgaricae 17. 1966 

Ii 
II 
II 
II 
!I 
'I 
II 

II 

II 
II a 
!i 

! 
II 
11 
II 

il 
ii 

:1 

!I 
'1 
I 
:\ 

1 
! 
I 
I 
! 
l 

I 
! 
~ 

I 
I 
I 
I 
~ 



284 M. N. BLElCHER AND H. SCHNEIDER 

Let G ~ S. Let F = U {cp (g) : g E G}. Then FE JF and so has a unique minimal element 
t, which is also the unique minimal element of G. Thus S is well-ordered. On the 
other hand, if S is well-ordered and FE JF, then F has an unique minimal element s, 
for which F= cp(s). The theorem is proved. 

The proof of the next theorem requires the following lemma. 

(3. 18) LEMMA. Let T be a superior extension of the partially ordered set S. 
Let t1, t2 E T. Then t1 = t2 if and only if L(S, t1) =L(S, t2)' 

PROOF. Let L;=L(S,t,) i=I,2. If t1=t2, clearly L 1=L2. Conversely, let 
L1 = L 2. Since T is a superior extension of S, t i = sup L i • Hence t 1 = sup -£1 = 
=SUpL2=t2' 

(3. 19) THEOREM. Let S be a subset of a partially ordered set T. Then T is a 
superior extension of S if and only if there exists an order isomorphism 13 of T into 
§ (S) where 13 IS =~. 

PROOF. (i) Suppose T is a superior extension of S. Define f3(t)=L(S, t). Since 
t is a superior element, f3(t)~0, whencef3(t)E§(S) and if tES, then f3(t)=~(t). 
Obviously, 13 is order preserving. Suppose f3(t1)~f3(t2)' Then t1 is an upper bound 
for 13 (t2)' Since Tis a superior extension of S, we have t2 = sup f3(t2), whence t1 ~t2' 
By (3. 18) and (2. 15.4), 13 is an order isomorphism. 

(3. 20) THEOREM. Let T be a superior completion of a partially ozdered set S. 
Then there exists an order preserving mapping (X of §(S) onto T + such that (X~ = ciS 
and if f~§(S), then (X(sup f) = sup ((XV)} 

PROOF. If 1E§(S), then I~S ~ Tand wedefine(X(J) = sup I, where the supremum 
is taken in T +, and hence exists by (3. 9). Clearly (X is order preserving and (xL(S):= S. 

Hence (X(supf)~sup(X(f), for all f~§(S). 
It remains to show that (X(sup f) :§sup (X(f), for all f E§(S). Note that 

supf= Uf=10, say, and 10~S. Let sEJ, for some JEf. Hence s:§supJ= 
= (X (1) :§ sup (XV), whence sup (XV) is an upper bound for 10, The theorem follows. 

It is interesting to compare the above theorem with (2. 27). In general (X commutes 
with supremum only when (X is order true, but the special nature of § (S) yields 
this commutativity even though the mapping (X in the theorem will rarely be order 
true if S is not linearly ordered. 

The above theorem says that every superior completion is, in some sense, 
a homomorphic image of § (S). The preceding theorem says that every superior 
extension is essentially a subset of §(S). We see therefore that §(S) is the universal 
superior extension of S. 

(3.21) EXAMPLE. Let S consist of three pairwise incomparable elements 
a, b, c. Then S+ = {a, b, c, + =} and §(S) consists of the seven non-empty subsets 
of {a, b, c} ordered by inclusion. Let T= S +. If (X is the mapping of (3. 20) and 
1~§(S)where 111~2,then(X(J)= +=.In§(S),{a,b}lI{c}, but (X({a,b}) = +=>c= 
= (X ({c}) in T. Hence (X is not order true, by (2.15.1). 

(3.22) DEFINITION. Let S be a partially ordered set.· By .3(S) we mean the 
collection of all non-empty initial segments of S which are bounded above, viz., 
.3(S) = {.3E§(S): :JsES, .3:§L(S)}. Dually, F(S) = {FEJF(S): :JsES, F~cp(s)}. 
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In certain situations one does not wish a completion to have an infinite max~mal 
element, unless the original set does. In these situations it will be necessary to use 
~(S) rather than .Y(S). For example, when completing the rationals, one does not 
always· wish tb adjoin + 00. 

(3.23) REMARKS. (1) Note that ~(S) is of the same type (cf. (2.40)) as S. 
(2) Note that ~(S) is the. initial segment generated by l(S) in the partially 

ordered set .Y (S). Hence if d ~ ~ (S) is bounded above in ~ (S), then the suprema 
of d in .Y (S) and ~(S) coincide. 

(3.24) LEMMA; Let S be a partially ordered set. Then ~(S) is a superior 
completion of S under the embedding l. 

PROOF. Let.sf be a subset of ~(S) which is bounded above by IE~(S). Then 
there exists sES such that I~l(s). Hence U d~I~l(s), whence sup d = U d E~(S). 
Hence ~(S) is complete and since ~(S) ~ .Y(S), ~(S) is a superior completion of 
Sunder l. 

We end this section with a proposition that will be useful in § 5. 
If B is a subset of the partially ordered set A, we shall now write suPAB (infAB) 

for the supremum (infimum) of B in A. 

(3. 25) PROPOSITION. Let T be a superior extension of a partially ordered set S. 
If B ~ Sand infsB exists, then infTB exists and infTB = infsB. 

PROOF. Let b = infsB, and let t E T be any lower bound for B. If s E Sand s::§ t 
then-s is a lower bound for B, whence s::§ b. Thus b is an upper bound for L(S, t). 
Since T is a superior extension of S, t = sup L(S, t), whence t::§ b. Hence b = infTB. 

(3.26) COROLLARY. Let T be a normal extension of a partially ordered set S. 
If B~S and supsB (infsB) exists, then suPTB, (infTB) exists and suPTB=supsB 
(infTB= infsB). 

PROOF. Immediate by (3.25) and (3.25)*. 

4. Abnormal completions of linearly ordered sets 

In this section we shall show that every linearly ordered set has a universal 
abnormal completion ff (.Y (S») = ff .Y (S). Every abnormal extension of S can be 
embedded order isomorphically in ff.Y (S) (cf. (4. 14)), and every abnormal completion 
of S is essentially an order homomorphic image of ff.Y (S) (cf. (4. 12)). 

(4.1) NOTATION. Let S be a linearly ordered set. Elements of ff.Y(S) will be 
denoted by capital Greek letters. We denote by land l- the mappings of S into 
'y(S) U {0} defined in (3.2), but ({J and ({J+ will be the mappings of (3.2) with S 
replaced by 'y(S). We define n=({Jl, and n+=({J+l. Note that n(s) Eff.Y(S) for 
sES and n+(s)Eff.Y(S), for sES, unless s is the maximal element of S. Next, 
put n+ -(s) = ((J+l-(S), unless s is the minimal element of S, in which case l-(sH .Y(S); 
in this case we set n+ -(s) = .Y(S). Finally, we set n-(s) = ((Jl-(S), if s is not the minimal 
element of S, in which case n-(s) is undefined. 

