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I. INTRODUCTION 

la. The inertia of an n Xn matrix A with complex elements is defined 
to be the integer triple In A = (7T(A), v(A), S(A», where 7T(A) {v(A)} is the 
number of eigenvalues of A in the open right {left} half-plane, and S(A) is 
the number of eigenvalues on the imaginary axis. The best-known classical 
theorem on inertias is that of Sylvester [I, I p. 296; 2], which may be stated 
as: 

If P > 0 (positive definite), and H is Hermitian, then In PH = In H. 
Lyapunov's theorem [3, p. 245; I, II p. 187; 4, 5] is less well-known: 

For a given A, there exists an H > 0 such that 

~(AH) = t(AH + HA*) > 0 

if and only if In A = (n, 0, 0). 

Both classical theorems are contained in a generalization due to Taussky [6] 
and to Ostrowski and Schneider [7], which we shaH call the 

MAIN INERTIA THEOREM. For a given A, there exists a Hermitian H such 
that ~(AH) > 0 If and only if S(A) = O. If ~(AH) > 0, then In A = In H. 

1 b. In this paper we shall discuss the situation when we require only that 
~(AH) ~ 0 (positive semidefinite). In this case the relation of In H to In A 
may be very complex and we shaH here, in Section 2, solve the problem only 
in two special cases; first, under the assumption 

(1.1) All elementary divisors of imaginary roots (if any) of A are linear, 
and second when A consists of just one Jordan block belonging to one ima
ginary root. 

* The research of the authors was supported by the National Science Foundation 
under Grant No. NSF G-19052 and by the Mathematics Research Center, United 
States Army, under Contract No. DA-ll-022-0RD-2059. 
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We deduce two general existence theorems from these special cases: 

COROLLARY II. 1. For any A, there exists a nonsingular H such that 
9t(AH) ~ O. 

COROLLARY III. 1. For given A, there exists an H > 0 for which 
9t(AH) ~ 0 if and only if (1.1) holds and v(A) = O. 
Corollary II. 1 was proved by Givens [8] for matrices satisfying (1.1). 

In Section 3, we discuss the relationships between the null-spaces .K(H) 
and .K(9t(AH)) and given subspaces.K of the (column) space on which 
these matrices act. Given a matrix A and subspace .K of the space of all 
columns, Theorem V gives a necessary and sufficient condition for the 
existence of an H such that 9t(AH) ~ 0 and .K(9i(AH)) =.K(H) =.K. In 
this case, In H :S In A. Here we define 

In B :S In A : 7T(B) :S 7T(A), v(B) :S v(A). 

This is a generalization of the Main Theorem, which is obtained from Theo
rem V by setting .K = (0). Again, given a matrix A and subspace .K, 
Thenem VI answers the question: when does .K(9i(AH)) 2 .K imply that 
.K(H) 2 .K. This theorem generalizes the well-known result that 9l(AH) = 0 
implies that H = 0 if and only if ai + a; i= 0 for all pairs of eigenvalues 
ai, a; of A. 

A matrix A is called H-stable if, for each Hermitian H, In AH = (n, 0, 0) 
if and only if H > 0 (cf. [7]). In [7], a necessary and sufficient condition was 
found for H-stability, but this was of the nature of an existence theorem. 
In Section 4 we provide an effective test for H-stability. Necessary conditions 
include that A be nonsingular, and 9t(A) ~ O. Under these assumptions, 
we may determine H-stability by block-diagonalizing 9l(A) by a (complex) 
congruence transformation and examining the effect of this particular 
transformation on f(A) = (1 /2i) (A - A*). 

Throughout our paper, we will assume that all matrices are n X n with 
complex elements, and matrices denoted by Hand K are Hermitian. All 
triples w = (7T, v, S) will have nonnegative integers as elements, and satisfy 
7T + II + S = n, the order of A. We shall call such triples inertia triples. 

II. THE GENERAL INERTIA PROBLEM UNDER SPECIAL ASSUMPTIONS 

2a. If .'Jl(AH) ~ 0 and B = SAS-l, K = SHS*, then 

9t(BK) = S91(AH) S* ~ 0, 
and 

In A = In B, In H = InK, and In 9i(AH) = In 9t(BK). 
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Thus we may often replace A by a matrix B similar to A, and H by a matrix 
K (complex) congruent to H. In particular, in proving many results it is 
convenient to assume that A is in some variant of the Jordan canonical form. 

