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1. A set of nXn matrices with complex elements has a natural topology 
associated with it. One may therefore look for a topological interpretation of 
some results in the theory of matrices. We shall show that Sylvester's classical 
theorem on the inertia (signature) of Hermitian matrices concerns the con­
nected components of the space of all Hermitian matrices of fixed rank r. 

Most of the arguments used in the proof of our theorem are elementary and 
familiar. Yet our result does not appear in the literature. The reason may well 
be that matrix theorists tend to use "continuity properties" as they arise, with­
out formalizing them, while topologists do not usually study equivalence rela­
tions on matrices. This note is offered as an illustration that even on a fairly 
elementary level, something is gained by looking for inter-connections between 
different mathematical fields. 

2. Let n be a positive integer and let Cal = (11", v, ~) be an ordered triple of non­
negative integers with 1I"+v+~ =n. Let E.. be the diagonal matrix E .. 
=diag (1, ... , 1, -1, ... , -1,0, ... , 0) with 11" diagonal elements 1, v di­
agonal elements -1 and ~ elements o. Sylvester's theorem ([7] p. 100, [3] 
p. 83) on the inertia of Hermitian matrices asserts that for each nXn Hermitian 
matrix H there exists just one matrix E .. for which there exists a nonsingular 
matrix X such that X*HX =E.,. 

But can we pick out the triple Cal that occurs in Sylvester's theorem, without 
use of that theorem and directly in terms of the matrix H? One possibility, 
which we mention merely because of its intrinsic interest, is to proceed geomet­
rically. Let V be the space of all positive n-tuples and associate with H the 
quadratic form Ll: (x, x) =x*Hx. If it should happen that for some yE V, 
(y, y) >0 then also (x, x) >0 for x=ay if a;&O. Thus we have found a subspace 
Wof V of which (x, x) >0 for all x~O. In other words, Ll is positive definite on 
W. Now suppose that 11" is the dimension of a subspace Wof largest dimension 
on which Ll is positive and similarly suppose v is the dimension of a subspace W' 
of largest dimension on which Ll is negative definite (i.e., (x, x) <0, if O~xEW'). 
If o=n-7I"'-v, then it may be proved that Cal = (11", v, ~) is the Cal of Sylvester's 
theorem, (see [1] pp. 148-150). 

3. We shall use an entirely different approach. Since H is Hermitian all its 
eigenvalues are real. We shall define 11", v, 0 in terms of the eigenvalues of H. 

DEFINITION 1. Let 1I"(H) =11" be the number of positive eigenvalues of H, v(H) =v 
the number of negative eigenvalues of H, and o(H) = 0, the number of zero eigenvalues 
of H. Then the ordered triple Cal = (11", v, 0) will be called the inertia of H. We shall 
write Cal = In H. 
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DEFINITION 2. Two Hermitian matrices H, K are inertially equivalent if 
In H = In K. We shall write H'!'K. 

The next definition is standard. 

DEFINITION 3. (e.g. [6] p. 99, p. 84). Two Hermitian matrices Hand K are 
conjunctive (conjunctively equivalent) if there exists a nonsingular X such that 
X*HX=K. We shall write H,!,K. 

I tis eviden t that'!' and":' are equivalence relations on any set of Hermitian 
matrices. 

4. Our next two equivalence relations are of a different kind, since they may 
be defined on any topological space. 

If E is a topological space, the space is called connected if the emptyset 
and E are the only subsets of E which are both open and closed (see [5] p. 117). 
A subset U of E is connected if and only if it is a connected space in the topology 
induced on U by E. Thus U is connected if and only if, for any set FCE which 
is both open and closed, either UC F or U~E\F, the complement of F in E. 
This motivates 

DEFINITION 4. Let E be a topological space. We call x, yEE connectable in E 
if for every open and closed set U in E both x, yE U or both x, y EE U. We shall write 
x,!,y. 

An arc in a topological space E is a continuous image of the interval (0, 1) 
on the real line in the space E ([5] p. 139). 

DEFINITION 5. Let E be a topological space. We call x, yEE arc connectable 
in E if there exists an arc in E joining x, y, i.e., if there exists a continuous function 
f from the unit interval (0, 1) on the r,:alline into E with f(O) =x and f(l) =y. We 
shall write x,!,y. 

The following lemma is a restatement of a well-known result (see [5] p. 
141). 

LEMMA 1. If E is a topological space, then x,!,y implies that x~y. 

Proof. Let U be any open and closed set containing x and letf be a continu­
ous function of (0, 1) into E with f(O) =x and f(l) =y. Then f-l( U) is an open 
and closed subset of (0, 1) which contains 0, and the only such set is (0, 1) itself. 
Thus y=f(1)E U and so x,!,y. 