(4.2) REMARKS. These remarks follow from (3.4). 
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(1) If s is not the maximal element in S, then in $'J(S), n(s)+exists and 
n(s)+ =n+(s). If s is not the minimal element in S, then n(s)- =n-(s). Thus, if 
,1 E 10 (S), and ,1 is neither maximal nor minimal in $' J (S), then ,1 has both a pre
decessor and a successor in $'J(S). If s+ exists, then n+(s)=n(s+) and if s- exists 
then n-(s)=n(s-). The above mappings are 1-1, since in the linearly ordered 
case cp,~, cp+, ~- are all 1-1. 

(2) If n(s)+ =n(t), then t=s+. 
(3) If n(s)- = 10 (t), then t = s-. 
(4) 10+-=10. 

(4.3) PROPOSITION. Let S be a linearly ordered set. Then n(S)=cp(J(S))n 
n(cp+(J(S)i) U {J(S)}), where J(S)t =J(S)\{S}. 

PROOF. Let sES. Then n(s)=cp~(s)Ecp(J(S)). If s is the minimal element 
of S, then ~(s)={s}, whence n(s)=cp({s})=J(S). On the other hand if s is not 
Jhe minimal element of S, then n(s)=cp+~-(s)Ecp+(J(SH), since ~-(s) 7- S. Thus 
n(S) ~ cp(J(S)) n (cp+(J(S)t) U {J(S) n. Conversely, let ,1 E cp(J(S)) n ({cp+(J(S)i) 
U {J(S)}). Thus ,1 =cp(l), for some lEJ(S). If ,1 =J(S), then 1 is the minimal 
element of J(S), whence l=~(s), where s is the minimal of S. Thus ,1 En(S). If 
,1 Ecp+(J(S)i)say,1=cp+(J), then by (3.4.4)*, l=J+. Since S is linearly ordered 
and l=J+, 1\J= {s}, for some sES. It is clear that l=~(s), whence ,1 =cp(s) En(S). 

(4.4) REMARK. If ,1, rE$'J(S), then by (3. 3)*, ,1 ~r if and only jf ,1 ~r. 
Also, since $' J (S) is an inferior completion of J (S), and J (S) is linearly ordered 
by (3. 3), it follows by (3. 3)* that $' J (S) is linearly ordered. 

(4.5) LEMMA. If ,1 E cp(J(S)), then ,1 is a superior element of n(S) in $' J(S). 

PROOF. By hypothesis, ,1 =cp(l), for some lEJ(S). We shall show that ,1 = 
= sup {n(s): s El} = sup n(/). By (3. 10)* (cf. discussion after (3. 14)) sup n(/)= n 10(1) 
since 10(1) is bounded above by cp(/). If JEJ(S), then JEn(s) if and only if J~~(s). 
Hence, JEnn(l) if and only if J~U{~(S):SE1}=U~(1)=1. Hence supn(/)= 
= nne!) = cp(l). 

(4.6) LEMMA. If ,1 Ecp+(J(S)i) U {J(S)}, where J(S)i =J(S)\{S}, then 
,1 is an inferior element of n(S) in $' J(S). 

~PROOF. If ,1 = (p+(/), for soine lEJ(S), we define 
~(a) r=inf{n(s):s~l}=infn(S\!). 

If ,1 =J(S), we set 1=0 and again define r by (a). By (3.10)*, r = Un(S\!). 
If JEr, there exists s~l, such that JEn(s). For this s, J~~(s) and since S is linearly 

. ordered and s~l, we have ~(s)~l. Hence J~I. Conversely, if JEJ(S) and J~l, 
then there exists sEJ\! and for this s, both sV and J~~(s), whence JEn(s). 
It follows that JEr. Thus r= {JEJ(S): J~l}, and so if l~J(S), r=cp+(l)=,1, 
and if 1=0, r=J(S)=,1. 

(4. 7) LEMMA. Let S be a linearly ordered set. Then 

$'J(S) = (p(J(S)) U cp+(J(S)J.) U {J(S)}, 

where J(S)i =J(S)\{S}. Further if ,1 E cp(J(S)) then ,1 + exists, and if ,1 E cp+(J(S)i) 
then ,1- exists. 
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PROOF. The first part of the lemma follows from (3.13), (2.9) and (3. 16)*. 
Since J(S) is linearly order:ed, <p+(l)=<p(l)+ and (p+(l)- =<p(l) by (3.4.3)*. 

(4. 8) LEMMA. Let S be a linearly ordered set. If Ll is a normal element of n(S) 
in ffJ(S), then Ll En(S). 

PROOF. Let Ll = inf 8l't = sup .?l' 2, where fJ'/~ n(S), i = 1, 2. If Ll has either 
a successor or a predecessor, then Ll E fJ'1 or Ll E.?l'2, resp., whence Ll E n(S). However, 
by (4. 8) every Ll, except possibly J(S), has a successor or predecessor. If Ll =J(S), 
then Ll is the minimal element of ffJ(S) whence.?l'2 = {Ll}. It follows that Ll En(S). 

(4.9) THEOREM. Let S be a linearly ordered set. Then, 
(1) ff J (S) is a linearly ordered abnormal completion of S under the embedding n. 
(2)ff J(S) = <p(J(S)) U <p+(J(S)j.) U {J(S)}, where J(S)+ =J(S)\{S}. 
(3) Ll is a superior element ofn(S) in ffJ(S) ifand only if Ll E<P(J(S)); 
(4) Ll is an inferior element of n(S) in ff J(S) if and only ff Ll E <p+(J(S)j.) U 

U {J(S)}. 
(5) Ll is a normal element of n(S) in ff J(S) if and only if Ll E'n(S). 

PROOF. By (3. 3), (3.3)* and (3. 10)*, ff J(S) is complete and linearly ordered, 
and (2) is merely (4. 7). Let i1l! be the set of superior elements and 2 be the set of 
inferior elements of n(S) in ffJ(S). By (4.5), 

(a) i1l!~<p(J(S)) 
and by (4.6) 

(b) 2~<p+(J(S)+) U {J(S)}, 

whence by (2), i1l! U If = ff J (S), and hence ff J (S) is an abnonnal completion 
of Sunder n. Thus (1) is established. 

From (a), (b) and (4.8) it follows that 

<p(J(S)) n (<p+(J(S)j.) U {J(S)}) ~ i1l! n If ~ n(S). 

But (4. 3) now yields 

(c) <p(J(S)) n(<p+(J(SH)U {J(S)}=i1l!n (2=nS). 

By standard set theoretic arguments, we deduce from (2), (a), (b) and (c) that 

i1l!=<p(J(S)) and If = <p+(J(S)+) U {J(S)}). 

The theorem is proved. 

(4. 10) LEMMA. Let T be an abnormal completion of a linearly ordei'ed set S 
under the identity .. Let S1' S2 be subsets of S such that supn(Sl)=supn(S2) 
(iQ.fn(Sl)=infn(S2)) in ffJ(S). Then SUPSl=SUPS2 (infS1 =infS2) in T. 

PROOF. Let Ll = sup n(S1) = sup n(S2)' If Ll =n(s), then since by (4. 2.1) either 
s is minimal in S or n-(s)=n(s)- -<n(s), it follows that sESi, i= 1,2 whence s is 
the maximal element of Si' Hence sup (Sl)=S=SUP (S2) in T. 