An inequality obtained in this section, which relates the inertias {or ranks} 
of matrices A and H, will be said to be "best possible" if it satisfies the follow
ing: For a given A satisfying the conditions of the theorem, and any given 
inertia triple w {or, nonnegative integer r} satisfying the particular inequality, 
there exists a Hermitian H for which In H = w {or, rank H = r} satisfying 
the conditions of the theorem. As an example, see Lemma I. 

2b. LEMMA 1. Let A be a matrix with 8(A) = o. If H is Hermitian and 
9t(AH) ~ 0, then In H S In A. This inequality is best possible, i.e., for any 
inertia triple w S In A there exists an H for which In H = wand 9t(AH) ~ o. 

PROOF. By the Main Inertia Theorem, there exists a Hermitian HI such 
that 9t(AHl) > 0, and In HI = In A. Set H t = H + tHI • For all t > 0, 
9t(AHt ) = 9l(AH) + t9l(AH1) > 0, whence, again by the Main Theorem, 
In H t = In A. By the continuity of the eigenvalues of H t as functions of t, 
we must have In H S In A. 

To prove the "best possible" part of the lemma, let w = (17, v, 8) be an 
inertia triple for which w S In A. By the remark at the beginning of this 
section we may (as in the proof of the Main Theorem in [7]), assume A to be 
in the form 

I 

A = k (B (>'Ji + £Vi), 
.=1 

where Vi is a matrix with ones in the first superdiagonal and zeros elsewhere, 
and £ is any positive number. Let H = ~!-l (B Ii, where 

o 
o 

o 
has ji ones on the diagonal, and 
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It is easily verified that 9l(AH) :c 0 for sufficiently small €, that rank 
9l(AH) = 11' + v, and that In H = w. This completes the proof. 

THEOREM I. Let A be a given tIUltrix for which all elementary divisors of 
imaginary eigenvalues are linear. If H is a Hermitian tIUltrix for which 

9l(AH) :c 0, then 

IT(H) ~ IT(A) + S(A), v(H) ~ v(A) + S(A) (2.1) 

and also we have 

rank 9l(AH) ~ TT(A) + v(A). (2.2) 

If equality holds in (2.2), then (2.1) can be strengthened to 

IT(A) ~ TT(H) ~ TT(A) + S(A), v(A) ~ v(H) ~ v(A) + S(A), (2.3) 

Inequalities (2.1), (2.2) and (2.3) are each best possible. 
We shall use in this theorem and others the well-known result that all 

principal minors of H :c 0 are nonnegative; thus if hit = 0, then h,; = h;, = 0 
for allj =1= i; or if Hit = 0, then H,; = H;, = 0 for any partitioning of H. 

PROOF OF THEOREM I. Since the elementary divisors of imaginary eigen
values are linear, we may suppose that 

A = (i EB AJ,) EB A QQ , 

.-1 
where the Ai are distinct and imaginary and 8(Aqq) = 0. Let H and 9l(AH) 
be partitioned conformably with A. Then, for 1 ~ i ~ q - I, 

9l(AH)/i = t (A,Hii - AiH/j) = 0, 

and thus, since 9l(AH) :c 0, 9l(AH),; = 0 for all distinct i, j. But for 
1 ~j ~ q - I and j < is q, 9l(AH),; = l (A .. - ~I,) HI;, and as 
AH - A;I, is nonsingular, we must have H,; = H;; = O. Thus we have 

(2.4) 

and 
(2.5) 

We note that (2.5) immediately yields (2.2), as order Aqq = TT(A) + v(A). 
Since S(Aqq) = 0, and 9l(Aq,/l qq) ~ 0, we may apply Lemma 1 and obtain 
that In H qq ~ In A qq. From (2.4) and order CE::: EB Hit) = 8(A), we deduce 
that (2.1) holds. 



434 CARLSON AND SCHNEIDER 

If equality holds in (2.2), then clearly, fJi(AqqHqq) > 0, by (2.5), and by 
the Main Theorem, In Hqq = In A qq. Now (2.3) is obvious. 