5. Let S be any set of nXn matrices. \Ve can norm S in many ways. For 
example we can put IlAIl = maxi.; I aul for AES. To turn S into a topological 
space we choose as the open sets arbitrary unions of finite intersections of all 
cubes N(A, E)={BES: maxi.; Ibii-a,;l =IIB-AIl<E}, with AES and E>O. 
Thus a subset T of S is open if and only if for A ET we can find on E=O such 
that N(A, E)CT. Observe that S need not be a linear space, nor will our topo­
logical space S necessarily be complete. 
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In this section, we shall consider the space N of all nonsingular complex 
matrices normed as above. 

LEM1>IA 2. For all A, BEN, A is arc connectable to B in N. 

Proof. It is enough to prove that for all AEN, A;:I, the identity matrix. 
Choose (T so that ei .. A has no negative eigenvalue, and set f(t) = ei"'A, 0 ~ t ~ 1. 
If A belongs to N, so does ew'A and clearly f is continuous. Thus A,!,C. Next 
set g(t)=(1-t)C+tI, O~t~1. Evidently g is again continuous, and since the 
eigenvalues of g(t) are of the form .,,(t) = (1-th+t where l' is an eigenvalue of C ' 
and here l' is not negative, it follows that 'Y(t) .=0 and so g(t) is nonsingular. Th.us 
C;:I. Hence A::I, and this completes the proof. 

6. We now require a lemma of a different type. Usually it is expressed by 
,asserting that the eigen val ues of a ma trbc are con tin uous functions of the elemen ts 
of the matrix. We shall state the result precisely: 

LEMMA 3. Let A be a matrix with distinct eigenvalues ai, . . . , a. of mttlti­
plicities ml, ••. , m. respectively. Let E> 0 and let r(ai, E) be the circle with center 
ai and radius E. Then there is a positive (T, such that every matrix B, for which 
liB-Ali <(T, has exactly m. eigenvalues in the circle r(ai, E). 

Proof. Letp(t) =A"+P,,_l;\.',-l+ ... +Po, andq(t) =A,,-l+q .. _lA,,-l+ .. ·+qo. 
We 'use a theorem on the zeros of a polynomial (see [4]. p. 3). If the z;eros 
of p(A) are ai with multiplicity mi, i= 1, ... , s, ai~aj, if i~j, and if (qj-pj) 
<'I, j=O, 1, ... , n-1, where '1 is sufficiently small, then m, zeros of q(t) lie 
in the circle r(ai, E). Now the eigenvalues of A and B are simply the zeros of the 
characteristic polynomials det (AI -A) whose coefficients are sums of products 
of elements of A, and similarly for B. Since addition and fUultiplication of com­
plex numbers is continuous, we deduce that for sufficiently small (T:>O,!!B-AII 
<(T, implies that !qi-p.1 <'1,j=O, .. " n-l, and the result follows. 

Our proof of Lemma 3 is not really much of a proof, since it refers the result 
for the spectra of a matrices back to the corresponding theorem for the zeros of 
polynomials ("continuity of zeros of polynomials"). This latter result is deeper 
than any other theorem we have used in this note, and we shall not attempt to 
prove it here. We may note that in the application of Lemma 3, the matrices 
A and B are both Hermitian. For normal, and therefore for Hermitian matrices, 
a more precise resul t is given in [2]: 

LEMMA 4. If A and B are normal matrices with eigenvalues air •.• , a" and 
{Jl, •.. , {J" respectively, then there exists a suitable numbering of the eigenvalues 
such that 

:E I a, - 11./2 ~ :E ! ali - biil'· 
i i,; 

This result rests on the famous theorem of Birkhoff that the permutation 
matrices are the vertices of the convex polyhedron of doubly stochastic matri­
ces. For a proof of Birkhoff's theorem see [3] p. 97, or [2], and for a proof of 
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Lemma 4 see [2]. Of course, Lemma 4 implies Lemma 3 since L,.J I ai/-bii!2 
~n2I1A-BI12. 

7. From now on our space will be the space ll': of all n Xn Hermitian matrices 
of fixed rank r. We shall first examine a trivial situation. The space of all Hermi­
tian 1 Xl matrices is just the real line R and hence H~ is the real line with the 
origin removed. The connectivity properties of Rand H: are quite different. 
R is connected and H{ is not. Similarly the connectivity properties of ll': will be 
quite different from these of the space of all nXn Hermitian matrices. The rea­
son for focusing on ll': is that this space yields an interesting theorem. 