Suppose now that Ll~n(S), and so Si' i=1,2, has no maximal element. Let 
sESl . Since Ll = sup n(S2) and n(s)-<Ll, there exists tES2 such that n(s)~n(t). 
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But n is an order isomorphism, and so s §. t. It follows that sup (S 1) §. sup (S2) 
in T. Interchanging indices, we obtain sup (S2):§ sup (S 1), and so sup (S 1) = sup (S2) 
in T. The dual argument works for infima. 

(4. 11) THEOREM. Let T be an abnormal completion of a linearly ordered set 
S under the identity mapping. Then there exists a unique order preserving mapping 
a of ff'..f (S) onto T ± such that 

an=cIS. 

Further, this mapping a preserves suprema and infima; i. e. if ~ ~ ff'..f (S), then 
a(sup ~) = sup a(~), (a(inf~) = inf a(~»). 

PROOF. For n(s)En(S), we define cm(s)=s. Let A Eff'..f(S)\n(S). By (4.9) 
then either there exists gll ~ n(S) such that either A = sup gll or there exists gll ~ n(S) 
such that A = inf gll, but not both. We may now define a(A) = sup a(.9) or a(A) = 
=infa(gll), respectively. By (4.10), a is well-defined. <, 

To show that Ci. is order preserving, let Al >A 2. There are four possible cases, 
according as Al and A2 are superior or inferior elements. We consider here only 
the most difficult case in which At is a superior and A2 is an inferior element. Let 
A1 =supglll, and A2=infgll2, where Y'i~n(S). Since A2<A 1 =sup Y'j, there 
exists r1EPI with A2 <rj §.A 1. Since r t >A 2=infY'2' there exists r 2E.92 with 
A2 §.r2 <r1 :§A j • Since a is an order isomorphism on n(S), we obtain 

Thus, in this case, a is order preserving. 
We next show that a is onto T +. Let t E T +. Since T + is an abnormal extension 

of S, either tES or t=supL#(S, t)=supL#-or t=infU#(S, t)=inf U#. If tES, 
then t=rxn(t). If t~S, suppose t=sup L#, and let A = sup n(L#). Since L# has 
no maximal element, and since n is an order isomorphysm, it follows that A is not 
the minimal element of ff'..f(S) and A has no predecessor. Hence by (4.3.1) A ~n(S). 
Thus by definition of a, a(A)=sup {an(s):s<t}=supL#=t. The case in which 
t is an infimum follows similarly. The uniqueness of a is a consequence of (2. 30). 
It follows from (2. 27) that a commutes with the supremum and infimum operations. 

(4.12) REMARK. Let S be a linearly ordered set. We note that .3(S)~..f(S), 
but that lj.3(S) is not a subset of ff'..f (S), if S has no maximal element. If r E lj.3(S), 
then r ~.3 (S) ~..f (S), and let Yjr be the smallest final segment of J (S) containing r. 
Clearly I1r = r or I1r = r U {S}, according as S has a maximal element or not. 
Also ff'J(S)=I1(lj.3(S»)U{..f(S), {S}} where {S}=+= and ..f(S) = -=. Ob
viously 11 is 1-1. For the sake of c1earity we omit writing 11 where convenient. Thus 
in (4. 13) below we write n where more precisely we mean 11-1n. 

(4. 13) COROLLARY. Let T be an abnormal completion of a linearly ordered 
set S of the same type as S. Then there exists a unique order preserving mapping 
a oflj.3(S) onto T such that an = ciS. The mapping a satisfies the additional conditions 
of (4.11). 

PROOF. If S=S+, then T=T+, and the corollary reduces to Theorem (4.11). 
We argue the case in which S has a minimal but no maximal element. Then S + = S +, 
and T± = T+ = TU( + =), and ff'J(S)=lj.3(S) U {{S}}. By (4.11), there exists 
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an order preserving mapping a-' of 0:3(S) U {{S}} into TU { + oo} such that 
a-'n=eIS. Obviously a-'({S}) = +00, and hence if a-=a-'10:3(S), then a- is into T 
and a-n = e IS. --'- The other cases Jollow similarly. 

(4. 14) THEOREM. Let T be an abnormal extension of a linearly ordered set S. 
Then T can be embedded order isomorphically into ff § (S) in such a fashion that 
s maps onto n(s), for each s E S. Further if 13 is a mapping of T into ff § (S) then the 
following are equivalent: -

(i) a-f3=eIT where rL is the unique mapping of ff§(S) onto T± determined 
in (4. 11) 

(ii) 13 is order isomorphism of T into ff § (S) such that f3lS = n. 

PROOF. By (4. 11) there exists a mapping a- of ff § (S) onto T ± which satisfies 
the hypothesis of (2. 47) with Z = ff § (S), X = n(S), and Y = T ±. Thus by (2. 47), 
there exists a mapping 13' which embeds T ± order isomorphically into ff § (S) such 
that f3'a-ln(S) = eln(S). Thus setting f3=f3'IT, we obtain f3(s)=f3a-n(s), for sES. 
The equivalence of (i) and (ii) also follows from (2. 47). 

(4. 15) COROLLARY. Let T be be an abnormal extension of a linearly ordered 
set S of the same type as S. Then T can be embedded order isomorphically into 0:3(S) 
such that s maps onto n(s),for each ~ E S. The rest of(4.14) holds with ff §(S) replaced 
by 0:3(S). 

PROOF. Similar to (4. 13). 

(4. 16) COROLLARY. The number of ways that a given extension T of S can be 
embedded in ff § (S) so that s maps onto n(s),for all s E S is at most 22 (2

151
-1). 

PROOF. By (2.48.2) we obtain the bound 2iT\SI. But by (2.49), ITI :-§2(2ISi -l). 
(4. 17) REMARK. This bound can be attained, e.g., let S = Q, the rationals, 

and let T=R, the reals. 

(4. 18) PROPOSITION. Let S be a linearly ordered set. Then the number of ab
normal extensions of S which are distinct under order isomorphisms leaving S point
wise fixed is at most 221SI

• 

PROOF. If S is finite, then S is the only abnormal extension of S. If S is infinite 
Iff § (8) I :-§ 21sl, by (2. 49). By (4. 14) each abnormal extension of S is order iso
morphic to a subset of ff § (S) which contains S. The number of all subsets of 
ff§(S) is 221SI, and the result follows. 

(4. 19) REMARK. By taking S = Q, we obtain a situation in whiCh the number 
of abnormal extensions equals 221s1 = 2e, where c is the power of the continuum. 

(4. 20) THEOREM. Let T be a linearly ordered extension of S = S ±. Then T is 
an abnormal completion of S if and only if there exists an order preserving mapping a
of ff§(S) onto T such that a-n=eIS. 

PROOF. Theorem (4. 11) guarantees the existence of a- in the case, when Tis 
an abnormal completion, since here T= T ±. 

Suppose now there exists such a mapping a-. Then, by (2. 27) and the fact that 
ff § (S) is complete, it follows that T is complete. By (2. 28), T is an abnormal 
completion of S. 

Acto Mathelllatica Academiae Scielltiarllm Hlmgaricne 17. 1966 



290 M. N. BLEICHER AND H. SCHNEIDER 

(4.21) COROLLARY. Let T be a linearly ordered extension of S of the same 
type as S. Then T is an abnormal completion of S if and only if there exists an order 
preserving mapping IX of g:.3(S) onto T such that IXn = 61S. 

PROOF. Compare (4. 13) and (4. 15). 
The set fF,j" (S) has a dual, viz. ,j" fF (S). The mapping dual to n will be denoted 

by n*. 

