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§ 1. Intreduction

The results’ in this paper were motivated by a search for the answers to the
following questions: When can a given partially ordered algebra be embedded in
a complete partially ordered algebra in such a fashion that the original algebra
is dense and that the operations acquire or maintain continuity properties? What
type of identities are preserved under such embeddings?

Properties of extensions and completions do not depend on the algebraic structure
but only on the partial order. Thus in §§ 2—4 we consider extensions and comple-
tions of partially ordered sets.

We are led to the notions of order preserving mappings, order true mappings
(2. 14), and abnormal extensions Z (2. 6) of a partially ordered set X. The analogue
of the statement that a subset X of a topological space Z is dense in Z is the statement
that Z is an abnormal extension of X. If « is an X preserving order true mapping
of an abnormal extension Z of X onto ¥, then Y is an abnormal extension of a(Y),
and « preserves suprema and infima (2.27). We construct a partially ordered set
Z={2:z€Z)} of equivalence classes (2. 19) each class consisting of all elements
which can possibly be identified under X preserving order true mappings. We show
that |z| =3, for all z€ Z (2. 20 and 2. 22). If Y is an X preserving order true image
of Z, then the natural mapping y of Z onto Z, which is order true, factors trough
Y (2.35) and Y is isomorphic to Z (2. 36). In fact in the linearly ordered case Z
is essentially the unique normal extension of X (2. 42).

The structure of abnormal extensions is completely determined in the case
of a linearly ordered set X (§ 4): A universal abnormal extension % .# (X)) is construct-
ed such that every other such extension is faithfully embeddable into it (4. 14).
The question of which extensions are completions is also solved in that it is shown
that they are essentially homomorphic images of #.#(X) (4. 11). It is further shown
that there is a minimal completion, the normal completion (CLIFFORD [1]) which
is both a homomorphic image of all completions and isomorphically embeddable
in all completions.

In the case of partially ordered sets it is not known to us if a maximal abnormal
completion exists.

Extensions Y of X in which every element of Y is a supremum of a subset of
X are called superior extensions. The structure of superior completions of partially
ordered sets is also given ( § 3): We construct a completion #(X) which is a superior
extension of X, Every other superior extension is faithfully embeddable in #(X),
(3. 19). All superior extensions which are complete are essentially homomorphic
images of £(X) (3.20).
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272 M. N. BLEICHER AND H. SCHNEIDER

The next problem ( §§ 5—6) considered is that of extending the \algebraic
structure of partially ordered universal algebras to the completions. If (€, S) is
an universal algebra (with possibly infinitary operations) on S, then each operation
w € Q can be extended to an operation on £ (S).

Among all possible ways of extending those operations we construct one of
particular importance. This method always yields operations which preserve
suprema (5. 13). These particular operations have the property that any other
method of extending the operations yields a greater value when the operations are
applied to a set of operands (5. 15). Further we show that many of the identities
which have held in (@, S) will remain valid in the extension (5. 30). Given an identity
on (Q, S), we do not know necessary and sufficient conditions for this identity to
remain valid in the extension (Q, #(S)). However if § is linearly ordered, all
identities remain valid (6. 2).

In the linearly ordered case it is possible to extend the operation to the universal
abnormal completion & .£(X) (in many ways). There are two identity preserving
methods of extending the operations which are of particular importance. One
extension is lower semi-continuous, the other is upper semi-continuous (6.9).
Unfortunately it is impossible in general to obtain a continuous extension.

CLIFFORD’s theorem on normal completions of commutative semigroups (6. 15)
is obtained in a more general setting (6. 14): We show that a linearly ordered uni-
versal algebra has a unique extension to the normal completion if and only if it
has a continuous extension to that completion, and that all identities are pre-
served for that extension. We also obtain certain results on the nature of the iden-
tities necessary to define an abstract group and other particular algebraic structures.
We further obtain some results on the monotonicity of the many possible defining
operations for linearly ordered groups.

We append § 7, in which free universal algebras are constructed, for the reader’s
convenience.

We mention below an alternate approach from which the same theory could
be developed: Given a partially ordered universal algebra (Q,S) the operation
can be extended to the set of subsets of S, 25 (5. 6). In this new algebra one can
say two sets are equivalent if they are cofinal. This equivalence is in fact a congruence,

and the factor algebra so obtained is naturally isomorphic to the superior extension
of (Q,S) to F(S).

2. Partially ordered sets

We begin with several definitions concerning both partially ordered and linearly
ordered sets. :

(2.1) DermaTioN. Let Z. be a linearly ordered set. We define the order
topology (KELLY [5] p. 57) to be the topology in which the intervals (a, =) = {z: z>a}
and (—eo, g)={z: z<a} form a subbasis for the open sets.

(2.2) DermiTION. Let X be a subset of a linearly ordered set Z. We call X
dense in Z if and only if every nonempty subset of Z which is open in the order
topology meets X.
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(2. 3) DerFINITION. Let Y be a subset of a partially ordered set Z. Then z is
the supremum of Y (z=sup Y) if and only if

(i) For each y€ Y, we have z=y, and

(ii) If, z’=y for all y€ Y, then z' =z.

The infimum of (z=inf Y) is defined by reserving the order symbols above.

(2. 4) Remark. A supremum of Y, if it exists, is unique. If z=sup ¥, then z
satisfies

(i1") If z=w, then there exists y € ¥ such that wzy. But (i) and (ii") do not
imply (ii). For example, let Z={a, b, ¢}, with a<b and a=<c. Let ¥Y={a}, then
both & and ¢ satisfy (i) and (ii"), but neither satisfies (ii). If Z is linearly ordered,
then (i) and (ii") are equivalent to (i) and (ii).

We introduce further definitions, some of which will not be used till the next
section. However, since our definitions are all related, and some are required now,
we prefer to state them together. Some similar notions have been considered by
CLisrORD [1] and Fucwas [3], p. 178.

(2. 5) DerFiNITIONS. Let Z be a partially ordered set, and let X be a subset of Z.
Let z€ Z. Then

(1) z is called a superior element of X in Z if and only if z=sup ¥, for some
non-empty subset ¥ of X.

(2) z is called an inferior element of X in Z if and only if z=inf ¥, for some
non-empty subset ¥ of X.

(3) z is called a normal element of X in Z if and only if z is both a superior
and an inferior element of X in Z.

(2. 6) DEerINITIONS. Let Z be a partially ordered set, and let X be a subset
of Z. Then

(1) Z is called an abnormal extension of X if and only if each z€Z is either
an inferior or a superior element of X in Z.

(2) Z is called a superior extension of X if and only if each z€ Z is a superior
element of X in Z. ‘

(3) Z is called an inferior extension of X if and only if each z€ Z is an inferior
element of X in Z.

(4) Z is called a normal extension of X if and only if each z€Z is a normal
element of X in Z. i

(2. 7) NOTATION AND REMARKS. Let Z be an extension of a partially ordered
set X. Let z€Z. Set U=U(X,z)={x€X: x=z}, L=L(X,z)={x€X: x=z}, and
U¥=U(X, z)=U\{z}, L¥=L¥(X, z) = L\{z}.

(1) If z¢ X, then U%=U, L¥=1L.

(2) If Z is an abnormal extension of X, then either z=inf U or z=sup L.

(2. 8) NOTATION. Let Z be a partially ordered set. We use the symbols z,liz,
to denote that z, is incomparable to z,, i.e., neither z, =z, nor z, =z,.

(2.9) LemMA. Let Z be a partially ordered set which is an abnormal extension
of a linearly ordered set X. Then Z is linearly ordered.

Proor. We suppose z,, z,€ Z and z,|lz,. We first show that there exists x; € X
such that x,llz,. The element z, is either an inferior or a superior element of X in Z.
We argue the case when z, =sup ¥, YE X. If there exists a y € ¥ with z, =y then
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z,=y=z,. If for all y€¥, we have z, =y then, since z, is the supremum of ¥,
z,=z,. Hence if z,|| z,, there must exist x, € Y S X such that x|/ z,.

A repetition of this argument with x, replacing z,, shows that there exists
x, € X for which x|l x,. This is a contradiction since X is linearly ordered.

(2. 10) LemMA. Let X be a subset of a linearly ordered set Z. Then X is dense
in Z if and only if Z is an abnormal extension of X.

Proor. Let X be dense in Z and let z€Z\X. We assume that z is neither a
maximal nor a minimal element of Z, and we show that zis either a superior or inferior
element of X in Z. Let L# = L¥(X, z) and U# = U¥*(X, z). Since Z is linearly ordered,
L#¥\J U#* =X, Since z is neither maximal nor minimal, and X is dense in Z, it follows
that L¥=XN(—oo, 2) =, and U¥=X1\(z, =) =M. If z=sup L¥ or z=inf U#,
there is nothing to prove. We shall assume the contrary and derive a contradiction.
In this case, since z = sup L¥, there exists an upper bound / of L# with /<z, and
similarly there exists a lower bound u of U# with u=z. On the one hand, since
L¥UU*=X, (/,y)y N X=0; on the other hand, by the denseness of X in Z, (Z, u) N
NX =3, a contradiction.

If z is the maximal or minimal element in Z we replace (/, #) in the above
argument by (/, ) or (—eo, u) respectively, unless Z={z}, in which case every-
thing is trivial.

Conversely, let Z be an abnormal extension of X. The open intervals, including
the semi-infinite ones, are a basis for the order topology. Let (z,, z,) be a nonempty
open interval where possibly z; = —e or z,= + . It is sufficient to show that
(z1,2,)NX=D. Let z€(zy, 2,). If z€ X, there is nothing further to prove. Other-
wise, we know that z is either an inferior or superior element, and here argue the
case in which z is a superior element. In this case z=sup L¥(X, z) and hence there
exists an element x € L¥(X, z) such that z; <x=z, whence x€¢(z,, z,) which esta-
blishes the proposition.

(2. 11) PRrROPOSITION. Let X be a linearly ordered set. T hen Z is an abnormal
extension of X if and only if Z is linearly ordered and X is dense in Z.

Proor. Immediate from (2. 9) and (2. 10).

. (2.12) DermniTiOoNs. Let Z be a partially ordered set and let z¢Z. Then z*
(z~) is used to denote inf U#(Z, z) (sup L#(Z, z)) when and only when inf U¥ (sup L)
exists and is distinct from z. The element z* is called the successor or z while z~
is called the predecessor of z.

(2. 13) RemARK. The above definitions ensure that the successor and predecessor,
if they exist, are unique, and that there is no element strictly between z and z*
or strictly between z and z~.

(2. 14) DermviTIONS. Let Z and Y be partially ordered sets.

(1) A mapping « of Z into Y is called order preserving if and only if z,, z, EZ
z, =z, implies a(z,)=u(z,).

(2) A mapping « of Z into Y is called order true if and only if « is order preserv-
ing and a(z,)=wa(z,) implies z, >z,.

(3) A mapping is called an order isomorphism if it is 1—1 and order true.

. (4) Let XS Z. An order true (order preserving) mapping o is called X preserving

if o restricted to X is an order isomorphism.
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(2.15) Remarks. (1) If Z is partially ordered, then the following are equi-
valent: .

(1) o is order true.

(i) o is order preserving and if zllz, then either

a(z)lo(z,) orelse a(z,)=a(z,).

(2) In the case when Z is linearly ordered, the concepts order true and order
preserving are equivalent since (ii) above is vacuously satisfied.

