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Matrices similar on a Zariski-open set * 
By 

JACK OHM and HANS SCHNEIDER 

1. Introduction 
,(1.1) Let A, B be n x n matrices whose elements are functions holomorphic 

in a connected open subset V of the complex plane. The matrices A, Bare 
called pointwise similar on V if for each XE V there exists a non-singular n x n 
matrix Cx with complex elements such that B(x) = C;;l A (x) Cx' They are 
holomorphically similar on V if there exists a matrix C of functions holomorphic 
on V for which B(x)=C(X)-lA(x) C(x), for all XEV. WASOW [5] gives two 
related criteria (one due to OSTROWSKI) to determine when pointwise similarity 
on a neighborhood V of Xo implies holomorphic similarity on a (possibly 
smaller) neighborhood of Xo' 

(1.2) Here we shall generalize these theorems to the case when A and B 
are matrices with entries in an arbitrary commutative integral domain D 
with identity. Our chief tool for this purpose is the Zariski topology. The 
proof of W ASOW'S criterion goes through virtually unchanged. It is indeed 
possible to prove a slightly stronger theorem. When D is a unique factorization 
domain, we can give a simple proof of the generalization of OsTROWSKI'S 
criterion. There are some difficulties, due to the absence of GAuSS' Lemma, 
when D is an arbitrary domain. 

We have tried to make the paper readable to a person not familiar with 
the terminology of algebraic geometry, going into detail wherever possible 
and giving references when the details become lengthy. In particular we make 
explicit in Section 5 how one obtains WASOW'S original theorem from our 
algebraic version of the theorem. 

2. Terminology and notation 
(2.1) Integral domain will mean commutative ring without zero divisors and 
with identity. Let D be an integral domain, and let Spec(D) denote the set 
of prime ideals in D, including (0) but excluding D itself. If E is an arbitrary 
non-empty subset of D, we denote by Z(E) the set of prime ideals in Spec(D) 
which contain E. The sets Z (E) constitute the closed sets of the Zariski 
topology on Spec (D). We shall write Z*(E)=Spec(D)-Z(E) for the open 
sets of Spec(D). For these notions see, for instance, GROTHENDIECK [3] p.80. 
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From now on, all our topological terms will refer to this topology on Spec(D); 
for example, a neighborhood of pESpec(D) is an open subset of Spec(D) 
which contains p. 
(2.2) If S is any non-empty subset of Spec(D) then M=D- Up"" p",ES, 
is a multiplicative system in D; and we denote the quotient ring of D with 
respect to M by Ds. Thus Ds consists of all h-1a, aED, hEM. For informa­
tion on quotient rings, we refer the reader to ZARISKI-SAMUEL [6]. 

If pESpec(D), we shall write D(p)=D;,/p Dp. Note that D(p) is a field 
which is canonically isomorphic to the quotient field of Dip. 

If aEDp, then a(p) will denote the image of a under the canonical homo­
morphism Dp~Dp/pDp=D(p). Identifying D(O) with the quotient field K 
of D, we shall write simply a rather than a(O). More generally, if f is in the 
polynomial ring Dp [t], thenf(p) will denote the image off under the canonical 
homomorphism Dp [t] ~D(p) [t]. Observe also that for aED, the p with 
a(p) =1=0 form an open set. 

We note that aEDs is a unit in that ring if and only if a(q) =1=0 for all qES; 
for a=dlm with dED, mEM, and a-1EDs if and only if dEM, which is equi­
valent to a(q) =1=0 for all qES. The subset S of Spec(D) is dense in Spec(D) 
if and only if 0= n p"" p",ES. Hence if S is dense in Spec(D) and aEDs , 
then a(q)=O for all qES implies a=a(O)=O. 

(2.3) We shall denote the set of m x n matrices with elements in D by Dmxn. 
If A=(ai)EDmxn, then we define A(p)=(aij(p))ED (P)m xn. Note that if 
S £; Spec (D) and A E (Ds)n x n' then A has an inverse in (Ds)n x n if and only 
if d=det A is a unit in Ds; and this is true if and only if d(q) =1=0 for all qES. 
Thus A is invertible in (Ds)n xn if and only if A(q) is non-singular for all qES, 
in which case A(q) - 1=A-1(q). 