Notation. Let HEll':. Then the set of all KEll': such that H!K will be 
denoted by I(H), and the eigenvalue class I(H) will be called an inertial com­
ponent of ll':. Similarly we define C(H), U(H), A(H) to be the equivalence 
classes of H for ,!" ~, ~, respectively, and we call C(H) a conjunctive com­
ponent, U(H) a connected component and A(H) an arc component of ll':. 

THEOREM. Let ll': be the topological space of all n X n Hermitian matrices of 
rank r. Then the four equivalence relations ,.!" ,!" ~, ~, coincide on ll':. Equiva­
lently, for any HEIr:, I(H) =C(H) =A(H) = U(H). 

Proof. We shall prove that H!K implies H,!,K, H,!,K implies H,!,K, 
H~K implies H~K, and H~K implies H,.!,K. 

(a) H"!'K implies H,!,K: Suppose InH=InK=w=(7r, v, 0) say. It is 
enough to prove that H:"'E." where E .. is defined in Section 1. (Note that 
7r+v=r and that E .. EIr,.) Since H is Hermitian there exists a unitary Y such 
that Y*HY=diag (al, ... , aft). By definition of H, and since the ai are the 
eigenvalues of H, it follows that 7r of the ai are positive, v are negative and the 
remaining 0 are zero. Replacing Y, if necessary, by the unitary matrix YP, where 
P is a permutation matrix, we may suppose that Y*HY=diag (ai, ...• a,,) 
where ai>O, i=l, .. " 7r, ai+l<O, i=7r+l, .. " 7r+v, and ai=O, i=7r+v 
+1"" ,no 

Thus if D =diag hlal, ... , va .. , V -a .. +lt •.• , V -a .. +., 1, ... , 1) and 
X= YD-l, then X*HX=E. •. 

(b) H,!,K implies H:.J(: Let X*HX=K, where X is nonsingular. Since by 
Lemma 2 any two nonsingular matrices are connected in the space N of non­
singular complex matrices, there is a continuous function t~X(t) of (0, 1) into 
N such that X(O) =1 and X(l) =X. Further, transposition and matrix multi­
plication are continuous operations. Hence the function f(t) =X*(t)HX(t) is 
continuous. But rank X*(t)HX(t) = r, since X(t) is nonsingular, whence 
X(t)HX(t) Ell':. Further f(O) =H and f(l) =K, and so H:.J(. 

(c) H:"'K implies H~K. This is just Lemma 1. 
(d) H~K implies H.!..JC. We shall prove the equivalent result that I(H) 

contains U(H), for HEll':: Let KEI(H), and let In K=w=(7r, v, 0), and sup­
pose the eigenvalues ai, i= 1, ... , 7r, of K are positive, the eigenvalues ai, 
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i=1I"+1,··· ,1I"+varenegativeandtheeigenvaluesa"i=1I"+v+1,·· · ,nare 
zero. 

Let O<e<min {la,1 :a,¢O}. By Lemma 3 there exists a neighborhood 
N(K, 0') of K in Ir, (thus each LEN(K, 0') is, by assumption, Hermitian of 
rank r) so that the spectrum of each LEN(K, 0') is contained in the union of 
the n circles r(a" e). It follows that each L in this neighborhood of K has at 
least as many positive (negative) eigenvalues as K has positive (negative) 
eigenvalues, i.e. 1I"(L) ~11", and v(L) ~v. But as LEIr" 1I"(L) +v(L) =r =1I"+v, 
whence 1I"(L) =11" and v(L) =v. Thus In L = In K. It follows for each KEI(H), 
there exists an N(K, O')CI(H), and so I(H) is open. Now H;'\I(H)=U{I(M): 
MEH;', M EEI(H)} and a union of open sets is open. Hence I(H) is also closed. 
By the definition of U(H), we see that U(H) is contained in every open and 
closed set containing H, whence U(H)CI(H). This completes the proof of the 
theorem. 

COROLLARY. The topological space Ir, has precisely r + 1 distinct inertial com­
ponents (or conjunctive components, or connected components, or arc components). 

Proof. Obviously, each w = (11", v, 6) with 1I"+v = r corresponds to one inertial 
com ponen t of Ir" and there are just r + 1 such w. By the theorem, each inertial 
component is a conjunctive component (and a connected component and an 
arc component). 

8. It should be noted that in the proof of our theorem (a) is just a standard 
proof that there exists an w such that H'!'E ... The direct proof that this w is 
unique is simple (see [7] pp. 92, 100), but we do not need this proof. For dis­
tinct w, the corresponding EO) obviously lie in distinct inertial components and 
the uniqueness now follows from the equality of ,!, and,!. on H;'. 

The concept of inertia may be extended to matrices that are not Hermitian. 
For some results in this direction see [6]. 

I wish to thank Marvin Marcus, Judith Molinar, and Robert Thompson for comments which 
have helped to improve this paper. 
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