(3) If o is an order true mapping of Z into ¥ and S is an order true mapping
of Yinto W, then the composite map S« of Z into Wis also order true.

(4) If «is 1—1, then a necessary and sufficient condition for « to be an order
isomorphism is that «(z;) =a(z,) if and only if z, =z,.

(2. 16) DrrmNiTION. Let Z be an extension of X. Let w, z€Z. We shall say
w and z are peighbors (in Z over X) if

(i) either w¢X or z¢X, and

(i1) either w=z* and z=w~, or z=w" and w=z".

(2. 17) Lemma. Let Z be an abnormal extension of X, and let z€Z. If z+ and z~
both exist, then z€X. .

Proor. Suppose z+ and z~ both exist. Then z* is a lower bound for U¥*(X, z)
and z~ is an upper bound for L¥(X, z). By (2.7.2) elther z=inf U(X, z) or z=
=sup L(X, z). Hence z€ X, by (2.7. 1).

The corollary below follows immediately from the -fact that successors and
predecessors are unique.

(2. 18) CororrarY. If z€Z\X, then z has at most one neighbor.

(2. 19) DrermNiTION. Let Z be an abnormal extension of X. We now define
a class Z=Z(X) of subsets of Z.

(i) If x€Xlet £ consist of x and all neighbors of x.

(i) If, for some x€X, z€ %, then we define Z==%.

(i) If for all x€ X, z¢ £, then Z consists of z and all neighbors of z.

(iv) Z(X)={2:2z€Z). Where no confusion can arise, we shall write Z in
place of Z(X).

Thus we have collapsed to one element all classes 2.

(2. 20) REMARKS. Let Z be an abnormal extension of X.

(1) If z,, z, are neighbors, then 2, =Z,. This follows from (2. 18).

(2) Itfollows easily from (2. 18) and the fact that the relation of being neighbors
is symmetric, that Z partitions Z.

(3) Note that for any z¢€ Z, Z is linearly ordered and |2c =3, If |2] =3, then
=£={x", x, x*} where x€X, x~, x* €¢Z\X, and x~*=x=x*-. If |2|=2, then
——{ w*} where w¢ Z, either w¢ X or w*¢ X and w*~=w.

(4) If Z is a superior extension of X, then
@ lz=2,
(b) If ZNX=@, then 2Z={z},
(o If2NX=#40, then max Z€X.

N) [N
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(2.21) LemMA. Let Z be an abnormal extension of a partially ordered set X,
and let o be an X-preserving order true mapping of Z into a set Y. If z=inf U, where
UCS X, and a(z) ca(U) then z€ U.

PrROOF. Suppose a(z)=a(u), where u€ U, and let v € U\{u}. Since v=z, we
have a(v)=a(z)=oa(u), and as o preserves X it follows that o(v)>o(u). Hence as
o is order true, v=>u, and hence u=inf U=z.

(2.22) THEOREM. Let Z be an abnormal extension of a partially ordered set
X. Let o be an X-preserving order true mapping of Z into a set Y. Then

() zlz, if and only if a(z)la(zy),

(2) a Ya(2))Es.

PrOOF. We show in (i) below that a‘l(a(z)) is linearly ordered and that
ot = !(«(2))| =3. In (ii) we prove (1), and in (jii) we complete the proof of (2).

() Let K=a"Y(a(z)), z€Z. Suppose that z, €K, z, ¢ X, and that z, is an
inferior element of X in Z, say z, =inf U, US X. We shall show that z, =sup K.
For, suppose a(z,) €a(U). Then by Lemma (2. 21), z, € US X, contrary to assumption
Hence, for all u€ U, a(z,) <a(u). Let y€ K. Then a(y)=0a(z,) <a(u), whence y <u,
for all uc U. It follows that y=inf U=z,. Hence z, =sup K. We now deduce that
K\X contains at most one inferior element, z;, and if such a z; exists, z; =sup K.
Similarly, K\X contains at most one superior element z,, and if such a z, exists,
z, =inf K. Clearly z, =z,. But as a is I—1 on X, K\ X contains at most one element,
say x. If z, and such an x exist, then x<z,, if z, and x exist then z, <x. Hence
K=a"(a(z)) is linearly ordered and |K|=3.

(ii) Since o is order preserving, it is immediate from the definition that
a(z)la(z,) implies z;lz,. Suppose a(z,)=a(z,). If a(z,)>a(z,), then since o is
order.true z; >z,. If a(z,) =0(z,) then, since o~ (a(z,)) is linearly ordered, z, and z,
are comparable. Hence (1) follows.

(ili) Suppose, w,, w,, wy€Z. If a(w;)=a(w,)=a(w;), then wy=w,; if and
only if w3 >w,, and, similarly, wy; <w if and only if w; <w,. For if wy>w, then
a(ws)=a(w,), whence o(w;)>a(w,) and so wy>w,. It follows that if w,, w, are
in K=o"'(a(z)) and are neighbors in X over XK, then w,, w, are neighbors
in Z over X and hence (2) follows.

(2. 23) Remark. If«isa mapping from a partially ordered set Z into a partially
ordered set Y, then the following are equivalent:

(1) o is order true and z,l!z, if and only if a(z)ll«(z,).

(i) o is order true and if z,llz, then x(z,)ila(z,).

(iii) o is order preserving and if z,ll z, then «a(z,)la(z,).

(iv) «is order true and a~!(y) is linearly ordered for each y €Y.

(2. 24) NotaTioN. If Z is any set, we shall denote the identity mapping of
Z onto Z by ¢|Z. If « is any mapping defined on Z, and U & Z, then «|U denotes
the restriction of « to U.

(2. 25) DernrTION. If o is a mapping of a set Z onto a set ¥ we call the mapping
B of Yinto Z a right inverse of o if and only if aB(y) =y for all y € Y. That is, aff =¢|Y.

Of course, a right inverse of « exists if and only if & is onto Y and then fis 1—1.

and
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(2.26) LeEmMMA. Let Z and Y be partially ordered sets and let « be an order
true mapping of Z onto Y. Then every right inverse B of o Is an order isomorphism
of Y into Z.

Proor. Let y,,y,€7, and suppose y,=>y,. Since aff(y,)=y, >y, =0of(y,)
and o is order true, we infer that B(y,)=pB(y,). Clearly therefore, y, =y, implies
that S(y )=y, and so f3 is order preserving.

Now suppose that B(y,)=p(y,). Then y, =af(y,)=af(y,)=y,, since « is
order preserving, whence y, =Zy,. But, obviously, y; #y,; and so y, >y,. It follows
that § is order true and, of course, 1—1.

(2.27) PROPOSITION. Let Z be an abnormal extension of the partially ordered
set X. Let o be an X-preserving order true mapping of Z onto a partially ordered set Y.
If WS Z, and sup W (inf W) exists then sup a(W) (inf (W) exists and

a(sup W)=sup a(W) (a(inf W)=inf a(W)).

PrOOF. Let w=sup W. Since « is order preserving, clearly o(w) is an upper
bound for a( W). Let y be any upper bound for a(¥). We shall show that y = = (w).
Let zo =max a~'(y), which exists by (2.22.2) and (2. 20. 3). Let uc W. If a(z,) =
=y =a(u), then by definition of z,, zo=u. If a(zy)=y=a(u), then z,>u, since
o is order true. Hence z, is an upper bound for W, and so z,=w=sup W. Since
o is order preserving, y =a(z,) Za(w). It follows that a(w) is the supremum of o ().

(2.28) CorOLLARY. Let Z be an abnormal (superior, inferior, normal) extension
of a partially ordered set X, and let oo be an X-preserving order true mapping of Z
onto a set Y. Then Y is an abnormal (superior, inferior, normal) extension of a(X).

Proor. Let z€Z be a superior (inferior) element of X in Z. Since « is onto 7,
by (2.27) a(z) is a superior (inferior) element of a(X) in Y. It follows from the
definition that Y is an abnormal (etc.) extension of a(X).

(2.29) COROLLARY. Let Z and Y be linearly ordered sets, and let X be a dense
subset of Z. If o is an X-preserving order preserving mapping from Z onto Y, then
o(X) is dense in Y.

ProoFr. Since X is a dense subset of the linearly ordered set Z, it follows that Z
is an abnormal extension of X, by (2. 10). Since Z is linearly ordered, it follows
by (2. 15. 2) that « is order true. Hence this corollary follows from (2. 28).

(2.30) ProrosiTiON. Let Z be an abnormal extension of a partially ordered
set X. Let o« and [ be two X-preserving order true mappings of Z onto Y. If a|X = p|X,
then a=4.

Proor. Since Z is an abnormal extension of X, for each w€Z, either w=sup W
or w=inf /¥, where WZX. Hence by (2.27) a(w)=sup a(W)=sup f(W)=L(w)
or a(w)=infa(W)=inf S(W)=p(w) respectively.

(2.31) ProrOSITION. Let Z be an abnormal extension of X. Let w, z,, z,€Z.
If Wws£2,=2,, then w=>z, if and only if w=>z,, and similarly, w<z, if .and only
if w<z,.
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PrOOF. Let w=>z. If z, =z, then by transitivity, w=>2z,. If z, >z,, then either
zy =27, Or z;=z{*, But W=z, implies w=z{. However, w=zf, since, in this
case z{.€Z,. Hence w=>zy. If z,=z{, this completes the proof. If z, =z{*, then
w=z{", since w>zjf. Agam we see that ws£z,, since qu2 Hence w>z2 The
rest follows by symmetries.

(2.32) DermvitioN. (1) Let Z be an abpormal extension of X. We order
Z=2(X) as follows: Let a, b¢ Z, a=b. Then a=b if and only if there exist y<a,
z &b such that y>z,

(2) The mapping given by y(z) =2, is called the natural mapping of Z onto Z.

(2. 33) Remarks. (1) In view of (2. 31), the relation of (2. 32. 1) is we]_l-deﬁned
and anti- symmetrlc

(2) The set Z is partially ordered by the above relation.

(2.34) THrOREM. Let Z be an abnormal extension of X. Let y be the natural
mapping of Z onto Z. Then y is an X-preserving order true mapping.

Proor. Follows immediately from the above results.

(2.35) THEOREM. Let Z be an abnormal extension of a partially ordered set X.
Let o be an X-preserving order true mapping of Z onto Y. Then:

(1) There exists an order true mapping B of Y onto Z such that the natural
mapping y factors: y = fo.

(2) The mapping P has a right inverse A of Z into Y such that Ay|X =a|X.

N,‘_q__N
Ny —— <
>

ol
——e -
P
-~
£

CoMMENT. Intuitively, this theorem asserts that Z is the order true image of Z
which is minimal in two senses: (i) Every order true image of Z in which X is preserved
can be mapped onto Z in an X-preserving order true fashion; and (ii) Z can be
embedded order isomorphycally into every order true image of Z in a fashion that
preserves X.

Proor. (1) If a(z)=a(v), then =% by (2.22.2). Hence we may define a
mapping § of Y onto Z by Pu(z)=32, whence fo(z) =y(z) and f is 1—1 on a(X).

‘We shall now show that § is order true. Suppose yi=a(z,)=>o(z,) =y,. Then
zy >2,, since « is order true, and so B(y,) =%, =2, = f(y,) and so B is order preserv-
ing. Next, suppose S{y,) >ﬁ(y2) Therefore fo(z,)>Po(z,) whence 7, >Z,. Thus
z{>2z, and 50 y; —oc(zl)—a(zz) =y,. But y, #y,, hence § is order true.