(4.22) PIWPOSITION. Let S be any linearly ordered set. 
(1) There exists an order isomorphism IX from fF,j" (S) onto ,j" fF (S) such that 

IXn=n*. 
(2) 1X1g:.3(S) is an order isomorphism onto .3g:(S). 

PROOF. (1) By (4.9)* ,j"fF(S) is an abnormal extension of S. By (4. 14) there 
exists an order isomorphism IX embedding ,j"fF(S) into fF,j"(S) such that IXn*=n. 
Dually, by (4.14)*, we may embed fF,j"(S) into ,j"fF(S) by a mapping IX for which 
IXn=n*. Thus 1X1X*ln(S)=6In(S), whence by (2.30) 1X1X*=6IfF,j"(S), hence IX is an 
isomorphism onto, and (1) follows. 

(2) Under IX, the maximal (minimal) elements of fF ,j"(S) go onto the maximal 
(minimal) element of ,j" fF (S). Thus (2) follows. 

We now consider normal completions of linearly ordered. sets. We show that 
there is essentially only one normal completion for such a set. The reader may 
wish to refer back to definition (2. 19) and (2. 32). 

--J 
(4. 23) THEOREM. Let S = S + be a linearly ordered set, and let Z = fF ,j" (S). Then 
(1) Z(n(S))=Z is a normal completion of Sunder yn, where y is the natural 

mapping of Z onto Z. 
(2) If T is a normal completion of Sunder '1:, then T is order isomorphic to Z 

under a mapping f3 such that f3'1: = yn. 

PROOF. (1) From (2. 34) and (4. 20) (with T replaced by Z and IX replaced by y), 
it follows that Z is an abnormal completion of Sunder yn. Since S = S +, Z is of 
the same type as S, whence Z is normal by (2. 42). -

(2) The remainder of the proof consists in showing that the above commutative 
diagram exists and, 11 and x are isomorphisms. The existence of an order true map 
IX onto T such that IXn = 'I: follows from (4. 20) (with 6 replaced by 1:). The existence 
of an order true map f3 onto Z such that f31X = y, follows from (2. 35). By (2. 39), 
the natural mapping 11 from Tonto t is an isomorphism. By (2. 36) there is an iso-
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morphism x of tonto Z such that f3 = 11. Hence f3 is also an isomorphism. The 
theorem is proved. 

(4. 24) COROLLARY. Let S be a linearly ordered set, and let Z = tj.3(S). Then 
Z(n(S)) = Z is the unique normal completion of S. ~ set T is a normal completion 
of Sunder -r if and only if T is order isomorphic to Z under a mapping f3 such that 
f3-r = yn, where y is the natural mapping of Z onto Z. 

PROOF. As for corollaries (4. 13), (4. 15) and (4. 21) above. No restriction on 
T is necessary, since a normal completion T of S has the same type as S. 

(4.25) THEOREM. Let T be an abnormal completion of a linearly ordered set S. 
The nTis the (essentially) unique normal completion of S if and only if the natural 
map 11 of Tonto t is an order isomorphism and T is of the same type as S. 