Let A, BEDn xn and let U be a non-empty subset of Spec (D). 

(2.4) Definition. The matrix A is similar to B on U if there exists aCE (Du)n x n 

such that 

(a) C is invertible in (Du)n xn; 

(b)B=C-1AC. 

(2.5) Remark. Here (a) is equivalent to 
(a') C(q) is non-singular for all qE U, 

while (b) implies 
(b') B(q)=C(q) - l A(q) C(q) for all qE U. 

If moreover U is dense in Spec(D), then (b') is equivalent to (b). 

(2.6) Definition. The matrix A is pointwise similar to B on U, if, for every 
qEU, there exists a non-singular matrix Cq in D(q)n xn such that B(q)= 
C;;l A(q)Cq • 

If A is similar to B on U, then it follows from (b') that A is pointwise 
similar to B on U. Our efforts will now be directed to determining criteria 
under which the converse implication holds. 
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3. Wasow's criterion 

(3.1) Lemma. Let AEDmxn and let 

W ={p ESpec(D) I rank A(p) =rankA(O)} . 

Then W is open, and for all qESpec(D), rank A(q);£rank A(O). 

375 

Proof. Identify A and A(O), and let rankA(O)=r. If a is any (determinant 
of) minor of order s, s>r, then a=O, hence also a(q)=O, for all qESpec(D). 
Hence rank A(q);£rank A. Some minor of order r of A does not vanish, so 
let d1, ... , dk be the non-vanishing minors of order r. Clearly rank A(p)=r 
if and only if di(p) ,*,0 (i.e. pEZ*(di») for some i. Thus rank A(p)=r if and 
only if 

k 

pE U Z*(d;) = W. 
j= 1 

Hence W is open. 
We shall say rank A is constant on a subset U of Spec(D) if rank A(p) = 

rank A(q) for all p, qE U. 

(3.2) Lemma. Let AEDmxn' and suppose rank A is constant on a dense subset 
VofSpec(D). Suppose pEVand that the vector xI'ED(P)nx 1 satisfies A(p) xl'=O. 
Then there exists a neighborhood U of p and a vector xE(Du)nx 1 such that 
x(p)=xl' and Ax=O. 

Proof. Let W be the open set of lemma 3.1 on which rank A is maximal. 
Since an open set and a dense set have a non-empty intersection, V 1\ W '*' c[J; 

whence rank A(p) = rank A = r on V. There exists therefore an r x r sub­
matrix A1 of rank r such that d=det A1 has d(p) ,*,0. 

We may suppose that A1 is the leading r x 'r submatrix of A, and let B 
be the leading (r+1)x(r+l) submatrix of A. For i=l, ... ,r+1let xl be 
the cofactor of ar+ 1, j in B, and put xl =0, i=r+ 2, ... , n. If Xl =(xL ... , X~)E 
Dnx1' then AX1=0 and Xf+1=±d. Similarly there exist X2, ... ,xn-rEDnx1 
for which AXi=O and X~+i= ±d, but xj=O, j ,*,i, j=r+ 1, ... , n. Since 
d(p) ,*,0, the vectors Xl (p), ... , Xn-r(p)ED(P)nx1 are linearly independent, and 
as rank A(p)=r, there must exist cjED(p), i=l, ... , n-r, such that 

n-r 
xl'= LC;xi(P). 