(2) By (2.28), Y is an abnormal extension of «(X). We now define a mapping
A of Z into Y which is a right inverse of § as follows: For all x€X, A(%) =a(x).
If z¢Z, and for all x€X, 2%, then 1(2) can be chosen to be any element a(w),
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with we 2. It is clear that A is a right inverse of § and that Ay(x) =A(X)=u(x), for
x€X. By (2.26), A is order true.

AN

Z———— Y
I
z 4

(2. 36) PROPOSITION. Let Z be an abnormal extension of a partially ordered
set X. Let o be an order true mapping of Z onto Y. Let y be the natural mapping of
Z onto Z(X)=2 and let n be the natural mapping of Y onto Y (a(X))=Y. Then
there exists an order isomorphism % of ¥ onto Z such that wno=1y.

ProOOF. Since na is an X-preserving order true mapping of Z onto Y, by (2. 35)
there exists an order true mapping x» of ¥ onto Z such that xna=y. We must show
that » is 1—1. So let y,, §,€Y and suppose x(P,)=x(P,). Then xn(y,)=3n(y,)
and, as »n is an a(X) preserving order true mapping from Y, y, €(xn) 1 (n) (v,) & 7.,
by (2.22.2). Hence y, =9,, and the result is proved. =

(2.37) CoROLLARY. Let Z be an abnormal extension of a p&rtially ordered
set X. Let o be an X-preserving order true mapping of Z onto Y. Then there is an order
isomorphism B of Y onto Z such that o=y if and only if for all y€ Y, p={y}.

PrOOF. By (2. 35) there exists an order true mapping § from Y onto Z such
that B =1y, and since o is onto Z, this mapping B is unique. Hence B =xn, where
x%, n are defined in (2. 36); and so B is 1—1 if and only if 5 is 1—1. But, by definition
of ¥, is 1—1 if and only if = {y}, for all y€ Y.

(2. 38) COROLLARY. Let Z be an abnormal extension of a partially ordered
set X. Then for all a€ Z, 4= {a}, i.e. VA is\isomorphic to Z under the natural mapping.

ProOF. Put Y=2Z, a=y, and f=¢ in (2.37).

(2. 39) PROPOSITION. Let Z be a normal extension of a partially ordered set X.
Then, for all z¢Z, 2={z}.

ProoF. Let z,, z, € Z. We shall show that z, and z, are not neighbors. If both
z, €X and z, €X, then the conclusion follows immediately from definition (2. 16).
So suppose z,¢X. If z,llz,, then again the conclusion follows. Suppose z, < z;.
Since Z is a normal extension of X, z, =sup L¥(X; z,) whence by (2. 12) z7 #z,, and
so z, is not a neighbor of z,. The case z, <z, is similar.

(2. 40) DermvuTiON. Let S and T be linearly ordered sets. Then S and T are
of the same type (at infinity) if S has a maximal element if and only if T does, and
S has a minimal element if and only if T does.
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(2. 41) PROPOSITION. Let Z be an abnormal extension of a linearly ordered set X.
Then Z is a normal extension of X if and only if the natural map of Z onto Z is an order
isomorphism and Z is of the same type us X.

Proor. Half the proposition follows from (2. 39), and the fact that a normal
extension must be the same type as the set it extends. Let the natural mapping
y be 1—1. Let z&Z. If z€ X, then z is a normal element. Suppose z¢Z\X. Then
L¥(X, z)=L(X, z)=L, is non-empty, since z is not minimal. If zssup L then,
since X is linearly ordeied, sup L exists and equals z~, a neighbor of z. But this is
impossible, since vy is 1—1. Hence z=sup L, a superior element. Similarly z is an
inferior element, whence z is normal.

(2.42) COROLLARY. Let X be a linearly ordered set and let Z be an abnormal
extension of X of the same type as X. Then Z is a normal extension of X.

Proof. Follows from (2. 38) and (2. 41).

(2. 43) LEMMA. Let Z be an abnormal extension of X, and suppose « is an order
true mapping of Z into Z which is the identity on X. Then

() U, 2)SU(X, a(2)). and L(X,z)SL(X, x(2)).

(2) a(z) is comparable to z.

3) «?=a.

ProoF. (1) Let z€Z, and let x=z, x€X. Then x =a(x) =u«(z), whence U=
=U(X,2)S U(X, a(2)). Similarly, L=L(X, z) S L(X, «(2)).

(2) Thus a(z) is both a lower bound for U, and an upper bound for L. Since
either z=inf U or z=sup L, it follows that a(z) and z are comparable.

(3) If a(z)€X, or a(z)=z, then obviously a?(z)=0(z). So suppose %(z)¢ X,
and a(z) #z. Let x€X and x=oz). Then x =a(x)=>a(z), and since « is order true,
x=>z. Hence U(X, z) 2 U(X, a(z)). By (1), we conclude that U= U(X, z) = U(X, «(z)).
Similarly L=L(X, «(z)). By (2) we may suppose withoutloss of generality, that«(z) >z.
Then z=sup L and «(z) =inf U. Further since «(z) >z, we have a?(z) =a(z). But
U(X, a*(z)) 2 U(X, a(z)), and hence «?*(z) is lower bound for U, whence a?(z) = a(z).
Thus o*(z) = «(z).

(2. 44) PROPOSITION. Let Z be an abnormal extension of X. Let « be an order
true muapping of Z into Z which is the identity on X. Then for all z€Z, either a(2)=z
" or a(z) and z are neighbors in Z over X,

Proor. By (2.22.2) and (2. 39) we obtain
2207 Ha(z)) =a™ Y(d?(2)),

whence z,a(z)€Z. If 2MNX =0, the result follows immediately from (2.20. 3).
If 2={x", x,x*}, x€X then either z=a(z) or a(z) must equal x, by (2.43.1),
whence z and «(z) are neighbors. .

(2. 45) COROLLARY. Let o be an order true mapping of Z into itself which is
the identity on X. Then for all z€ Z, a(z) €2.

Proor. Immediate, by (2. 44).
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(2.46) LemmA. Let Z be an abnormal extension of a partially ordered set X.
Let « be an X-preserving order true mapping of Z into Y. Let f§ be an a(Z)-preserving
order true mapping of Y into Z such that fo| X =¢|X. Then affa=u.

Proor. Let y=pa. Then y is an order true mapping of Z into Z which is the
identity on X. By (2. 43. 3) 2=y, namely, Bafa=pS« Since B is 1—I1 on «(Z),
we obtain «fia=ua.

(2. 47) PROPOSITION. Let Z be an abnormal extension of a partially ordered set X.
Let « be an X-preserving order true mapping of Z onto Y. Let 8 be a 1—1 mapping
of Y into Z such that Bu|X =¢|X. Then p is order true if and only if B is a right inverse
of a. Furthermore, such a right inverse [ exists.

Proor. By (2. 26) if B is a right inverse of «, then § is order true. Now suppose
that B is order true. By (2.46), affla=a. Let y€ Y. Since « is onto Y, we have that
y=a(z), for some z<Z. Hence af(y) =afu(z)=a(z)=y, and the equivalence of
the two conditions follows. We can construct such a f as follows: Let

x, if y=oa(x)

FO) = {z, where z€a~'(y), if yda(X).

(2. 48) Remarks. (1) A function 8 may be effectively defined without the implicit
use of the axiom of choice by setting S(y) =max a~1(y), for y§a(X), since a~1(y)
has at most two linearly ordered elements by (2. 22. 2) and (2. 20. 3).

(2) The number of distinct S satisfying the conditions of (2. 43) is
Il ') y € Y\u(X)}, which is always less than or equal to 2IYe®l  since
e |=2, if yea(X).

(2. 49) PROPOSITION. Let Z be an abnormal extension of X. Then |Z| =2-(21X1—1).

PROOF. Since Z is abnormal, each zEZ is either the supremum or the infimum
of a non-empty subset of X. Since every subset of X has at most one supremum and
one infimum, we see that |Z|=2-(]2X|—1)=2-Q2IXI-1).

(2. 50) RemArRk. The above is best possible in the sense that given any infinite
cardinal number there is a partially ordered set of that cardinality for which equality
holds.

3. Superior completions

(3.1) DeriniTIONS. Let S be a partially ordered set. A subset 7 of S is called
an Initial segment of S if I is non-empty and if s€land t=s imply that r€ 1. A subset
F of S is called a final segment of S if F is non-empty and if s€ F and ¢ =s imply
that t€ F.

The set of all initial segments of S will be denoted by £ (S), the set of all final
segments of S by F(S).

(3.2) DernITIONS. Let S be a partially ordered set. If s€S, then

Ws)={t€S: t=s}, () ={t€S: t<s},
e()={teS: =35}, @ (s)={t€S: t>s}.
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(3.3) LemMA. The set F(S) is partially ordered by inclusion. The mapping

L is an order true embedding of S into £(S). If S is linearly ordered, then S(S) is
linearly ordered.

ProoF. The proof is a straightforward verification.

(3. 4) ReMARKS. (1) Note that for all s€.5, «(s) £ #(S), and unless s is 2 minimal
element of S, t=(s)€#(S).

(2) We note that .~ is an order preserving mapping of S into £(S)U{d},
where @ is taken as the minimal element. However, t1— need not be 1—1 or order
true unless S is linearly ordered.

(3) If s is not a minimal element in S, then «(s)~ exists (cf. Definitions 2. 12)
and ¢=(s) =u(s)~. Further if s~ exists then also (~(s)=u(s~)=c(s)~. If s exists
then «(s)=:=(s*), and if :=(s)* exists then 1(s)=c~(s)*. Starting with these, one
can prove inductively, under the proper existential hypotheses, that two expressions
of the above type are equal whenever the differences between the number of plus

signs and the number of minus signs in each expression are equal.
4) If 1=(s)=u(t), then t=ys".

(3. 5) DEerFINITION. Let S be a partially ordered set. Then S is (conditionally)

complete if and only if every subset of § which is bounded above has a supremum.
(see KELLEY [5], p. 14).

(3. 6) ReMaARK. A standard argument shows that S is complete if and only if
every subset of S which is bounded below has an infimum.

(3.7) DermITION. Let S be a partially ordered set. A complete set T is called
a completion of S under « if and only if o is a 1-—1 and order true mapping of S into 7.
We call T an abnormal completion of S under o if and only if T is a completion of

S under « which is an abnormal extension of a(S). Superior, inferior, and normal
completions of S under o are defined similarly.

If « is the identity mapping, we simply say 7 is a completion of S.

(3. 8) DerNITION. Let T be a partially ordered set. By T, we mean T if sup T'=
= + oo, say,exists, and TU{+ o} if sup T does not exist, where --<o is adjoined
as the supremum of 7. By T_ we mean 7T if sup T = — oo, say, exists, and TU {— =
otherwise, where — o= is adjoined as the infimum of 7. We define 7, = (7))~ =(T-)+.

(3.9) Remark. If T is complete, then every subset of 7T, has a supremum in
T., and every subset of T_ has an infimum in - 7T_. If T is also linearly ordered, then
T, iscompact, and is usually called the two point compactification of T.