PROOF. By (4.24) a normal completion is unique. By hypothesis, Tis a complet
ion. Hence (2.41) proves the theorem. 

~~~ 
(4.26) COROLLARY. Let S be a linearly ordered set. Then .3(S), tj(S), tj.3(S), 
~ 

and .3tj(S) are all isomorphic to the unique normal completion of S. 

PROOF. Immediate from (2. 38) and (3. 23. 1). 

5. Partially ordered universal algebras 

(5. 1) DEFINITION. A triple (', Q, S) is a universal aJgebra if for each w there 
is a (possibly infinite) cardinal number n = n (w), such that ' w is a function of sn 
into S. By convention So = {0}, and n is identified with the least ordinal of cardinality 
n. Normally each wE Q is a function on sn, and' is the identity function, and hence 
not written. Because of the nature of our work, it is sometimes important to distin
guish between wand ' w, since we shall have several algebras with the same set Q 
on the same set S. 

(5.2) NOTATIONS AND DEFINITION. If wE Q is n-ary, and x E sn, we may write 
w(Xo, Xl' ... ) for w(x). If 11 is a function defined on a set W, and xE W n

, then we 
define 11 (x) i = 11(Xi), all i -< n. In particular this notation will freq uently be used with 
'1 = sup, £, L(V,): thus 

(sup A) = (sup Ao, sup A l , . .. ), L(V, t) = (L(V, to), L(V, t l ), ... ). 

If -W is partially ordered, then wn is partially ordered coordinatewise by x ~ y if 
and only if Xi~Yi' for all i-<n. 

(5. 3) DEFINITION. Let (', Q, A) and (", Q, B) be universal algebras, and let 
11 be a mapping of A into B. Then 11 is a homomorphism from (', Q, A) into (1/, Q, B) 
if and only if for all wE Q, and all x EAn we have . 

11 (' w(x)) = 1/ w(I] (x)). 

Various results on universal algebras can be found in KUROSH [5] § 17 and 
§ 23, and COHN [2], and will be assumed . 
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(5.4) NOTATION. We denote the free universal algebra (KUROSH [5] § 23 , 
COHN [2], Chapter III) generated by X and Q by ( Q, X ). For precise definitions 
which are also valid in the case of infinitary operations, see § 7. 

(5. 5) DEFINITION. Let S be a partially ordered set. We say that the universal 
algebra (Q, S) is a partially ordered universal algebra if all wE Q are order preserving 
as mappings from sn, partially ordered coordinatewise, to S, viz., x ~ y implies 
w(x) ~ w(y). 

(5. 6) DEFINITIONS. Let (Q, S) be a partially ordered universal algebra. Let 
T be an extension of S under the identity. 

(1) A partially ordered universal algebra (', Q, T) is an extension of (Q, S) 
if for all sESn 'w(s)=w(s). 

(2) The algebra (-, Q, 2S
) is defined by w(A) = {w(a): ai EAi' for all i<n)} 

for A E (2St and w n-ary. " 
(3) Let t ETn. We define *w(t)=supw(L(S,t)) if this supremum exists. 
(4) If for all w E Q, *w is defined everywhere, the (*, Q, T) is an universal 

algebra. The algebra (*, Q, T) obtained by this method of defining the operations 
on T is called the superior extension of (Q, S) to T. In general, there will be other 
extensions (', a, T) of (Q, S). 

(5) Let (Q, S) be a partially ordered universal algebra, and let 12 be an order 
isomorphism ~f S onto 12(S). If w E Q is n-ary, and s E sn we define' w(12 (s)) = l2(w(s)). 
Evidently (', Q, I2(S)) is isomorphic to (Q, S). We often drop the prime. 

(6) If T is a superior completion of S (under 12) and the extension (*, Q, T) 
of( Q, 12 (S)) exists, then we shall call (*, Q, T) a superior completion of(Q, S) (under Q). 

(5.7) REMARK. If T= T+ is a superior completion of S then *w will be every
where defined, since, as we recall, T= T + if and only if every subset of T has a 
supremum. Thus, in this case, (*, Q, T) exists. 

(5. 8) PROPOSITION. Let (Q, S) be a partially ordered universal algebra. Let 
T be a superior extension of S such that (*, Q, T) exists. Then (*, Q, T) is a partially 
ordered universal algebra into which (Q, S) is embedded isomorphically in an order 
true fashion by ihe identity mapping. 

PROOF. It is easily verfied that (*, Q, T) is a partially ordered universal "algebra. 
It is also obvious that the identity mapping is 1-1 and order true. So we need only 
show that 81S is a homomorphism, i.e., that w(s)= *w(s) , for all SES". But this 
follows since w is order preserving and Si E L(si), all i <: n. 

(5.9) LEMMA. Let (Q, B) be a partially ordered universal algebra. Let A /i~. B 
and let ai be an upper bound/or the subset Ai of B, i -< n. Then, if wE Q is n-ary, w(a) 
is an upper bound for w(A). 

PROOF. Follows immediately, since w is order preserving. 

(5. 10) REMARK. There are examples of linearly ordered semigroups contain
ing subsets All A2 for which sup A l , sup A2 and sup AlA2 exist but sup AlA2 <: 

«sup A 1)(sup A2). For example, let A=[O, 1] with xy=O unless x=y=I, and 
1·1=1. Let A 1 =A2=[0, 1). 

We are therefore led to the following definition: 
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(5. 11) DEFINITION. Let (Q, B) be a partially ordered universal algebra. We call 
mE Q, m n-ary, suprema preserving if and only if for all Ai ~ B, i -< n such that sup Ai = 
=ai exists, we have m(a)=supm(A). We say that (Q, B) is suprema prejerving 
if all mE Q are suprema preserving. 

(5. 12) REMARK. Let (Q, S) be a partially ordered universal algebra. Since 
t is a 1-1 mapping of S into J(S)=J(S)+, (5.6.4) defines (Q, L(S»), a universal 
algebra isomorphic to (Q,8). The superior completion J(S) of L(S) yields the 
universal algebra (*, Q, J(S»), in accordance with definition (5. 6). In fact, in this 
algebra, if m is n-ary and AEJ(s)n, then *m(A) 'is the initial segment generated 
by {mea): ai E Ai} = meA). 

(5. 13) THEOREM. Every partially ordered universal algebra has a superior 
completion which is suprema preserving, viz., (*, Q, J(S») is such a completion of 
(Q, S). 

PROOF. Since the ordering in J(S) is set inclusion, it follows from lemma (5. 9) 
that it is sufficient to prove that 

*m(supd)~sup *m(d) 

for all subsets d i ~ J (S), i -< n. By definition of *m 

*m(supd) = sup m(L(L(S), sup d»). 

Note that if L(S)~SUp@]= U9?J then there exist BE@] such that L(s)~B, whence 

sup m(L(LS), sup d) ~sup {*m(A): Ai Ed;} = sup *m(d). 

If (*, Q, T) exists, it is the minimal extension of (Q, S) to T in a natural partial 
ordering of extensions. To make this notion precise, we require a definition. 

(5. 14) DEFINITION. Let (Q, A) and C, Q, A) be two partially ordered universal 
algebras on A. We say that (Q, A)~(', Q, A) if and only ifm(a)~'m(a), for all 
a EAn and all mE Q. 

(5. 15) PROPOSITION. Let (Q, S) be a partially ordered universal algebra and 
let T be a superior extension of S. Let (', Q, T) be a partial~)I ordered extension of( Q, S). 

(1) If C, Q,T) preserves 'suprema then (*, Q, T) exists as constructed in (5. 6) 
and C, Q, T) = (*, Q, T). 

(2) If ("', Q, T) exists then (*, Q, T) =2 (', Q, T). 

PROOF. (1) Let m E Q and suppose' m preserves suprema. Then for t E Til, 'm(t) = 
= sup m(L(S, t»)=*m(t) whence *m exists and *m ='m. 

(2) Let mEQ and suppose *m is defined. Then 'm(t)~sup m(L(S, t»)=*m(t), 
by (5. 9) and the result follows. 

(5. 16) PROPOSITION. Let (Q, S) be a partially ordered universal algebra, and 
let (*, Q, T) be a superior extension of (Q, S). If (*, Q, T) preserves infima, then 
so does every extension (', Q, T) of (Q, S) to T. 