We shall prove that (2.1) is best possible. (Proofs for (2.2) and (2.3) are 
similar.) Let w = (1T, v, 8) be an inertia triple for which 

1T ::;: 1T(A) + 8(A), v ::;: v(A) + 8(A). 

We may write 1T = 1T1 + 1T2, V = VI + V2 where 1T2 ::;: 1T(A), V2 ::;: v(A). By 
Lemma I, there is an Hqq for which fJi(AqqHqq) :z 0, and 1T(Hqq) = 1T2, 
v(Hqq) = v2. Since, for i < q, fJi(AiiHii) = 0 for any Hii, we choose 
Ho = ~~:: Hii as a diagonal matrix so that 1T(Ho) = 1T1, v(Ho) = VI and then 
for H = Ho EB H qq, In H = wand fJi(AH):z o. 

2c. Our next theorem concerns a matrix consisting of a single Jordan 
block A = AI + U. where A is imaginary, and U is the matrix with ones on 
the first superdiagonal and zeros elsewhere (if A has order I, we take U = 0). 

THEOREM II. Let A = AI + U. If H is a Hermitian matrix for which 
K = fJi(AH) :z 0, and if rank H = r, rank K = s, then 

2s ::;: r 

11T(H) - v(H) I ::;: I 

hij = 0 

kii = i(hi.i+1 + hi+l,i); 

where hi,n+l = hn+l. j = O. 

if i+j>r+1 

kij = 0 if i > r/2 or j > r/2, 

These inequalities are best possible in the following strong sense,' 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

Given integers r, s, 0 ::;: 2s ::;: r ::;: n and an inertia triple w = (1T, v, 8) for 
which 1T + v = rand 11T - v I ::;: I, there exists an H for which fJi(AH) :z 0, 
s = rank fJi(AH), and w = In H. 

To make clear the meaning of conditions (2.8) and (2.9) we shall represent 
by Fig. I the most general Hand K satisfying (2.8) and (2.9). Matrices 
of even and odd order differ slightly and therefore we shall illustrate both the 
<:ase n = 5 and n = 6. Below, . represents a 0 element, x an element not 
necessarily 0, and x - x indicates that the sum of the two linked elements is O. 

In the proof of theorem II we shall use a theorem of Cauchy's on the 
separation of eigenvalues of a Hermitian matrix by the eigenvalues of a 
principal minor ([9; 10, p. 75; 11, p. 75]). Thus let H be Hermitian of order n 
and let L be a sub matrix of order n - m. If the eigenvalues of Hand L are 
ordered in magnitude: 

A1(H) > A2(H) > ... > An(H) 

then 

and 

i = 1, "', n - m. 
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H 9l(AH) 

n=5 

[

X X X/X/Xl 
x x x x . 

/ 
x x x . & 

/ / 
x x • . . 

/ 
X •• • 

[: : 1 
X X X X X x x x x 

/ / 
x x X X x X X X 

/ 
x x x x x X X 

n = 6 )( x X 

/ / 
X x 

/ 
X 

FIG. 

We shall also note that if r = 2r', then (2.9) asserts that 7T(H) = v(H) = r', 
while if r = 2r' + 1 then one of rr(H), v(H) is r' and the other r' + 1. 

PROOF OF THEOREM II. We first note that 

K = 9l(AH) = t ()"H + UH - )"H + HU*) = &f( UH). 

To avoid "boundary problems" we define the infinite matrices 

U' = (u/;), i, j = 1,2, ... 

and 

i, j = 1,2, .. , 

by 

by 

\U •• I+1 = 1 
I Ut.; = 0 otherwise 

\ h;j = hit, i :;;; n, j :;;; n 
I h;; = 0 otherwise 

Then K' = 9l( U' H') = 9l( U H) O. We shall prove the theorem for H' and 
K ' , while for convenience we write H for H', K for K'. 

Our argument rests on the easily checked result: 

i, j = 1,2, .... (2.10) 

If H = 0, the theorem is trivial. We suppose then that H ::I 0, and let t be 
the largest integer for which there exists a nonzero hi; with i + j = t + 1. 
By (2.10), kit = 0 if i > t/2. Thus, as K ~ 0, and, using (2.10) again, we 
obtain 

if i > t/2, (2.11) 

This implies that s = rank K :;;; t/2. 