(3.10) Lemma. For every partially ordered set S, the set S#(S) is complete.
If 9 is adjoined as the minimal element of F(S), then F(SYU{D} is a lattice under
union and intersection, complete in the lattice theoretic sense and, for every
S H(S) U{D) _
sup F=U7¢, inf F=0N4¢
in F(S)U {@}.

Proor. We note that the union of a set of initial subsets is initial, and the inter-
section of such a set is initial or empty. The lemma follows easily.

(3. 11) CoroLLARY. If S is a linearly ordered set, then every closed subset of
F(S) which is bounded below is compact in the order topology.
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Proor. We recall that a linearly ordered set is complete if and only if every
closed bounded set is compact (KELLY [5], p. 162). By (3. 3), £ () is linearly ordered
and by (3. 10), #(S) is complete. Since, £(S) has S as maximal element, every
set which is bounded below is bounded, and the result follows.

(3. 12) LemmA. If S is a partially ordered set, then F(S) is a superior extension

of «(S).

ProOF. Let 1€.4(S). We note that for s€1, we have s€i(s)E L By (3:10) we
obtain the equality
I=U{(s):sel}=sup {c(s): s€l},
and the lemma follows.
The lemmas (3. 3), (3. 10) and (3. 12) yield the following theorem.

(3. 13) TuEOREM. IfS is a partially ordered set, then # (S) is a superior completion
of S under .

(3. 14) CoroLLARY. If S is linearly ordered, then 1(S) is dense in F#(S) in the
order topology.

ProoF. Since a superior extension is abnormal, the corollary follows from
(3.13) and (2. 10).

A dual theory can be developed for the set & (S) of final segments of S. The
partial order is defined by F; = F, if and only if F, & F;. We state below the dual
of (3. 13). The proposition dual to (m-n) will be denoted by (m-n)*.

(3.13)* TueoreM. If S is a partially ordered set then % (S) is an inferior
completion of S under .

Let us further note that in (3. 10)* the infimum is the union, more precisely,
if #£SF(S) then inf A =U. If & is bounded above, then sup # = N

(3.15) ExampLes. (1) Let Z be the set of integers. Then £(Z)=:(Z)U{Z},
so that #(Z) is order isomorphic to Z U {zeo}.

(2) Let R be the set of real numbers. Then £ (R)=:(R)U:~(R)U{R}, where
t=(r) is the immediate predecessor of «(r). Thus £ (R) is essentially the reals with
positive infinite element and with each number split in two.

Example (3. 15. 2) is put into its proper perspective by the following proposition.

(3. 16) ProproOSITION. Let S be a complete linearly ordered set, and let St be the
set of non-minimal elements of S. Then F(S)=(S)U:t=(SHU{S}.

Proor. Clearly £(S)2:(S) U= (SHU{S}. Let I€#(S). Either I=S, or,
since [ is initial, I is bounded above. Since S is complete, in this case Jhas a supremum,
say, s. Either I=u(s) or I=1¢~(s), since I is initial. If =1~ (s), then clearly s¢.St.

The following theorem is stated in terms of & (S) and ¢, because this is the
more natural setting for this result. :

(3. 17)* THEOREM. Let S be a partially ordered set. Then ¢ (S)=%(S) if and
only if S is well-ordered.

ProoF. Suﬁpose @(S)=F(S), and let FEZ(S). By hypothesis, there exists
an s€.5 such that F=¢(s), and this s is clearly the unique minimal element of F.
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Let GES. Let F= U {p(g): g€ G}. Then F€ & and so has a unique minimal element
t, which is also the unique minimal element of G. Thus S is well-ordered. On the
other hand, if S is well-ordered and F¢ &, then F has an unique minimal element s,
for which F=¢(s). The theorem is proved.

The proof of the next theorem requires the following lemma.

(3.18) LeMMA. Let T be a superior extension of the partially ordered set S.
Let ty, t,€T. Then t,=t, if and only if L(S, t;)=L(S, t,).

Proor. Let L;=L(S,¢) i=1,2. If ¢, =t,, clearly L,=L,. Conversely, let
L,=0L,. Since T is a superior extension of S, t;=sup L;. Hence ¢, =sup L,=
=sup L,=t¢,.

" (3.19) TueoreM. Let S be a subset of a partially ordered set T. Then T is a

Superior extension of S if and only if there exists an order isomorphism B of T into
F(S) where B|S=1.

ProoOF. (i) Suppose T is a superior extension of S. Define §(¢)=L(S, 1). Since
¢ is a superior element, f(#) =@, whence §(r)€.#(S) and if €S, then B(¢)=1:(2).
Obviously, f is order preserving. Suppose f(¢,) S S(2,). Then ¢, is an upper bound
for B(¢,). Since T is a superior extension of S, we have ¢, =sup f(¢,), whence ¢, =1,.
By (3. 18) and (2. 15. 4), B is an order isomorphism.

(3.20) TaeoreM. Let T be a superior completion of a partially ozdered set S.
Then there exists an order preserving mapping « of F(S) onto T, such that w=¢|S
and if $ESF(S), then a(sup #)=sup (¢(#)).

Proor. If 7€ £ (S), then IS S C T and we define o (I) = sup I, where the supremum
is taken in T, and hence exists by (3. 9). Clearly « is order preserving and a(s):=s.
Hence a(sup #)=supa(f), for all #<SF(S).

It remains to show that a(sup #)=sup a(#), for all #<.#(S). Note that
sup £#=U #=1,, say, and I, SS. Let s¢J, for some J€ #. Hence s=sup J=
=a(J)=sup a(¥#), whence sup a(#) is an upper bound for ;. The theorem follows.

It is interesting to compare the above theorem with (2. 27). In general « commutes
with supremum only when « is order true, but the special nature of #(S) yields
this commutativity even though the mapping « in the theorem will rarely be order
true if S is not linearly ordered.

The above theorem says that every superior completion is, in some sense,
a homomorphic image of #(S). The preceding theorem says that every superior
extension is essentially a subset of #(S). We see therefore that #(S) is the universal
superior extension of S.

(3.21) ExampLE. Let S consist of three pairwise incomparable elements
a,b,c. Then S, ={a, b, ¢, + =} and J(S) consists of the seven non-empty subsets
of {a, b, ¢} ordered by inclusion. Let T=S,. If « is the mapping of (3.20) and
1S #(S) where |[I]=2,thena(l) = + . In#(S),{a, b}l {c}, but «({a,b}) = +eo=>c=
=a({c}) in T. Hence « is not order true, by (2. 15. 1).

(3.22) DrpNITION. Let S be a partially ordered set. By JI(S) we mean the
collection of all non-empty initial segments of S which are bounded above, viz.,
F(S)={I€F(S): Is€S, I=u(5)}. Dually, F(S)={FeF(S): IscS, F=p ()}
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In certain situations one does not wish a completion to have an infinite maximal
element, unless the. original set does. In these situations it will be necessary to use
J(S) rather than #(S). For example, when completing the rationals, one does not
always -wish to adjoin + eo.

(3.23) Remarks. (1) Note that J(S) is of the same type (cf. (2. 40)) as S.

(2) Note that J(S) is the initial segment generated by :(S) in the partially
ordered set £ (S). Hence if & SJ(S) is bounded above in 3(S), then the suprema
of & in £(S) and 3I(S) coincide.

(3.24) LemMma:. Let S be a partially ordered set. Then J(S) is a superior
completion of S under the embedding 1.

ProoF. Let o be a subset of J(S) which is bounded above by 7€ 3(S). Then
there exists s € S such that IS :(s). Hence U.oZ SIS i(s), whence sup o = U .oZ €T3(S).
Hence 3(S) 1s complete and since J(S)S .#(S), J(S) is a superior completion of
S under :. '

We end this section with a proposition that will be useful in § 5.

If B is a subset of the partially ordered set 4, we shall now write sup 4 B (inf, B)
for the supremum (infimum) of B in A.

(3. 25) ProrosiTION. Let T be a superior extension of a partially ordered set S.
If BS S and infg B exists, then infy B exists and infr B=infg B.

ProOF. Let b=infgB, and let ¢ € T be any lower bound for B. If s€S and s=¢
then-s is a lower bound for B, whence s=b. Thus & is an upper bound for L(S, ¢).
Since T is a superior extension of S, t=sup L(S, ¢), whence ¢=b. Hence b =inf; B.

(3. 26) CorOLLARY. Let T be a normal extension of a partially ordered set S.
If BES and supgB (infgB) exists, then supy B, (inf; B) exists and supy B=supgB
(infy B =infg B).

Proor. Immediate by (3.25) and (3. 25)*.

4. Abnormal completions of linearly ordered sets

In this section we shall show that every linearly ordered set has a universal
abnormal completion & (#(S))=#7(S). Every abnormal extension of S can be
embedded order isomorphically in . (S) (cf. (4. 14)), and every abnormal completion
of S is essentially an order homomorphic image of F.£(S) (cf. 4. 12)).

(4.1) NoraTioN. Let S be a linearly ordered set. Elements of % .#(S) will be
denoted by capital Greek letters. We denote by ¢ and ¢~ the mappings of S into
F(S)U {D} defined in (3. 2), but ¢ and ¢* will be the mappings of (3.2) with S
replaced by £(S). We define = ¢, and n+t =¢+.. Note that n(s)€FF(S) for
s€S and nt(s)€F F(S), for s€S, unless s is the maximal element of S. Next,
put zt~(s) =@ *1=(s), unless s is the minimal element of .S, in which case :~(s) ¢ .# (S);
in this case we set 7 ~(s) = £ (). Finally, we set 7~ (s) = @t =(), if s is not the minimal
element of S, in which case z—(s) is undefined.

(4.2) REemarkS. These remarks follow from (3. 4).
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(1) If s is not the maximal element in S, then in FF(S), n(s)* exists and
n(s)* =n+*(s). If 5 is not the minimal element in S, then n(s)~ =n(s). Thus, if
4 €n(S), and 4 is neither maximal nor minimal in &.#(S), then 4 has both a pre-
decessor and a successor in F.£(S). If s+ exists, then n¥(s) =n(s*) and if s~ exists
then n~-(s)=n(s~). The above mappings are 1—1, since in the linearly ordered
case ¢@,t, @, are all 1—I.

(2) If =(s)* =n(¢), then t=s*+.

(3) If n(s)~=n(¢), then r=s".

@) n+-=n.

(4. 3) PROPOSITION. Let S be a lineaily ordered set. Then m(S)=q(F(S))N
N ((p+(f(S)¢) @] {f(S)}), where F(SW=2(S\\{S}.

Proor. Let s€S. Then n(s)=q@us)€p(F(S)). If s is the minimal element
of S, then «(s) = {s}, whence n(s)=¢({s})=(S). On the other hand if s is not
the minimal element of S, then n(s)=@*1=(s)€@*(F(S)}), since ¢~(s) =S. Thus
7(S) S @ (L () N(@*(F(SHH U {F(S))}). Conversely, let A€o (F(S))N ({¢*(F(SH)
U {£(S)}). Thus 4=¢(I), for some 1€.£(S). If 4=24(S), then I is the minimal
element of #(S), whence /=1t(s), where s is the minimal of S. Thus A4 ¢=(S). If
Aco+(F(S)i)say A=p*(J), then by (3.4.4)*, I=J*. Since S is linearly ordered
and I=J%, I\J= {5}, for some s€S. It is clear that /=u(s), whence A= (s)€n(S).