PROOF. Let m E ~rand let A E (2T)" such that infTAi = ai for all i -< n. By (5~ 9) 
and (5. 15.2) and. since (*, Q, T) preserves infima, infT meA) =*m(a) ~m'(a) ~ 
~infTm(A) and 'm(a) =infTm(A) follows. 
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(5. 17) LEMMA. Let (Q, S) be a partially ordered universal algebra and let T be 
a superior extension of S. Let (', Q, T) be a partially ordered extension of (Q, S). 
If (', Q, T) preserves infima, so does (Q, S). 

PROOF. Let wE Q and let -1 E(2s)", such that a; =infsA;. By (3.25) ai=infTA;, 
and as (', Q, T) is infima preserving, w(a) =' w(a) = infTw (A) = infs w(A), by (3.25). 
The result follows. 

(5. 18) REMARK. A dual theory exists for inferior extensions. Thus let (Q, S) 
be a partially ordered universal algebra and let T be an inferior extension of S. 
Let wE (Q, S) be n-ary. We define 

*w(t) = inf w(U(S, t)) 

if the infimum exists for all t E T". If *w is defined for all wE (Q, S), we call the res ult
ing extension (*, Q, T) the inferior extension of (Q, S) to T. 

(5. 19) THEOREM. Let (Q, S) be a partially ordered universal algebra. Let N 
be a normal extension of s. If there exists a partially ordered extension C, Q, N) 
of (Q, S) which preserves both suprema and infima then 

(1) C, Q, N) is the unique partially ordered extension of (Q, S) to N, 
(2) (Q, S) preserves both suprema and infima. 

PROOF. (1) By (5. 15. 1) (*, Q, N) exists and C, Q, N) = (*, Q, N) and by 
(5. 13.1)* (*, Q, N) exists and (', Q, N)=(*, Q, N). Hence (*, Q , N)=(*, Q, N). Hence 
by (5. 15.2) (', Q, N) is both the minimal and maximal extension of (Q, S) in the 
ordering of (5. 14). Hence (', Q, N) is the unique extension of (Q, S) to N. 

(2) This follows immadiately from (5. 17) and (5. 17)*. 

(5.20) THEOREM. Let (Q, S) be a partially ordered universal algebra and let N 
be a normal extension of S. If (*, Q, N) exists and preserves infima, then (*, Q, N) 
is the unique extension of (Q, S) to N. 

PROOF. By (5. 15. 1)*, (*, Q, N) exists and (*, Q, N)=(*, Q, N). Hence by 
(5. 15.2) and (5. 15.2)*, (*, Q, N) is both maximal and the minimal extension 
of (Q, S) to N. The result follows. 

(5.21) EXAMPLE. For partially ordered sets S, the converse of (5. 19) is false. 
Let Ro be the reals with 0 removed; and let S = (Ro, 1) U (Ro, 2) ordered thus: 
(x, i)"2(y,j) if and only if x<O and y>O or i=j and X"2y. Let N=SU {O}, where 
o "2 (x, i) if and only if x>O and Os:(x, i) if and only if x<O. Let Q={w}, where 
w is unary. Let w(x, l)=(x, I), and for x>O, let w(x, 2}={x+ 1, 2), while x < O, 
w(x, 2)=(x-l, 2). Then (Q, S) preserves infima and suprema, and the unique 
extension' w of w to N yields' w(O) = O. It is easy to see that (*, Q, N) = (*, Q, N) = 
=(', Q, N), but (*, Q , N) does not preserve infima or suprema. 

In § 6 we shall prove that the converse of (5. 19) holds for linearly orderes sets. 
We now investigate the extent to which identities and inequalities are preserved 

when a partially ordered universal algebra is extended. 
(5.22) DEFINITION. Let ( Q, X) be a free universal algebra, let (Q, A) be a 

universal algebra. A function I/J from X to A will be called a substitution. We extend 
the domain of I/J to ( Q, X ) thus: if w is a word in (Q, X) then .we denote by I/J'(w) 
the element of A obtained by substituting I/J(x) for each occurrence of x in w. 
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We note that 1/1' is thus a homomorphism of (0, X ) into (O,A), and every 
homomorphism can be realized in this fashion. Where no confusion should arise, 
we shall write 1/1 in place of 1/1'. 

(5.23) DEFINITION. Let (0, S) be a partially ordered universal algebra, and 
let (*, 0, I) be a superior completion of (0, S). If 1/1 is a substitution of X into T, 
then we define the mapping lj! of (0, X ) into T as follows: lj!(w)=sup {8(w): 
where 8 is a substitution from X to Sand 8 (x) EL(S, I/I(x))} where the supremum 
exists by (5. 9). 

(5.24) REMARK. We note that, in general, lj! is not a substitution and there
fore not necessarily a homomorphism. The next series of lemmas investigate those 
situations in which lj!(w) = 1/1 (w), since this equality has important consequences. 

(5.25) REMARK. Let (0, X ) be a free universal algebra. We suppose that 
a notion of depth of a word wE (0, X ) has been defined such that the following 
are satisfied. 

(i) For all w, depth w is an ordinal number. 
(ii) The range of depth w is bounded by some ordinal m=m(O). 
(iii) depth w = 0 if and only if wE X or w = w for some nullary operation wE 0 . 
(iv) If w=w(v) for some vE (O, Xl then depth w>depthvi for all i<n. 

If ° is finitary the number of symbols in w minus one will serve as depth w. 
In any case such a function is constructed in § 7. 

(5.26) LEMMA. Let 8,1/1 be substitutions from (0, X ) into the partially ordered 
universal algebra (0, I). Iffor all xEX, 8(x)::§I/I(x), then for all wE (O, X ), 8(w)::§ 
::§ 1/1 (w). 

PROOF. Let wE (O, X ). If depth w=O, the statement is trivial. Suppose that 
depth w> 0 and that the result is true for all words of depth less than depth w. Let 
w=w(u). Then depth u i < depth w, i<n and so by the inductive hypothesis 8(u i)::§ 
::§1/I(Uj). Hence 8(w)=w(8(u))::§w(cp(u))=cp(w). 

(5. 27) PROPOSITION. Let (*,0, T) be a superior completion of (0, S), a partially 
ordered universal algebra. Let wE (0, X ). Then for every substitution 1/1 of X into 
T, lj!(w)::§I/I(w) . 

PROOF. Let 8 and 1/1 be substitutions from X into T and suppose that 8 (x) ::§ 
::§I/I(x), all xEX. Then by (5.26), 8(w)::§I/I(w), all wE (O, X ). Hence lj!(w) = 
= sup {8(w): 8(X)EL(S, l/I(x))}::§I/I(w). 

(5.28) PROPOSITION.' Let (0, S) be a partially ordered universal algebra, and 
let (*, 0, T) be a suprema preserving superior completion of (0, S). If w is a word in 
(0, X ) such that each x E X occurs in w at most once, then, for each substitution 
1/1 of X into T, lj!(w)=I/I(w). 

PROOF. The proof is by induction on the depth of the word w. If depth w=o 
there are two cases: Either w = w, with w nullary, in which case lj!(w) = w(0) = 1/1 (w), 
or W= x EX, in which case lj!(w) = sup {8(x): 8 (x) EL(S, 1/1 (x))} = sup L(S, 1/1 (x)) = 
= 1/1 (x) = 1/1 (w). Suppose inductively that depth w ~ 1, and suppose the proposition 
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true for words of depth less than depth w. Let w = w(u). Then since IjJ is a homomor~ 
phism and by induction 
(a) !/J(w) = w(!/J(u) = w(!/J(u). 

Let Ai={8(Wi): 8(x)EL(S, !/J(x)}. Then by definition of \j! and since (*, Q, T) 
preserves suprema 

(b) w(!/J(u)=w (sup A)=sup w(A) .=sup {w(a): aiEAJ 

Let aiEA i. Then there exists 8i such that 8i(x)EL(S, !/J(x) and 8i(uJ=ai' Since 
no x occurs in more than one Ui' i < n we may define a substitution 8 of X into S by 

{
8i (X), if x occursin Ui' i<n 

8(x) = 
81 (x) otherwise. 

Note that 8(x) EL(S, !/J(x) since 8i(x)EL(S, !/J(x). Thus 8(ui)=ai, and we obtain 

(c) sup {w(a): ai EAJ = sup {w(8(u): 8 (x) EL(S, !/J(x)} = 

= sup {8(w): 8(x)EL(S, !/J(x))}=\j!(w). 

The equality now follows from (a), (b), and (c). 
(5.29) DEFINITION. Let Wl,Wi E(Q,X). We say (the equality) W1 ==W2 ((the 

inequality) w1 « W2) holds identically on the universal algebra (Q, A) if and only if, 