1 

Choose cjEDI' so that cj(p)=c j, and put 

Then Ax=O and x(p)=xl" 

Finally, since cjEDI" we can write cj=c[jdj, where c[, djED, dj¢p. Let 
then U be the neighborhood of p consisting of all primes in Spec (D) which 
do not contain the set {d1, ... , dn- r}. Then xE(Du)nx l' 

(3.3) Let A be an n x n matrix with elements in a field, say AEKnxn. Let 
grEK[t] be the g.c.d. (greatest common divisor) of minors of order r of A-tl, 
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t an indeterminate. The invariant factors qr of A (really A - t l) are the quo­
tients qr= gn-r+l/gn-" r= 1, ... , n(go= 1). If Pr is the degree of q" then 
Pl ~P2 ~ ... ~Pn' and 

n 

L pi=n. 
i=l 

If B is similar to A over K, then it is known that the solution space for 
CEKnxn of AC-CB=O has dimension 

(3.4) -r(A)=-r=Pl +3P2+···+(2n-1)Pn=n+2(CT l +CT2 +"'+CTn-l), 

where 
n 

(3.5) CTr=deg gr= L Pi 
i=n-r+ 1 

(e.g. MACDUFFEE [4], p. 92, 93, GANTMACHER [2], p. 222). 
If A(p)ED(p), denote the corresponding quantities by Pr(P), CTr(p), -r(p). 

We shall say that -r is constant on U£Spec(D) if for all p, qEU, -r(p)=-r(q). 
(3.6) Theorem. (Generalization of Wasow's Theorem) Let A, BEDnxn and 
let V be a dense subset of Spec (D). Suppose that for the matrix A, -r(A) defined 
by 3.4 is constant on V. If A is pointwise similar to B on V, and if PE V, then 
there exists a neighborhood U of p such that A is similar to B on U. 

Proof. If XEDnxn , the linear transformation L: X -+AX -XB over D may 
be identified with a suitable matrix representative in Dn2 Xn2. For qE V the 
nullspace of L(q) has dimension -r(q) given by 3.4. By assumption there exists 
a non-singular CI'ED(P)nxn such that ACI'-CI'B=O. Hence applying Lemma 
3.2 to the matrix representative for L, there exists a neighborhood W of p 
and a CE(DW)nxn such that C(p) = CI" and AC- CB=O. Since d=det CEDw, 
d=b- 1a where a, bED and b is a unit in Dw. Let U= WnZ*(a). Then U 
is a neighborhood of p because d(p) =1=0; and also Dw c Du , and d is unit of 
Du. Thus, C is invertible in (Du\ x n; and hence B is similar to A· on U. 

(3.7) Remark. If D is a principal ideal domain, a non-empty subset U of 
Spec(D) is open if and only if OEU and Spec(D)- U is finite. The set U 
is dense if and only if either OE U or U is infinite. 
(3.8) Example. We shall show that in Theorem 3.6 the neighborhood U 
might well be smaller than V. Let D be the ring of integers, and let 

A=[~ ~J. B=[~ ~l 
Then A and B have the same invariant factors, namely t 2 

- 5 t and 1; so if 
V=Spec(D), then A is pointwise similar to B on V, and -r=2 on V. Also, 
Dv=D. But if C=(Cij)ED2X2 is such that B=CAC-l, then by direct com­
putation C21 =0, (a): cll + 5c12 = 2C22, and Cll C22 = ±1. Multiplying (a) by 
(cll) we obtain cil == ±2 (mod 5), and since this congruence has no solution, 
A cannot be similar to B on V. However, V can be covered by the neighbor­
hoods U1 =Z*(3) and U2 =Z*(5), on which A is similar to B via the respective 

f --- -­
! 

I 
; 
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4. Ostrowski's criterion 

As before, let D be an integral domain with quotient field K. We shall 
say that the element bED is a greatest common divisor (g.c.d.) in D of a1, •.• , as, 
a;ED, if (b)=(a1, ••• , as). Here 

s 

(al' ... ,aJ is the ideal I a; D . 
;=1 

It follows immediately that such a b is also a g.c.d. in D' of a1 , •• • , as for 
any domain D' 2-D. 

(4.1) Proposition. Let D be an integral domain with quotient field K, and 
suppose D is integrally closed. Let f, g be monic polynomials in the polynomial 
rings D [t], K[t] respectively. Then glf in K[t] implies gED [t]. 

Proof. ZARISKI-SAMUEL [6], p.260, thm. 5. 
(4.2) Lemma. Let R, R' be commutative rings with identity, let R <;;;. R' and 
f,gER[t]. Iff=ghfor some hER'[t] and if the leading coefficient of g is a 
unit in R, then hER [t]. 