(4.4) RemarK. If A, '€ F5(S), then by (3. 3)*, A=T if and only if A2T.
Also, since #.#(S) is an inferior completion of £ (S), and .#(S) is linearly ordered
by (3. 3), it follows by (3. 3)* that ##(S) is linearly ordered.

(4.5) Lemma. If d€o(s (S)), then A is a superior element of 7(S) in FF(S).

Proor. By hypothesis, 4=¢(I), for some I¢.#(S). We shall show that A=
=sup {n(s): s€ I} =sup n(I). By (3. 10)* (cf. discussion after (3. 14)) sup = ()= N=(l)
since 7(J) is bounded above by @ (I). If J€.£(S), then J€n(s) if and only if J2¢(s).
Hence, J€ M=(I) if and only if J2 U {i(s): sel}= Uc(I)=1. Hence sup n(l) =
= Nr(l)=pd).

(4.6) Lemma. If Aco*(F(SW)U{L(S)), where F(S)i=F(SN\{S), then
A is an inferior element of n(S) in F£(S).

£ Proor. If 4 =¢*(I), for some I¢#(S), we define
L@ I'=inf {n(s): s¢ I}=inf n(S\D).
If 4=27(S), we set =0 and again define I" by (a). By (3. 10)*, I'=U=(S\D).

If JET, there exists s¢ I, such that J€n(s). For this s, J2:¢(s) and since S is linearly
ordered and s¢ I, we have ¢(s) > J. Hence J>1. Conversely, if J€£(S) and JOI,
then there exists s cJ\I and for this s, both s¢J and J2:(s), whence J<m(s).
It follows that J€I'. Thus I'={J€#(S): Jo 1}, and so if 71 4(S), T =¢*(I)=4,
and if I=0, I'=4(S)=4.

(4.7) LemMa. Let S be a linearly ordered set. Then
FIS)=o(F(S))Ue*(£(HHU{L(S)),

where F(S)y = S (SI\{S}. Further if A€ (F(S)) then A* exists, and if A€ @*(F(SH)
then A~ exists.

[N
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Proor. The first part of the lemma follows from (3.13), (2.9) and (3. 16)*.
Since S(S) is linearly ordered, ¢*(I)=¢()* and o*()~ =¢() by (3.4.3)*

(4. 8) LemMA. Let S be a linearly ordered set. If A is a normal element of n(S)
in FIL(S), then Acr(S).

Proor. let A=inf 2, =sup #,, where #,Sn(S), i=1,2. If 4 has either
a successor or a predecessor, then 4€ 2, or 4 € 2,, resp., whence 4 € n(S). However,
by (4. 8) every 4, except possibly £ (S), has a successor or predecessor. If 4=2(S),
then 4 is the minimal element of #.#(S) whence 2, = {4}. It follows that 4 € 7(S).

(4. 9) THEOREM. Let S be a linearly ordered set. Then,

(1) FF(S)is alinearly ordered abnormal completion of S under the embedding .

Q) FIES)=0(FS)UH(F(SNUI(S)), where 5 (S) = F (SHVS).

(3) 4 is a superior element of n(S) in F S (S) if and only if A€ p(F(S));

(4) 4 is an inferior element of ©(S) in FF(S) if and only if A€p*(F(S)i)U
U{s(9)}.

(5) 4 is a normal element of =n(S) in FF(S) if and only if A€ (S).

Proor. By (3. 3), (3.3)* and (3. 10)*, #.#(S) is complete and linearly ordered,

and (2) is merely (4. 7). Let % be the set of superior elements and % be the set of
inferior elements of 7(S) in #.£(S). By (4. 5),

(@) U2 ¢(S(S))
and by (4. 6)
(b) L2 (S SNU{F ()},

whence by (2), # UL =% F(S), and hence #F(S) is an abnormal completion
of S under =. Thus (1) is established.
From (a), (b) and (4. 8) it follows that

o(F () N(@*(F SN UL ) SN L S (S).
But (4. 3) now yields
(© (L () N(e*(FSHMU{F (D} =% N (L =rS).
By standard set theoretic arguments, we deduce from (2), (a), (b) and (c) that
U=p(F(S) and L=¢HLEN)U{LS))
The theorem is proved.

(4. 10) Lemma. Let T be an abnormal completion of a linearly ordered set S
under the identity. Let S,, S, be subsets of S such that sup n(S;)=sup 7(S,)
(inf n(S,) =inf 7(S,)) in FIF(S). Then supS;=supS, (infS,=infS,) in T.

Proor. Let A=sup n(S,)=sup n(S,). If 4=n=(s), then since by (4. 2. 1) either
5 is minimal in § or ©~(s) =n(s)~ <= (s), it follows that s€.S;, i=1, 2 whence s is
the maximal element of S;. Hence sup (S;)=s=sup (S,) in T.

Suppose now that 44 x(S), and so §;, i=1, 2, has no maximal element. Let
s€S,. Since A=sup n(S,) and =(s) <4, there exists t€S, such that n(s)=n(¢).
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But 7 is an order isomorphism, and so s=¢. It follows that sup (S;)=sup(S,)
in T. Interchanging indices, we obtain sup (S,) =sup (S,), and so sup (Sl) =sup (S,)
in T. The dual argument works for infima.

(4.11) TueeoreMm. Let T be an abnormal completion of a linearly ordered set
S under the identity mapping. Then there exists a unique order preserving mapping
o of FF(SY onto T, such that
o =¢|S.

Further, this mapping o preserves suprema and infima; i.e. if DSFF(S), then
a(sup @) =sup a(2), (a(inf P)=inf a(2)).

ProoF. For zn(s)en(S), we define an(s)=s. Let A€ FF(S\n(S). By (4.9)
then either there exists S (S) such that either 4 =sup £ or there exists 2 < n(S)
such that 4 =inf £, but not both. We may now define a(d)=sup a(#) or a(d)=
=inf a(2), respectively. By (4. 10), o is well-defined.

To show that a is order preserving, let A, >A4,. There are four possible cases,
according as 4; and 4, are superior or inferior elements. We consider here only
the most difficult case in which 4, is a superior and 4, is an inferior element. Let
A, =sup #,, and 4,=infP,, where P, Sn(S). Since 4,<4;,=sup 2,, there
exists I', €P; with 4,<I'; =4,. Since I'| =A, =inf &,, there exists I, €2, with
A, =F,<TIy=4,. Since o is an order isomorphism on =(S), we obtain

a(dy)=infa(P)=a(I')=a(l'))=sup a(P,)=a(d,).

Thus, in this case, o is order preserving.

We next show thate is onto .. Let t€T... Since T is an abnormal extension
of S, either t€S or t=sup L¥(S, t)=sup L* or t=inf UH*(S, t)=inf U*. If tcS,
then r=on(?). If t¢.S, suppose f=sup L*, and let 4 =sup n(L*). Since L* has
no maximal element, and since « is an order isomorphysm, it follows that 4 is not
the minimal element of & #(S) and A has no predecessor. Hence by (4. 3. 1) 4 ¢ =(S).
Thus by definition of o, a{4) =sup {on(s): s<t}=sup L*¥=¢. The case in which
¢t is an infimum follows similarly. The uniqueness of « is a consequence of (2. 30).
1t follows from (2. 27) that & commutes with the supremum and infimum operations.

(4.12) ReMarRkK. Let S be a linearly ordered set. We note that J(S) < #(S),
but that F3I(S) is not a subset of F.F(S), if S has no maximal element. If I € FI(S),
then 'S 3(S) S A (S), and let #I" be the smallest final segment of £ (S) containing I'.
Clearly nI'=TI. or nI'=I"U{S}, according as S has a maximal element or not.
Also FI(S)=n(FI(S)U{F(S), {S}} where {S}= 4+ and F(S) = —c. Ob-
viously # is 1—1. For the sake of clearity we omit writing # where convenient. Thus
in (4. 13) below we write = where more precisely we mean #~!

(4.13) CororLrarY. Let T be an abnormal completion of a linearly ordered
set S of the same type as S. Then there exists a unigue order preserving mapping
o of FI(S) onto T such that an =¢|S. The mapping o satisfies the additional conditions

of (4. 11).

Proor. If S=S,, then T=T,, and the corollary reduces to Theorem (4. 11).
We argue the case in which S has a minimal but no maximal element. Then S, =S,
and T, =T,=TU(+ ), and FI(S)=FI(S)U{{S}}. By (4. 11), there exists
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s -
an order preserving mapping o of FI(S)U{{S}} into TU{+ e} such that
a’'n=g|S. Obviously o’({S}) =+ <, and hence if a«=0o'|FI(S), then o is into T
and an=¢|S. — The other cases_follow similarly.

(4. 14) TaeoreM. Let T be an abnormal extension of a linearly ordered set S.
Then T can be embedded order isomorphically into % ¥ (S) in such a fashion that
s maps onto n(s), for each s€S. Further if § is a mapping of T into % ¥ (S) then the
Jollowing are equivalent: '

() af=¢|T where o is the unique mapping of FF(S) onto T, determined
in (4.11)

(ii) f is order isomorphism of T into FF(S) such that f|S=m.

ProoF. By (4. 11) there exists a mapping « of & #(S) onto T, which satisfies
the hypothesis of (2. 47) with Z=%4(S), X==n(S), and ¥Y=T,. Thus by-(2. 47),
there exists a mapping f” which embeds T, order isomorphically into % .#(S) such
that f'a|n(S)=¢[n(S). Thus setting f=0'|T, we obtain f(s)=pan(s), for s€S.
The equivalence of (i) and (ii) also follows from (2. 47).

(4. 15) CoroLLARY. Let T be be an abnormal extension of a linearly ordered
set S of the same type as S. Then T can be embedded order isomorphically into F3I(S)
such that s maps onto n(s), for each s€.S. The rest of (4.-14) holds with & 7 (S) replaced
by §3(S).

PrOOF. Similar to (4. 13).

(4. 16) CoROLLARY. The number of ways that a given extension T of S can be
embedded in & F (S) so that s maps onto 7(s), for all s€ S is at most 222'¥1~1)

ProOE. By (2. 48. 2) we obtain the bound 2IT\SI. But by (2. 49), |T|=2(25!-1).
(4.17y Remark. This bound can be attained, e.g., let S=Q, the rationals,
and let T=R, the reals.

(4. 18) ProposiTION. Let S be a linearly ordered sei. Then the number of ab-
normal extensions of S which are distinct under order isomorphisms leaving S point-
wise fixed is at most 22'%'.

Proor. If S is finite, then S is the only abnormal extension of S. If S is infinite
|F#(S)| =215, by (2.49). By (4. 14) each abnormal extension of S is order iso-
morphic to a subset of #.#(S) which contains S. The number of all subsets of
FI(S) is 22" and the result follows.

(4.19) REMARK. By taking S=Q, we obtain a situation in which the number
of abnormal extensions equals 22'*'=2¢ - where ¢ is the power of the continuum.

(4.20) THEOREM. Let T be a lineurly ordered extension of S=S.. Then T is
an abnormal completion of S if and only if there exisis an order preserving mapping o
of FF(S) onto T such that on=¢lS.

Proor. Theorem (4. 11) guarantees the existence of « in the case, when T is
an abnormal completion, since here T=1T..

Suppose now there exists such a mapping «. Then, by (2. 27) and the fact that
FF(S) is complete, it follows that T is complete. By (2.28), T is an abnormal
completion of S.
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(4.21) CoroLLARY. Let T be a linearly ordered extension of S of the same
type as S. Then T is an abnormal completion of S if and only if there exists an order
preserving mapping o of FI(S) onto T such that oax=c¢l|S.