for all substitutions !/J of X into A, !/J (w 1) = !/J(w2) (!/J(w1) ~!/J (W2)' 

(5. 30) THEOREM. Let (Q, S) be a partially ordered universal algebra, and let 
(*, Q, T) be a superior completion of (Q, S) which is suprema preserving. Let w1' w2 E 
E( Q, X ) and suppose each xEX occurs at most once in each Wi> i= 1,2. Then W1 ==W2 

(Wl «W2) holds identically on (Q, S), if and only if it holds on (*, Q, T). 

PROOF. It is sufficient to prove the theorem w1 « W2 since W1 == W2 is equivalent 
to W1« W2 and W2« W1 • If Wl ==W2 holds on (*, Q, T) then it clearly holds on the 
subalgebra (Q, S). Conversely, suppose W1 « W2 holds on (Q, S). Let!/J be a substitution 
of X into T. Then by (5. 28) and the definition of \jI 

!/J(w!) = \j!(wi) = sup {8(wJ: 8 (x) EL(!/J(x))}. 

But, since W1« W2 on S, 8(Wl)~8(W2) for all substitutions 8, and the result follows. 

(5.31) CoROLLARY. Let Wl,w2E(Q, X ) and suppose each x EX occurs at 
most once in each Wi' i= 1,2. Then W1 == W2 (Wl « W2) holds identically on (Q, S) 
if and only if it holds on (*, Q, J(S)). 

PROOF. Immediate by Theorem (5. 13). 

(5.32) CoROLLARY. Let C., S) be a groupoid. If (., S) has any of the following 
properties, . then so has every superior completion of (. ,S) which preserves suprema, 
in particular (*,., J (S): (1) associativity, (2) commutativity, (3) existence of 
identity, (4) existence of zero. 

PROOF. This is an immediate consequence of Theorem (5.30). We note that 
in the case of (3) and (4) we have to adjoin constant nullary operations to Q. 
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(5. 33) EXAMPLE. In general, idempotence, distributivity, power associativity 
and inversion in S do not necessarily imply their counterparts in J(S). For example, 
let S = {a, b, c} with the trivial ordering in which distinct elements are incomparable. 
Define uv = u,u+u = u and for ur!:v, u+V = wE£{u,v}. Then in S, X+X=X 
and x(y+z)=xy+xz hold identically, but neither holds in J(S). We have been 
unable to characterize the class of identities which for every Q algebra (Q, S) extend 
(*, Q, J(S)) whenever they hold in (Q, S). 

We recall ~(S) was defined in (3. 22). 

(5.34) THEOREM. Let (Q. S) be a partially ordered universal algebra. Then 
the restriction of (*, Q, J(S)) to ~(S) is a sub algebra and is, in fact, the superior 
completion (*, Q, ~(S)) as constructed (5. 6). Further, (*, Q, ~(S)) is suprema 
preserL'ing. 

PROOF. Let wEQ be n-ary. Let AE~(s)n. We wish to show that *co(A)E~(S), 
where *co is the operation in (*, Q, J(S)). Since AiE~(S), i<n there exists s,ESi 
such that A,~£(Si)' i= 1, ... , n. Hence 

whence *co (A) E ~ (S). 
*co(A) ::§*co(£(s)) = L(CO(S) EL(S), 

Hence the restriction of(*, Q, J(S)) to ~(S) is a subalgebra. Further if d ~~(S), 
and sup dexists in ~(S), then the supremum in ~(S) is the same as the supremum 
in J(S), by (3.23). Hence the subalgebra is suprema preserving since, by (5. 13), 
(, *Q, J(S)) is. It follows from (5.15) that the subalgebra is the algebra constructed 
on ~(S) by (5. 6). 

(5. 35) COROLLARY. Let (Q, S) be a partially ordered universal algebra. Then 
(*, Q, ~(S)) is a suprema preserving superior completion of (Q, S) whiCh further 
satisfies: If Wi' Wz E(Q, X) are words such that each xEX occurs at most once 
in each Wi> i=I,2, then Wi=WZ (wi «WZ) holds identically in (Q,S) if and only 
if it holds in (*, Q, ~(S)). 

PROOF. The first part of the corollary follows from (5. 34), while the second 
part follows from (5.31), and the facts that (*, Q, ~(S)) is an extension of (Q, S) 
and a subalgebra of (*, Q, J(S)). 

6. Linearly ordered universal algebras 

We now consider the case when (Q, S) is a linearly ordered universal algebra. 
In this case theorem (5. 30) can be strengthened. We begin with a strengthened 
version of (5. 28). 

(6. 1) PROPOSITION. Let (*, Q, T) be a suprema preserving superior completion 
of the linearly ordered universal algebra (Q, S). If w E (Q, X) then for each substitution 
l/J of X into T, ljI(w) = l/J(w). 

PROOF. The proof is the same as that of proposition (5. 28), except that the 
substitution fJ is now defined as follows: 

fJ(x) = max {fJ/x): i<n}. 
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We note that B(x) is well-defined since S is linearly ordered. Since for each x there 
is an i, i<n, such that B(x) = Bi(x), it follows that B(x)EL(S, ljJ(x)). 

(6.2) THEOREM. Let (*, 0, T) be a suprema preserving superior completion 
of the linearly ordered universal algebra (0, S)~ Let w1, W2 E (0, X ). Then w1 == W 2 
(W1 «w2) holds on (0, S) if and only if it holds identically on (*, 0, T). 

PROOF. The proof is similar to the proof of theorem (5.30), except that we 
use (6. 1) in place of (5.28). 

(6.3) COROLLARY. Let (., S) be a linearly ordered groupoid. If(. , S) has any 
of the properties of (5. 32), or any of the properties below, then so has every superior 
completion of ( . , S) which preserves suprema, in particular (*, .",.Jf(S)): (5) idem
potence, (6) power associativity. 

(6.4) REMARKS. (1) Let ( ., G)=G be any partially ordered group with more 
than one element. Then .Jf(G) is not group, since GE.Jf(G), and G has no inverse 
in .Jf(G). 

(2) The class of all groups may be defined to be the primitive class (KUROSH 
[5], § 22. 1) or universal algebras with a binary opelation OJia, b) = ab, a unary 
operation OJ 1 (a) = a- 1

, and a nullary operation OJo = 1, which satisfy the identities 
x(yz) == (xy)z, xl == x and xx- 1 == 1. There are other equivalent ways of defining 
the class of groups by means of operations and identities (KUROSH [5], § 18. 6). 
Let A be a set of identities with ~ords taken from (0 , X), so that the class. of 
universal algebras (', 0, G) satisfying the identities A is the class of groups. 

There exists an identity W 1 == W 2 in A such that some x E X occurs at least twice 
in either Wi or w2 . For, optherwise, let (" 0, G) be a group with trivial ordering, 
and more than one element. Then, by (5. 30) (*, 0, .Jf(G)) would be a group contrary 
to (1) above. Further, it is impossible to find a linear ordering on any group G so 
that every OJ E ° is order preserving on Gn. For, otherwise, (*,0, .Jf(G)) would be 
a group by (6. 2), again contrary to (1) above. In particular the unary operation 
OJ1 (a) = a- I, is order inverting. Similar remarks may be made about the classes 
of quasi-groups and loops. 

(6. 5) DEFINITIONS. Let (0, S) be a linearly ordered universal algebra, and let 
OJ E 0. We say that OJ is lower semi-continuous if and only if OJ satisfies the following 
condition: 

If OJ (a) >c then there exist neighborhoods N(a i ) of ai (in the order topology) 
such that for biEN(ai), OJ(b»c. 

We call the algebra (0, S) lower semi-continuous if each wE ° is lower semi
continuous. Upper semi-continuity for operations (algebras) is defined dually. 
If an operation (algebra) is both lower and upper semi-continuous, then it is called 
continuous. The following theorem is essentially due to A. H. CLIFFORD ([1], Lemma 
2. 1) who proved it in the case of commutative semi groups (cf. FUCHS [2] p. 176, 
who proved it for arbitrary semigroups). 

(6.6) THEOREM. Let (0, S) be a linearly ordered universal algebra, and let 