Proof. Compare coefficients. 
(4.3) Theorem. Let K be the quotient field of an integral domain D. Let 
fl' .. ·'/nED[t], and let go be their unique monic g.c.d. in K[t]. Let gp be a 
g.c.d. oP) fl(p), ... '/n(P), in D(p)[t]. If fl is monic, then deggo~deggp. 

Proof. Let Dl be the integral closure of D. By4.1, goEDl [t]; and moreover 
by 4.2, go Ifi in Dl [t]. There exists a prime ideal Pl of Dl such that Pl nD=p 
([6], p. 257, Theorem 3), and then D(p) may be identified with a subfield of 
D 1 (Pl)' Sincegp is a g.c.d. offl(p), ... '/n(P) in D(p)[t],gp is also their g.c.d. 
in Dl (Pl) [t]. But go Ifi in Ddt] implies that go (Pl) Ifi(Pl) in Dl (Pl) [t]. There­
fore go(Pl)lgp in D1(Pl)[t]. Thus, deggp~deggo(pl)' Since go is monic, 
deggo=deggo(Pl); and hence we are done. 
(4.4) Lemma. Letfl' ... '/nED[t], and let gp be the monic g.c.d. offl(p), ... , 
fn(P) in D(p)[t]. Then there exists a neighborhood U of ° such that goEDu [t] 
is a g.c.d. of fl' ... '/n in Du [t]. Moreover, then for all pE U, go(p)=gp and 
deggo=deggp. 

Proof. The polynomial go is the monic g.c.d. offl' ... '/n inK[t], Kbeing 
the quotient field of D. Therefore there exists an aED such that 

gO=(al fl + ... +anfn)/a, a;ED; 

h=(h;go)/a, h;ED[tJ, i=l, ... ,n. 

Let U=Z*(a), and then U has the required properties. 

1) We recall that according to section 2, for any P ESpec(D), I;(p) is the image of Ii 
under the canonical homomorphism Dp [tl~(Dp/p Dp) [tl. 
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The next theorem, coupled with Theorem 3.6, gives the second criterion 
for similarity. 

(4.5) Theorem. (Generalization of Ostrowski's theorem.) Let AEDnxn, and 
let Prep), r= 1, ... , n be the degrees of the invariantfactors of A (p), pESpec(D), 
arranged in descending order. Let -r and u" r=O, ... , n be given by (3.4) and 
(3.5). If P E Spec (D), then the following are equivalent: 

(4.6) ur(p)=ur(O), r=l, ... ,n. 

(4.7) Pr(P)=Pr(O), r=l, ... ,n. 

(4.8) There exists a dense set Vr containing P such that p" r= 1, ... , n, is 
constant on Vr. 

(4.9) There exists a dense set V containing lJ on which -r is constant. 

(4.10) -r is minimal at p. 

Proof. The leading coefficient of each principal minor of A - t I is a unit. 
Hence Theorem 4.3 and Lemma 4.4 apply: 

(4.11) Ur(q)~Ur(O), if qESpec(D). 

(4.12) There exists a neighborhood Wr of 0 such that ur(q)=ur(O), if qE Wr. 
n 

Let W = n fY,., a neighborhood of (0). 
r=l 

(4.6) implies (4.7), (4.8), (4.9) and (4.10). Set Vr=fY,.u(p) in (4.8) and V= 
Wu(p) in (4.9). The results are now immediate consequences of (4.11) and 
(4.12). 

(4.8) implies (4.7). Since Vr is dense and W is open, there exists qrE Vr II W. 
Thus 

Pr(P)= Pr(qr) = Un-r+ l(qr) - Un-r(qr) = Un- r+ 1(0)-Un-r(O)= Pr(O). 

(4.9) implies (4.6). Again there exists qEVII Wand -r(p)=-r(q)=-r(O) and 
hence by (3.4) and (4.11) ur(p)=ur(O), r=l, ... ,n. 