Proor. Compare (4. 13) and (4. 15).
The set & #(S) has a dual, viz. #F (S). The mapping dual to = will be denoted
by #*.

(4.22) PROPOSITION. Let S be any linearly ordered set.

(1) There exists an order isomorphism o from FF(S) onto S F(S) such that
an =m7*,

2) «|FI(S) is an order isomorphism onto IF(S).

Proor. (1) By (4.9)* #%(S) is an abnormal extension of S. By (4. 14) there
exists an order isomorphism o embedding £ & (S) into &£ (S) such that an*=m=.
Dually, by (4. 14)*, we may embed &.#(S) into S F(S) by a mapping « for which
an=n* Thus ao*|z(S)=c¢|n(S), whence by (2. 30) ao*=¢|F#(S), hence « is an
isomorphism onto, and (1) follows.

(2) Under «, the maximal (minimal) elements of #.#(S) go onto the maximal
(minimal) element of S & (S). Thus (2) follows.

We now consider normal completions of linearly ordered.sets. We show that
there is essentially only one normal completion for such a set. The reader may
wish to refer back to definition (2. 19) and (2. 32).

(4. 23) THEOREM. LetS=S, be a linearly ordered set, and let Z =% % (S). T hen

(1) Z(=(S))=2Z is a normal completion of S under ym, where v is the natural
mapping of Z onto

(2) If T is a normal completion of S under t, then T is order isomorphic to Z
under a mapping f such that fr=yn.

Proor. (1) From (2. 34) and (4. 20) (with T replaced by Z and « replaced by ),
it follows that Z is an abnormal completion of S under yzn. Since S=S, Z is of
the same type as S, whence Z is normal by (2. 42).

O
z * T
ch B LT\
b4

7‘.

K

(2) The remainder of the proof consists in showing that the above commutative
diagram exists and, # and % are isomorphisms. The existence of an order true map
o onto T such that azw =7 follows from (4. 20) (with ¢ replaced by 7). The existence
of an order true map f onto Z such that Ba=y, follows from (2. 35). By (2. 39)
the natural mapping # from T onto T is an isomorphism. By (2. 36) there is an iso-
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morphism % of T onto Z such that f=#. Hence f is also an isomorphism. The
theorem is proved.

(4.24) CoroLLARY. Let S be a linearly ordered set, and let Z=§3I(S). Then
Z(n(S))=2Z is the unique normal completion of S. A set T is a normal completion
of S under t if and only if T is order isomorphic to Z under a mapping B such that

pt =ym, where v is the natural mapping of Z onto Z.

Proor. As for corollaries (4. 13), (4. 15) and (4. 21) above. No restriction on
T is necessary, since a normal completion 7 of S has the same type as S.

(4.25) TaeoreM. Let T be an abnormal completion of a linearly ordered set S.
Then T is the (essentially) unique normal completion of S if and only if the natural
map 1 of T onto T is an order isomorphism and T is of the same type as S.

Proor. By (4. 24) a normal completion is unique. By hypothesis, 7 is a complet-

ion. Hence (2. 41) proves the theorem.
SN

(4.26) CoroLLARY. Let S be a linearly ordered set. Then S‘(S), @'), FI(S),
N
and 3 (S) are all isomorphic to the unigue normal completion of S.

Proor. Immediate from (2.38) and (3.23.1).

5. Partially ordered umiversal algebras

(5.1) DerFINITION. A triple (/, £, S) is a universal algebra if for each w there
is a (possibly infinite) cardinal number #=rn(w), such that ‘w is a function of "
into S. By convention §° = {&}, and  is identified with the least ordinal of cardinality
n. Normally each w € Q is a function on S, and ’ is the identity function, and hence
not written. Because of the nature of our work, it is sometimes important to distin-
guish between w and ‘o, since we shall have several algebras with the same set Q
on the same set S.

(5.2) NOTATIONS AND DEFINITION. If @€ Q is n-ary, and x € S", we may write
w(xg, X4, ...) for w(x). If » is a function defined on a set W, and x € W™, then we
define #(x); =n(x;), all i<n. In particular this notation will frequently be used with
n=sup, s, L(V,): thus

(sup A)=(sup Ay, sup 4y, ...), LV, 0)=(L(V, to), L(V, 1,), ...).
If ‘W is partially ordered, then W7 is partially ordered coordinatewise by x =y if
and only if x;=y;, for all i<n.
(5.3) DermaroN. Let (Y, 2, A) and (”, Q, B) be universal algebras, and let
1 be a mapping of 4 into B. Then # is a homomorphism from (*, @, 4) into (*, 2, B)
if and only if for all w€ Q, and all x€ A" we have

n(‘w(x)) ="w(1(x)).

Various. results on universal algebras can be found in KurosH [5]§ 17 and
§ 23, and CoHN [2], and will be assumed.
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(5.4) NorvatioN. We denote the free universal algebra (KurosH [5] §23,
ConN [2], Chapter III) generated by X and Q by (Q, X). For precise definitions
which are also valid in the case of infinitary operations, see §7.

(5.5 DerNiTION. Let S be a partially ordered set. We say that the universal
algebra (Q, S) is a partially ordered universal algebra if all w € Q are order preserving
as mappings from S” partially ordered coordinatewise, to S, viz., x=y implies
o (x) = w(y).

(5.6) DerinuTIONS. Let (Q,S) be a partially ordered universal algebra. Let
T be an extension of S under the identity.

(1) A partially ordered universal algebra (", Q, T) is an extension of (Q, S)
if for all s€S" "w(s) =w(s).

(2) The algebra (-, Q, 25) is defined by w(A)={w(a): a;€ 4;, for all i<n)}
for A€(2%" and w n-ary. .

(3) Let tcT". We define *w(t)=sup w(L(S,t)) if this supremum exists.

(4) If for all w€Q, *w is defined everywhere, the (*, 2, T) is an universal
algebra. The algebra (*, Q, T) obtained by this method of defining the operations
on T is called the superior extension of (2, S) to T. In general, there will be other
extensions (’, Q, T) of (2, 9).

(5) Let (Q, S) be a partially ordered universal algebra, and let ¢ be an order
isomorphism of S onto ¢(S). If w¢ Q is n-ary, and s € §” we define ‘o (o(s)) = o(w(s)).
Evidently (', Q, o(S)) is isomorphic to (©, S). We often drop the prime.

(6) If T is a superior completion of S (under g) and the extension (*, 2, T')
of (9, 0(S)) exists, then we shall call (*, Q, T) a superior completion of (2, S) (under ¢).

(5.7) Remark. If T=T, is a superior completion of S then *w will be every-
where defined, since, as we recall, 7=T, if and only if every subset of 7T has a
supremum. Thus, in this case, (*, 2, T) exists.

(5. 8) ProposITION. Let (Q,S) be a partially ordered universal algebra. Let
T be a superior extension of S such that (*, Q, T) exists. Then (*, Q, T) is a partially
ordered universal algebra into which (Q, S) is embedded isomorphically in an order
true fashion by the identity mapping.

Proor. It is easily verfied that (*, 2, T) is a partially ordered universal algebra.
It is also obvious that the identity mapping is I—1 and order true. So we need only
show that ¢|S is a homomorphism, i.e., that w(s)=*w(s), for all s€S". But this
follows since w is order preserving and s;€ L(s;), all i<n.

(5.9) Lemma. Let (2, B) be a partially ordered universal algebra. Let A;S B
and let a; be an upper bound for the subset A; of B, i=<n. Then, if v € Q is n-ary, w(a)
is an upper bound for @ (A).

Proor. Follows immediately, since o is order preserving.

(5. 10) RemMARK. There are examples of linearly ordered semigroups contain-
ing subsets A, 4, for which sup 4,, sup A, and sup 4,4, exist but sup 4,4, <
<(sup 4,)(sup 4,). For example, let 4=[0, 1] with xy=0 unless x=y=1, and
I.1=1. Let 4, =4,=][0, 1).

We are therefore led to the following definition:
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(5. 11) DERINITION. Let (€2, B) be a partially ordered universal algebra. We call
w € Q, w n-ary, suprema preserving if and only if for all 4;< B, i-<n such that sup 4;,=
=a; exists, we have w(a)=supw(A). We say that (2, B) is suprema preserving
if all € Q are suprema preserving.

(5.12) ReMARK. Let (£, S) be a partially ordered universal algebra. Since
vis a 1—1 mapping of S into £ (S)=4(S);, (5. 6.4) defines (£, ¢(S)), a universal
algebra isomorphic to (£, S). The superior completion £(S) of «(S) yields the
universal algebra (*, Q, # (S)), in accordance with definition (5. 6). In fact, in this
algebra, if w is n-ary and A€ .7(S), then *w(A) is the initial segment generated
by {w(a): a;€4;}=w(A).

(5.13) THEOREM. Every partially ordered universal algebra has a superior
completion which is suprema preserving, viz., (*, Q, #(S)) is such a completion of

@, 9).

Proor. Since the ordering in #(S) is set inclusion, it follows from lemma (5. 9)
that it is sufficient to prove that

*g (sup &) S sup *o ()
for all subsets & ; < .#(S), i <n. By definition of *w

*o (sup &) =sup @ (L(t(S), sup «)).
Note that if t(s) Ssup &= |JZ then there exist B<£% such that ((s) S B, whence

sup @(L(S), sup ) Ssup {*w(A): 4;€ ;) =sup *o ().

If (%, @, T) exists, it is the minimal extension of (£, S) to T in a natural partial
ordering of extensions. To make this notion precise, we require a definition.

(5. 14) DerFmITION. Let (£, A) and (', 2, A) be two partially ordered universal
algebras on A. We say that (Q, A)=(, Q, A) if and only if w(a)="w(a), for all
acA" and all w€ Q.

(5.15) PrOPOSITION. Let (£, S) be a partially ordered universal algebra and
let T be a superior extension of S. Let (*, Q, T) be a partially ordered extension of (2, S).

(1) If (, Q,T) preserves suprema then (*, Q, T) exists as constructed in (5. 6)
and (, , T)=0* 2, T).

2) If (x, Q,T) exists then (*, Q, T)=(, Q, T).

ProoF. (1) Letw € £2 and suppose “w preserves suprema, Then for t € T, “w(t) =
=sup @(L(S, t)) =*w(t) whence *w exists and *& =’w.

(2) Let w€ Q and suppose *o is defined. Then ‘w(t) =sup o (L(S, t))=*w(t),
by (5.9) and the result follows.

(5.16) PrOPOSITION. Let (2, S) be a partially ordered universal algebra, and
let (*, 2, T) be a superior extension of (,S5). If (*, Q, T) preserves infima, then
so does every extension (', Q, T) of (2, S) to T.

Proor. Let w¢ Q and let A€(27)" such that infyd4;=gq; for all i<n. By (5.9)
and (5.15.2) and since (*, 2, T) preserves infima, inf; @(A)=*w(a)=w’(a)=
=infrw(A) and ‘w{a) =infrw(A) follows.
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(5.17) Lemma. Let (Q, S) be a partially ordered universal algebra and let T be
a superior extension of S. Let (', Q, T) be a partially ordered extension of (2, S).
If (', Q, T) preserves infima, so does (2, S).