OJ E 0. Then OJ is lower semi-continuous if and only if OJ is suprema preserving. 

PROOF. The proof can be obtained by making the appropriate, obvious modi-
fications of CLIFFIORD'S proof. . 
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(6. 7) COROLLARY. Let (Q, S) be a linearly ordered universal algebra. Then 
(Q, S) is lower semi-continuous if and only if it is supprema preserving. 

(6. 8) THEOREM. Let (Q, S) be a linearly ordered universal algebra. Then both 
(*, Q, ...1(S)) and (*, Q, ~(S)) are lower semi-continuous completions of S. 

PROOF. By (3. 13) ...1(S) is a superior completion of S, which is linearly ordered 
by (2. 11). The conclusion follows from (5. 13), (5. 34)and CLIFFORD'S theorem (6. 6). 

(6. 9) THEOREM. Let (Q, S) be a linearl~ ordered universal algebra. Then there 
exist linearly ordered completions (' , Q, fF ...1 (S)) and(", Q,fF ...1(S)) which are upper and 
lower semi-continuous respectively. Further an inequality (equality) holds identically 
on (', Q, fF...1(S)) ((", Q , fF...1(S))) if and only if it holds on (Q, S). 

PROOF. By (5. 13) and (6. 2), (Q, S) can be extended to ...1(S) so that "identities" 
are preserved. By (5. 13)* and (6.2)*, this algebra on ...1(S) can be extended to 
algebras (', Q , fF...1(S)), which are upper semi-continuous by (6.7)*, and in which 
all identities on ...1 (S) and hence on S, remain valid. 

Dually, we prove the corresponding result for a lower semi-continuous extension 
(" , Q, ...1fF(S)). Bu( ...1fF(S) is order isomorphic to fF ...1(S) by (4.22) and hence 
we may replace ...1 fF (S) by fF...1 (S) in this algebra. 

(6.10) REMARK. In theorem (6. 9), we may replace fF...1(S) by ty3(S). This 
follows from (5. 34). 

(6. 11) REMARK. It is usually impossible to extend the operations of (Q, S) 
to fF ...1(S) (or ty~(S)) so that the resulting algebra is continuous. The example 
is even more surprising, since in the counter-example below (Q, S) = ( +, R) is 
the reals under addition. Then ty3(R)=R Un+(R) Un-(R). Let 0+ and 0- be 
the predecessor and successor respectively of 0 in ty3(R). We suppose that addition 
is continuous inty3(R), and we derive a contradiction. 

If x ER, and x>O, then x+O- >x+ (- ~)=X/2. Since 0+ =inf U*(R, 0) 

we obtain, by continuity, O++O-=inf{x+O-:x EU*(R, O)}=O+. Dually, 
0+ +0- =0-, and this is a contradiction. 

(6. 12) THEOREM. Let (Q, S) be a linearly ordered universal algebra, and let 
N be a normal extension of S such that (*, Q, N) exists. Then (*; Q , N) is lower semi
continuous if and only if (Q, S) is lower semi-continuous . 

PROOF. If (*, Q, N) is lower semi-continuous, so is (Q, S) by (5. 17) and (6. 6). 
LetsES,xEN,x -< s. We claim there exists c ES such thatx2c -< s, since x = infL(S, x). 
Let t E Nn, suppose w E Q, and x -< *w(t). By definition of *w, there exist s E S" 
with S2t for which x -< w(s). Hence, for some c ES, X2C -< W(S). Since co is lower 
semi-continuous, there exist s' ES such that for all u>s' w(y»c. Let v ENn, vi>s;, 
i -< n. Since N is a superior extension of S, there exist u ES" for which Vi;;:Ui>S;, 
whenc *w(v);;:w(u»c;;:x and hence *w is lower semi-continuous. 

(6. 13) THEOREM. Let (Q, S) be a linearly ordered continuous universal algebra 
and let N be the normal completion of S. Then 

(1) (*, Q, N) exists. 

5" 

(2) (*, Q, N) is the minimal extension of(Q, S) in the ordering (5. 14). 
(3) (*, Q, N) is lower semi-continuous. 
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PROOF. The extension (*, Q, N) exists by (4,27) and (5.34). The theorem 
follows from (6. 12). 

(6. 14) THEOREM. Let (Q, S) be a continuous linearly ordered universal algebra. 
Let A be a set of equalities and inequalities which hold identically on (Q, S). Let N 
be the normal completion of S . .Then the following are equivalent: 

(i) There exists a continuous completion of (Q, S) to N in which A holds identi-
cally. 

(ii) There exists a continuous completion of (Q, S) to N, 
(iii) There exists a unique completion of (Q, S) to N. . 
(iv) There exists a unique completion of (Q, S) to N in which A holds identically. 

PROOF. Clearly (i) implies (ii). From (5. 19), (6. 8) and (6. 8)* we infer that 
(ii) implies (iii). Suppose (iii) holds". By (6. 13), the unique completion is (*, Q, N), 
and (iv) follows from (6.2). Suppose (iv) holds. From (6. 13. 1) and (6. 13. 1)* 
we see that (*, Q, N) = (*, Q, N) is the unique completion. Again by (6. 13. 3) 
and (6. 13; 3)*, (i) follows. . 

(6. 15) REMARK. In the case when Q consists of a single binary operation 
w (a, b) = ab and A consists of the identities xy = yx and x(yz) = (xy)z, i.e. S is a 
commutative semigroup, the equivalence of (i) and (iv) of (6. 11) was first shown 
by CLIFFORD [1]. 

7. Free infinitary algebras 

In this section we construct the free universal algebra with operations Q generated 
by X and show that a depth function (cf. 5.25) can be defined. 

(7. 1) REMARKS. (1) We shall follow the definitions of cardinal numbers and 
ordinal numbers given by GODeL [4]. In particular an ordinal number is a set which 
is an initial segments of the class of ordinals which is naturally well ordered by E, 
and an ordinal number is, in fact, the set of ordinals less than it. A cardinal number 
is an ordinal number which is less than all other ordinal numbers cardinality equivalent 
to it, and hence a limit ordinal, if infinite. 

(2) We shall also use the result that if (j is an infinite cardinal number and 
A is a set of ordinal numbers each less than (j, and the cardinality of A is also less 
than (j, then sup A = U A < (j. 

(7.2) DEFINITIONS. (1) By a set of operations Q we mean an ordered pair :"; 
(Q, n), where n is a function from Q into an infinite cardinal number m =m(Q). 
We normally write Q for (Q, n). 

(2) Let Q be a set of operations, and X a set disjoint from Q. Let Qo = 
= {w E Qo: new) = a}. 

(i) Let 1f" 0 = XU Qo· 
(ii) If 1f" i has been defined for all ordinals i less than j, we define 1f" j thus: 

Let "Yj = U{1f";: i<j}, 1Yj ={(w, v): wEQ, vE"Yj,n=n(w)}U"Y. 

(7. 3) LEMMA. If m is the cardinal number defined in (7. 2. 1), then 1f"m = "Y m • 

PROOF. Clearly "IY", ~ "Y m' Let wE 1f" m' If wE 1f" 0, then wE "Y m' Otherwise 
w = (w, v) where v E "Y~. Thus, Vi E1Yj (i) for some ordinalj(i) <m, for all i< n =n(w) . 
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Letj=sup {j(i): i<n}. Since eachj(i) is less than m and n<m we see by (7. 1. 2) 
that j<m. Thus for all i<n, viEif//~. i/j + l' It follows that wEif/j+1> and since 
j<m and m is a limit ordinal, j+l<m. Thus if/j+l~i/m whence wEi/m. The 
result follows. 

(7.4) COROLLARY. if/m+l=if/m' 

(7. 5) DEFINITIONS. (1) Let (Q, X) = if/m. This set is called the set (of words) 
of the free universal algebra generated by Q and X. 

(2) The free universal algebra generated by Q and X is the triple (', Q, (Q, X») 
where '0) is the function from (Q, x)n to ( Q, X ) given by '0) (v) =(0), v), where 
n=n(w). 

In practice we call (Q, X ) the free algebra. 

(7.6) DEFINITION. If wE ( Q, X ) then we define depth w=inf {i: WEif/i}' 
We observe that depth IV has all the properties required in (5.25). 

(Received 17 August 1965) 
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