(4.10) implies (4.6). Apply 4.11 and 3.4. 
(4.13) Corollary. The set U of pESpec(D)for which anyone of the equivalent 
conditions of Theorem 4.5 holds is open. 

Proof. The set on which -r is minimal is open. For, by definition -rep) 
is the dimension of the null space of a certain linear transformation and 
hence is minimal where the rank of this transformation is maximal. But by 
Lemma 3.1 this is an open set. 

5. Holomorphic rings of functions on a topological space 

In this section we shall apply the results of Section 3 to rings of functions; 
and in particular, we shall explicitly show how WASOW'S original theorem 
for functions of a complex variable follows from our generalization (3.6) of 
his theorem. 
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If X is a topological space, and S r;;. X then x is an accumulation point 
of S if every neighborhood N of x has non-empty intersection with S-x. 

(5.1) Definition. Let X be a topological space and let H be a ring (with 
identity) of functions defined on X and taking values in a field K. Then we 
shall call H a holomorphic ring if for every fE H,f ,*0, the set of zeros of f 
does not have an accumulation point in X. 

(5.2) Remark. If X is an open, connected subset of the complex plane, then 
the ring of functions holomorphic on X is a holomorphic ring (see, for example, 
AHLFORS [1], p. 102; and, of course, the motivation for the definition 5.1 
comes from this example. In this special case the field K is the complex field.) 
We shall denote this particular holomorphic ring by H(X). 

If x E X, define 
(5.3) Vx={JEH :f(x)=O}. 

Since K is a field, Px is a prime ideal of the holomorphic ring H. We therefore 
have a map 
(5.4) a: X--+Vx 

of X onto a subset of Spec(H) (which need not be 1-1). Taking Spec(H), 
as usual, to be endowed with the Zariski topology, a(X) then also becomes a 
topological space under the relative topology induced by that of Spec (H). 

If pr;;.Spec(H), then the closure P of P in Spec(H) is known to be (GRO­

THENDIECK [3], p. 81) 
(5.5) p=Z(nV), VEP. 

Thus, for any subset S of X, VEa(S) if and only if every fEH which vanishes 
on S is also in V. 

(5.6) Proposition. Let H be a holomorphic ring on X, and let V be a subset 
of X such that V has an accumulation point in X. Then a (V) is dense in Spec (H). 

Proof. IffEH andfvanishes on V, thenf=O by definition 5.1. Therefore, 
by the above remarks, VEa(V) for all VESpec(H). 
(5.7) Proposition. Let H be a holomorphic ring on X. Then the map a of 
5.4 is continuous. 

Proof. Suppose T is a closed subset of a(X) [the topology of a(X) being 
that induced by the topology of Spec(H)], and let S=a- 1 (T) . We must see 
that S is closed in X. If S has no accumulation point in X, this is immediate. 
If S does have an accumulation point, then a(S)=T is dense in Spec(H) 
by proposition 5.6, and hence is also dense in a(X). Therefore in this case, 
a(X)=T, and S=X. Thus, S is again closed. 
(5.8) Proposition. Let X be a topological space such that no point of X is 
open, and let H be a holomorphic ring on X. Then H is an integral domain. 

Proof. Letf,*O, g,*O be elements of H. For any XEX, by definition 5.1 
there exists a neighborhood N of x such that f and g are non-zero on N - x. 
Since x is not itself open, N-x,*iP. Hence if YEN-x, f(y) ,*0 and g(y) ,*0. 
Thus, fey) . g(y) ,*0 and f . g ,*0. 
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We shall assume throughout the rest of this paper that the holomorphic 
ring H is an integral domain, and to be explicit we shall call H a holomorphic 
integral domain. An example is given by the following: Let X be a topological 
space with an infinity of points in which all points are closed, and let H con­
sist of all functions of X into a field K with a finite number of zeros in X. 
Then H is a holomorphic integral domain. 

(5.9) Proposition. Let H be a holomorphic integral domain on X, and let V 
be a subset of X with an accumulation point in X. Then Hu(v) (as defined in 
2.2) is isomorphic to a holomorphic integral domain on V, which will be denoted 
by Hv. 