PROOF. Let w€ Q and let 4 €(25)", such that a;=infg4;. By (3. 25) a;=infr4,,
and as (/, Q, T) is infima preserving, w(a) ="w(a) =inf;w(A) = infs w(A), by (3. 25).
The result follows.

(5. 18) REMARK. A dual theory exists for inferior extensions. Thus let (£, S)
be a partially ordered universal algebra and let T be an inferior extension of S.
Let we (R, S) be n-ary. We define

Lo () =inf B(U(S, 1))

if the infimum exists for all ¢ € 7. If ,w is defined for all w €(Q, S), we call the result-
ing extension (4, 2, T) the inferior extension of (Q, S) to T.

(5.19) THeorem. Let (Q, S) be a partially ordered universal algebra. Let N
be a normal extension of S. If there exists a partially ordered extension (', Q, N)
of (R, S) which preserves both suprema and infima then

(1) (, Q, N) is the unique partially ordered extension of (2, S) to N,
2) (2, S) preserves both suprema and infima.

Proor. (1) By (5.15.1) (*, @, N) exists and (, Q, N)=(*, Q, N) and by
(5. 13. )* (4, Q, N) exists and (, Q, N)=(4, 2, N). Hence (*, 2, N)=(4, @, N). Hence
by (5.15.2) (/, 2, N) is both the minimal and maximal extension of (£, S) in the
ordering of (5. 14). Hence (’, 2, N) is the unique extension of (£, S) to N.

(2) This follows immadiately from (5.17) and (5. 17)*.

(5. 20) THEOREM. Let (2, S) be a partially ordered universal algebra and let N
be a normal extension of S. If (*, Q, N) exists and preserves infima, then (*, 2, N)
is the unique extension of (2, S) to N.

PrOOF. By (5. 15. 1)*, (4, 2, N) exists and (4, Q, N)=(*, Q, N). Hence by
(5.15.2) and (5. 15.2)% (*, Q, N) is both maximal and the minimal extension
of (2, S) to N. The result follows.

(5.21) ExampLe. For partially ordered sets S, the converse of (5. 19) is false.
Let R, be the reals with O removed, and let S=(R,, 1)U®R,, 2) ordered thus:
(x, )=(p,J) if and only if x<0 and y>0 or i=j and x=y. Let N=SU {0}, where
0=(x, i) if and only if x>0 and 0=(x, i) if and only if x<0. Let Q= {w}, where
o is unary. Let w(x, 1)=(x, 1), and for x>0, let w(x, 2)={(x+ 1,2), while x <0,
w(x,2)=(x—1,2). Then (L2, S) preserves infima and suprema, and the unique
extension ‘@ of @ to N yields ‘w(0) =0. It is easy to see that (*, Q, N)=(,, 2, N)=
=(’, @, N), but (*, 2, N) does not preserve infima or suprema.

In § 6 we shall prove that the converse of (5. 19) holds for linearly orderes sets.

We now investigate the extent to which identities and inequalities are preserved
when a partially ordered universal algebra is extended.

(5.22) DermvimioN. Let (©, X) be a free universal algebra, let (2, 4) be a
universal algebra. A function  from X to 4 will be called a substitution. We extend
the domain of ¥ te (€, X) thus: if w is a word in (2, X) then we denote by ¥'(w)
the element of 4 obtained by substituting ¥ (x) for each occurrence of x in w.

Acta Mathematica Academiae Scientiarim Hungaricae ry, 1966

3

“a



COMPLETIONS OF PARTIALLY ORDERED SETS AND UNIVERSAL ALGEBRAS 295

We note that ¢ is thus a homomorphism of (@, X) into (£,4), and every
homomorphism can be realized in this fashion. Where no confusion should arise,
we shall write ¢ in place of .

(5. 23) DerNiTioN. Let (€, S) be a partially ordered universal algebra, and
let (*, Q, T) be a superior completion of (R, S). If ¥ is a substitution of X into T,
then we define the mapping Y of (@, X) into T as follows: y(w)=sup {6(w):
where 6 is a substitution from X to S and 6(x)€ L(S, y(x))} where the supremum
exists by (5.9).

(5. 24) REMARK. We note that, in general, \ is not a substitution and there-
fore not necessarily a homomorphism. The next series of lemmas investigate those
situations in which W(w)=y(w), since this equality has important consequences.

(5.25) Remark. Let {(Q, X) be a free universal algebra. We suppose that
a notion of depth of a word we(Q, X) has been defined such that the following
are satisfied. '

(i) For all w, depth w is an ordinal number.

(i) The range of depth w is bounded by some ordinal m=m(L).

(iii) depth w=0 if and only if w€ X or w=w for some nullary operation w¢€ Q.
(iv) If w=0w(v) for some v€{Q, X)" then depth w=depthv, for all i<n.

If Q is finitary the number of symbols in w minus one will serve as depth w.
In any case such a function is constructed in § 7.

(5.26) LemmA. Let 8,y be substitutions from (Q, X) into the partially ordered
universal algebra (Q, T). If for all x€X, 0(x) =y (x), then for all we{Q, X), 6(w)=
=y (w).

ProOF. Let we(Q, X). If depth w=0, the statement is trivial. Suppose that
depth w=0 and that the result is true for all words of depth less than depth w. Let
w=w(u). Then depth u; <depth w, i <n and so by the inductive hypothesis 0(u;) =
=y (u). Hence 6(w) = w(B(w) = w(p)) =p(w).

(5. 27) ProposITION. Let (*, Q, T) be a superior completion of (2, S), a partially
ordered universal algebra. Let we{Q,X). Then for every substitution Y of X into
T, b(w)=y ().

Proor. Let 6 and ¢ be substitutions from X into T and suppose that 8(x)=
=y (x), all xcX. Then by (5.26), 0w)=y(w), all w2, X). Hence Y(w)=
=sup {0(w): 0(x) EL(S, Y ()} =y (w).

(5.28) ProrosrTiON. ‘Let (R, S) be a partially ordered universal algebra, and
let (*, Q, T) be a suprema preserving superior completion of (2, S). If w is a word in
(Q, X) such that each x€X occurs in w at most once, then, for each substitution

¥ of X into T, W(w)=y(w).

Proor. The proof is by induction on the depth of the word w. If depth w=0
there are two cases: Either w=w, with @ nullary, in which case \(w) = 0 (&) =¥ (w),
or w=x€X, in which case y(w)=sup {0(x): 6(x) € L(S, ¥ (x))} =sup L(S, ¢ (x))=
=1(x) =y (w). Suppose inductively that depth w=1, and suppose the proposition
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true for words of depth less than depth w. Let w=c(u). Then since v is a homomor-
phism and by induction

(@) ¥ (w) = o (W) = o W).

Let A;={0(w): 6(x)€L(S, ¥ (x))}. Then by definition of { and since (¥, 2, T)
preserves suprema

(b) (W) =ow (sup A) =sup w(A)=sup {w(a): a;€4,}.

Let a;€4;. Then there exists §; such that 6(x) €L(S, y(x)) and 6,(u;)=a;. Since
no x occurs in more than one u;, i<n we may define a substitution € of X into S by
0,(x), if x occursin wu, i<n

0(x) ={

8,(x) otherwise.
Note that 6(x) € L(S, y(x)) since 8,(x) € L(S, Y (x)). Thus 6{(u;)=a;, and we obtain

© sup {w(a): a;€ A;}=sup {0 (0(w): 0(x) EL(S, Yy (x))} =
=sup {§(w): 0(x)€ L(S, y(x))} =W (w).

The equality now follows from (a), (b), and (c).

(5.29) DermaTioN. Let wy, w, €{Q, X). We say (the equality) w; =w, ((the
inequality) w,<<w,) holds identically on the universal algebra (2, 4) if and only if,
for all substitutions  of X into A, y(w,) =y (w,) (Y(wy) =y (wy)).

(5.30) TurOREM. Let (2, S) be a partially ordered universal algebra, and let
(, Q, T) be a superior completion of (2, S) which is suprema preserving. Let w, w, €
€{Q, X) and suppose each x€ X occurs at most once in each w;,i=1,2. Then w, =w,
(w,<<w,) holds identically on (£, S), if .and only if it holds on (*, Q, T).

Proor. It is sufficient to prove the theorem w, <w, since w, =w, is equivalent
to w,<w, and wy<<w,. If w, =w, holds on (*, Q, T) then it clearly holds on the
subalgebra (Q, §). Conversely, suppose w, << w, holds on (£, S). Lety be a substitution
of X into T. Then by (5.28) and the definition of

Y (w) =Y(w)=sup (B(wp: 0(x) €L(Y (x)))}.
But, since w,<<w, on S, O(w,)=6(w,) for all substitutions 6, and the result follows.

(5.31) CorOLLARY. Let wy, w,€(Q,X) and suppose each x€X occurs at
most once in each w;, i=1,2. Then w, =w, (w,<<w,) holds identically on (2, S)
if and only if it holds on (*, Q, #(S)).

Proor. Immediate by Theorem (5. 13).

(5.32) CoroLLARY. Let (., S) be a groupoid. If (., S) has any of the following
properties, then so has every superior completion of (., S) which preserves suprema,
in particular (%, ., #(S)): (1) associativity, (2) commutativity, (3) existence of
identity, (&) existence of zero.

Proor. This is an immediate consequence of Theorem (5. 30). We note that
in the case of (3) and (4) we have to adjoin constant nullary operations to Q.
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(5.33) ExampLE. In general, idempotence, distributivity, power associativity
and inversion in .S do not necessarily imply their counterparts in # (S). For example,
let S={a, b, ¢} with the trivial ordering in which distinct elements are incomparable.
Define uv = u, u+u = u and for usv, u+v = wd {u,v}. Then in S, x+x=x
and x(y+2z)=xy+xz hold identically, but neither holds in #(S). We have been
unable to characterize the class of identities which for every Q algebra (R, S) extend
(*, @, #(S)) whenever they hold in (<, S).

We recall 3(S) was defined in (3. 22).

(5.34) TueoreMm. Let (Q2.S) be a partially ordered universal algebra. Then
the restriction of (*, Q, #(S)) to I(S) is a subalgebra and is, in fact, the superior
completion (*, Q, 3(S)) as constructed (5.6). Further, (*, Q,3(S)) is suprema
preserving.

Proor. Let w¢ Q be n-ary. Let A € J(S)". We wish to show that *w(A)<JI(S),
where *o is the operation in (*, @, ¥ (S)). Since A4;€J(S), i<n there exists 5,€5S;
such that A4;S:(s), i=1, ..., n. Hence

*o(A) =*a(i(s)) =Y w(s) €4(5),
whence *w(A) €J(S).

Hence the restriction of (*, 2, #(S)) to J(S) is a subalgebra. Further if & & J(S),
and sup & exists in J(S), then the supremum in J(S) is the same as the supremum
in Z(S), by (3.23). Hence the subalgebra is suprema preserving since, by (5. 13),
(, *2, #(S)) is. It follows from (5. 15) that the subalgebra is the algebra constructed
on J(S) by (5. 6).

(5. 35) CoroLLARY. Let (Q,S) be a partially ordered universal algebra. Then
(*, 2,3(S)) is a suprema preserving superior completion of (Q,S) which further
satisfies: If wy, w, €(Q, X) are words such that each x€X occurs at most once
in each w;, i1=1,2, then wy=w, (Wy<<w,) holds identically in (R, S) if and only
if it holds in (*, Q, 3(S)).

Proor. The first part of the corollary follows from (5. 34), while the second
part follows from (5. 31), and the facts that (*, @, J(S)) is an extension of (£, S)
and a subalgebra of (*, Q, #(S)).

6. Linearly ordered umiversal algebras

We now consider the case when (2, S) is a linearly ordered universal algebra.
In this case theorem (5.30) can be strengthened. We begin with a strengthened
version of (5. 28).

(6. 1) ProposiTiON. Let (*, Q, T) be a suprema preserving superior completion
of the linearly ordered universal algebra (2, S). If we{, X') then for each substitution
¥ oof X into T, (w)y=y(w).

Proor. The proof is the same as that of proposition (5. 28), except that the
substitution & is now defined as follows:

6(x) =max {6(x): i<n}.
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We note that 8(x) is well-defined since S is linearly ordered. Since for each x there
is an i, i<n, such that 8(x) =0(x), it follows that 6(x) € L(S, y(x)).

(6.2) TueoreM. Let (*, Q, T) be a suprema preserving superior completion
of the linearly ordered universal algebra (Q, S). Let wy, w, €(Q, X). Then w,=w,
(w,<<w,) holds on (2, S) if and only if it holds identically on (*, 2, T).

ProoF. The proof is similar to the proof of theorem (5. 30), except that we
use (6. 1) in place of (5. 28).

(6.3) CoroLLARY. Let (., S) be a linearly ordered groupoid. If (., S) has any
of the properties of (5. 32), or any of the properties below, then so has every superior
completion of (., S) which preserves suprema, in particular (¥, ... (S)): (5) idem-
potence, (6) power associativity.

(6.4) REmarkS. (1) Let (., G)=G be any partially ordered group with more
than one element. Then #(G) is not group, since G€ .#(G), and G has no inverse
in £(G).

(2) The class of all groups may be defined to be the primitive class (KUurosH
[5], §22.1) or universal algebras with a binary opeiation w,(qa, b)=ab, a unary
operation w,(@)=a~?!, and a nullary operation wg=1, which satisfy the identities
x(yz)=(xy)z, x1=x and xx~!=1. There are other equivalent ways of defining
the class of groups by means of operations and identities (KurosH [5], § 18. 6).
Let A be a set of identities with words taken from (&, X), so that the class of
universal algebras (’, 2, G) satisfying the identities A4 is the class of groups.

There exists an identity w, =w, in A such that some x € X occurs at least twice
in either w, or w,. For, optherwise, let (’, 2, G) be a group ‘with trivial ordering,
and more than one element. Then, by (5. 30) (%, 2, £ (G)) would be a group contrary
to (1) above. Further, it is impossible to find a linear ordering on any group G so
that every w¢€ Q is order preserving on G". For, otherwise, (*, Q, 5 (G)) would be
a group by (6. 2), again contrary to (1) above. In particular the unary operation
w;(@)=a"%, is order inverting. Similar remarks may be made about the classes
of quasi-groups and loops.

(6. 5) DermiTIONS. Let (£, S) be a linearly ordered universal algebra, and let
w € Q. We say that w is lower semi-continuous if and only if w satisfies the following
condition:

If w(a)>c then there exist neighborhoods N(a;) of a; (in the order topology)
such that for b€ N(a,), w(b)=c.

We call the algebra (£, S) lower semi-continuous if each we Q is lower semi-
continuous. Upper semi-continuity for operations (algebras) is defined dually.
If an operation (algebra) is both lower and upper semi-continuous, then it is called
continuous. The following theorem is essentially due to A. H. CLIFFORD ([1], Lemma
2. 1) who proved it in the case of commutative semigroups (cf. FucHs [2] p. 176,
who proved it for arbitrary semigroups).

(6. 6) TuroreM. Let (2, S) be a linearly ordered universal algebra, and let
w€ Q. Then w is lower semi-continuous if and only if w is suprema preserving.

PrOOF. The proof can be obtained by making the appropriate, obvious modi-
fications of CLIFFIORD’s proof.
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(6. 7) COROLLARY. Let (2,S) be a linearly ordered universal algebra. Then
(Q, S) is lower semi-continuous if and only if it is supprema preserving.

(6. 8) THEOREM. Let (2, S) be a linearly ordered universal algebra. Then both
*, Q5 (S)) and (*, Q, 3(S)) are lower semi-continuous completions of S.

Proor. By (3. 13) #(S) is a superior completion of S, which is linearly ordered
by (2. 11). The conclusion follows from (5. 13), (5. 34) and CLIFFORD’s theorem (6. 6).

(6.9) THeoreM. Let (2, S) be a linearly ordered universal algebra. Then there
exist linearly ordered completions (', Q, F S (S)) and(”, Q,F #(S)) which are upper and
lower semi-continuous respectively. Further an inequality (equality) holds identically
on (*, Q, FS(S) (", @, FF(S))) if and only if it holds on (2, S).

ProofF. By (5. 13) and (6. 2), (2, S) can be extended to £ (S) so that ,,identities”
are preserved. By (5.13)* and (6. 2)*, this algebra on #(S) can be extended to
algebras (, Q, #.5 (S)), which are upper semi-continuous by (6. 7)*, and in which
all identities on .#(S) and hence on S, remain valid.

Dually, we prove the corresponding result for a lower semi-continuous extension
(", @, SF(S)). But FF(S) is order isomorphic to FSA(S) by (4.22) and hence
we may replace S F (S) by F.(S) in this algebra.

(6. 10) REMARK. In theorem (6. 9), we may replace #.#(S) by F3I(S). This
follows from (5. 34).

(6. 11) Remark. It is usually impossible to extend the operations of (Q, S)
to FS(S) (or FI(S)) so that the resulting algebra is continuous. The example
is even more surprising, since in the counter-example below (2, S)=(4, R) is
the reals under addition. Then FI(R)=RU=n*(R)Un~(R). Let 0% and 0~ be
the predecessor and successor respectively of 0 in FI(R). We suppose that addition
is continuous in §I(R), and we derive a cortradiction.

If x¢R, and x=0, then x+0—>x+[—%]=x/2. Since 0% =inf U#(R, 0)

we obtain, by continuity, 0% +0-=inf{x+0":x¢U#(R,0)}=0*. Dually,
0*+0-=0-, and this is a contradiction.

(6. 12) Taeorem. Let (2, S) be a linearly ordered universal algebra, and let
N be a normal extension of S such that (*, Q, N) exists. Then (¥, Q, N) is lower semi-
continuous if and only if (Q,S) is lower semi-continuous.

Proor. If (*, Q, N) is lower semi-continuous, so is (22, S) by (5. 17) and (6. 6).
Lets€ S, x€N, x <s. Weclaimthere exists ¢ € S such that x = ¢ <, since x = inf L(S, x).
Let t€ N, suppose w€ Q,and x<*w(t). By definition of *w, there exist s€.S”
with s =t for which x <w(s). Hence, for some c€ S, x=c <w(s). Since w is lower
semi-continuous, there exist ' €S such that for all u=s" @(y)>c. Let vEN", v; >3],
i<n. Since N is a superior extension of S, there exist u¢€ S” for which v;=u; >s{,
whenc *o(v)=w()=>c=x and hence *w is lower semi-continuous.

(6. 13) TueoreM. Let (2, S) be a linearly ordered continuous universal algebra
and let N be the normal completion of S. Then

(1) (x Q, N) exists.

(2) (%, Q, N) is the minimal extension of (Q, S) in the ordering (5. 14).

(3 (¥, Q, N) is lower semi-continuous.
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Proor. The extension (¥, 2, N) exists by (4.27) and (5. 34). The theorem
follows from (6. 12).

(6. 14) THEOREM. Let (£, S) be a continuous linearly ordered universal algebra.
Let A be a set of equalities and inequalities which hold identically on (Q, S). Let N
be the normal completion of S. Then the following are equivalent:

(i) There exists a continuous completion of (2, S) to N in which A holds identi-

cally.

(ii) There exists a continuous completion of (2, S) to N,

(iii) There exists a unique completion of (2, S) to N.

(iv) There exists a unique completion of (2, S) to N in which A holds zdentzcally

Proor. Clearly (i) implies (ii). From (5. 19), (6. 8) and (6. 8)* we infer that
(i1) implies (iii). Suppose (iii) holds. By (6. 13), the unique completion is (*, 2, N),
and (iv) follows from (6.2). Suppose (iv) holds. From (6. 13. 1) and (6. 13. 1)*
we see that (¥, 2, N)=(x, £, N) is the unique completion. Again by (6. 13. 3)
and (6. 13. 3)%, (i) follows.

(6. 15) Remark. In the case when 2 consists of a single binary operation
w(a, b)=ab and A consists of the identities xy =yx and x(yz)=(xp)z, i.e. Sis a
commutative semigroup, the equivalence of (i) and (iv) of (6. 11} was first shown
by CLIFFORD [1].

7. Free iofinitary algebras

In this section we construct the free universal algebra with operations 2 generated
by X and show that a depth function (cf. 5. 25) can be defined.

(7. 1) Remarks. (1) We shall follow the definitions of cardinal numbers and
ordinal numbers given by GODeL [4]. In particular an ordinal number is a set which
is an initial segments of the class of ordinals which is naturally well ordered by €,
and an ordinal number is, in fact, the set of ordinals less than it. A cardinal number
is an ordinal number which is less than all other ordinal numbers cardinality equivalent
to it, and hence a limit ordinal, if infinite.

(2) We shall also use the result that if ¢ is an infinite cardinal number and
A is a set of ordinal numbers each less than &, and the cardinality of A4 is also less
than §, then sup A= UA<I.

(7.2) DerniTiONS. (1) By a set of operations 2 we mean an ordered pair
(2, n), where n is a function from £ into an infinite cardinal number m =m(Q).
We normally write Q for (€, n).

(2) Let Q be a set of operations, and X a set disjoint from Q. Let ,=
={w€ Qy: n(w)=0}.

(i) Let #,=XU Q,.

(i) If #°; has been defined for all ordinals i less than j, we define #"; thus:
Let 7';= U{W i<jl, W;={w,V): wEQ VeV, n=n(w)}U7".

(7.3) LemMA. If m is the cardinal number defined in (7.2.1), then # ,=7¥",.

Proor. Clearly #,, 2% m. Let we#,,. If we ¥y, then we¥ . Otherwise
w=(w, v) where v €77, Thus, v; € # ;) for some ordinal j(i) <m, for all i<n=n(w).
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Let j=sup {j(i): i <n}. Since each j(?) is less than m and n<m we see by (7. 1. 2)
that j<m. Thus for all i<mn,v;€# ;S ¥ ;.,. It follows that w€#";,, and since
J<m and m is a limit ordinal, j4+1<m. Thus #7;,, ¥, whence wc¥ ,. The
result follows.

(7.4) CoROLLARY. # 1 =W -

(7. 5) DeraTIONs. (1) Let {Q, X)=%",,. This set is called the set (of words)
of the free universal algebra generated by Q and X.

(2) The free universal algebra generated by Q and X is the triple (, Q,{Q, X))
where ‘@ is the function from (Q, X)" to (Q, X) given by ‘w(v)=(w, V), where
n=n(w).

In practice we call {Q, X the free algebra.

(7. 6) DermaTION. If we(Q, X) then we define depth w=inf {i: we# ;}.
We observe that depth w has all the properties required in (5. 25).

( Received 17 August 1965)
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