Proof. For any r:t.EHu(v), there existf,gEH such that r:t.=ffg and g¢uVx, 
XE V. Let r:t. correspond to the function r:t.(x)=f(x)fg(x), XE V. This correspond­
ence is evidently a homomorphism. If r:t.(x)=O for all XE V, thenf(x)=O for 
all XEV. Therefore, by definition 5.1,/=0, and hence r:t.=ffg=O. Thus, the 
correspondence is an isomorphism; and one now checks easily that the result­
ing function ring Hv satisfies definition 5.1. 

(5.10) Fixing an XEX, the map 'Lx:f-+f(x) is a homomorphism of H into K 
having kernel Vx. The image 'Lx (H) is then an integral domain whose quotient 
field in K is naturally isomorphic to H(Vx) (see 2.2). If we identify correspond­
ing quantities under this isomorphism, we may write f(x) = f(vx> [where f(vx> 
is defined in 2.2]. Thus, for instance, to say that a functionf is constant on a 
subset S of X is equivalent to sayingf is constant on u(S). If H contains all 
the constant functions of X into K, then 'Lx maps H onto K. Hence, in this 
case H(Vx) ~K, for all XEX. 

(5.11) Let H again be a holomorphic integral domain on X, let S be a subset 
of X, and let A, B be matrices in Hnxn. We can extend definitions 2.4 and 
2.6 in the following way: The matrix A is similar to B on S if A is similar to 
B on u(S). If S has an accumulation point, it follows from proposition 5.9, 
that A is similar to B on S if and only if there exists an invertible matrix C 
in (Hv)n xn such that B(x) = C- 1(x) A(x) C(x), for all XE V. The matrix A 
is called pointwise similar to B on S, if A is pointwise similar to B on u(S). 
In the special case when H contains all constant functions, it follows from the 
last sentence in 5.10 that A is pointwise similar to B on S if and only if for 
each XES there exists a non-singular CxEKnxn, such that B(X)=C;l A(x) Cx. 
We have now restated our principal definitions for rings of functions and, 
thus, we can now give a function ring version of Theorem 3.6. As a corollary 
we obtain W ASOW'S original statement of the theorem for functions of a 
complex variable. 

(5.12) Theorem (analogue of 3.6). Let H be a holomorphic integral domain 
on X. Let A, BEHnxn, and let V be a subset of X with an accumulation point 
in X. Suppose that for the matrix A, 'L<A > defined by 3.4 is constant on V. 
If A is pointwise similar to B on V, and if XE V, then there exists a neighborhood 
U of x such that A is similar to B on U. 
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Proof. By proposition 5.6, u(V) is dense in Spec(H). Keeping in mind 
the definitions of 5.11 and applying theorem 3.6, there exists a neighborhood 
U' of :p" such that A is similar to B on U'. By proposition 5.7, the map u 
of 5.4 is continuous, whence U=u- 1(U') is an open subset of X and hence 
is the required neighborhood. 
(5.13) Corollary (Wasow's original theorem). Let H(X) be the ring of func­
tions holomorphic on a connected neighborhood X of Xo in the complex plane, 
and let A, BEH(X)nxn' Suppose that for the matrix A, .. (A) is constant on 
a neighborhood V of Xo. If A is pointwise similar to B on V (in the sense of 1.1) 
then there exists a neighborhood U of Xo such that A is holomorphically similar 
to B on U (again in the sense of 1.1). 

Proof. By 5.8 the ring H(X) is an integral domain. Since H(X) contains 
all constant functions of X into the complex field K, the definitions of 1.1 
and 5.11 of pointwise similarity coincide in this case. Since the open set U 
has a point of accumulation, similarity on U in the sense of 5.11 will imply 
holomorphic similarity in the sense of 1.1, provided we can show that 
H(X)u £. H( U), the ring of all functions holomorphic on U. But if f, g are 
holomorphic on X, and g has no zeros on U, then the function defined by 
fl g is holomorphic on U, and the required inclusion follows. 

The corollary now follows from Theorem 5.12. 
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