7 
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Also, by (2.11), 

hi; = (- I)t-1hn 

hi; = iiil = (- I)Hiitl 

for 

for 

i + j = t + 1, i > t/2. 

i + j = t + 1, j > t/2. 

Thus by our choice of t, htl =F 0, whence hi; =F 0 for all i, j with i + j = t + 1. 
From this we deduce that t ~ n, an9 r = rank H = t, and (2.6), (2.8), and 
(2.9) are proved. To prove (2.7) we shall apply the theorem of Cauchy we 
have quoted before the proof of this theorem to the matrix H and the prin
cipal submatrix 

(T + 1)/2 < i, j :::;;: n. 

Here L = (0) is of order 11 - m, where m = [(r + 1)/2], the integral part of 

(T + 1)/2. 
Thus, 

whence 
7r(H):::;;: m, v(H) ~ m. (2.12) 

But 
7r(H) + v(H) = T > 2m - 1, 

so that 
7r(H) 2 m - 1, v(H) > m-I (2.13) 

and now (2.12) and (2.13) yield (2.7). 
Suppose 0 :::;;: 2s ~ T ~ 11, and w = (1T, v, 0), with 1T + V = T and 

11T - v I :::;;: 1. We define an H for which BI(AH) ~ 0, s = rank BI(AH), 
and w = In H. For I ~ i ~ j :::;;: n we define hi; = iiil = (-I )'£1+;-1' where 

(_ I)t/I 

~I 
(- I)(t-1)/Z(v -1T) 

o 

if k is even and k ~ 2s, 

if k = T, T is even and T > 2s, 

if k = T and T is odd, 

otherwise. 

2d. COROLLARY II. 1. For any A, there emts a nonsingultu- H for which 

BI(AH) ~ O. 

PROOF. We may assume that 

(2.14) 
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where order AQq = 1T(A) + v(A), 8(AQq) = 0, and for i = 1, " ', q - 1, 

Ail = >'J. + V., 

order A ii = ai' and Ai is imaginary. By the Main Theorem, there exists an 
Hqq for which 9l(AqqHqq) > O. For i = 1, "', q - 1, we may find a non
singular Hii for which 9l(A/iHii) ~ ° by Theorem II. Certainly 

will satisfy the conditions of the theorem. 

COROLLARY II. 2. If 9l(AH) ~ 0, then 
1> 

rank fJt(AH) :s;: 1T(A) + v(A) + k [al/2] (2.15) 
i - I 

where ai, i = 1, "', p, are the degrees of the elementary divisors belonging to 
pure imaginary roots of A . The inequality (2.15) is best possible. 

PROOF. We assume that A is in the form (2.14), with P + 1 = q, and 
we partition H conformably. Since 9l(A"H,,) = 9l(AH)(( ~ 0, i = 1, "', p, 
by Theorem II . 9l(A/iH .. ) has at most [17./2] nonzero rows. Thus 9t(AH) has 
at most 1T(A) + v(A) + :E~_l [17,/2] nonzero rows; hence (2.15) is proved. 

That (2.15) is best possible is obvious from the best possible inequalities 
(2.2) and (2.6), using block diagonal H. 

2e. THEOREM III. Let A be given. If H20 and 9t(AH) ~ 0, then 

rank H:s;: 1T(A) + p(A), (2.16) 

where p(A) is the number of elementary divisors of imaginary roots of A. The 
inequality (2.16) is best possible for H 2 0. 

PROOF. We again assume that A is in form (2.14), and we partition H 
conformably. We note that both Hi/ 2 0 and 9t(Ai/H.,) 2 0, i = 1, " ', q. 
For i = 1, "', P = q - 1, this implies that rank H jj = 1, by (2.7). By 
Lemma 1, rank Hqq = 1T(H qq) :s;: 1T(Aqq) = 1T(A), as 8(Aqq) = 0. As p(A) = p, 
it follows that 

q 

~ rank Hij S n(A) + p(A). 
i-I 

We complete the proof by showing that 

Q 

rankH :s;: k rank HOi = r. 
i - I 

(2.17) 

(2.18) 



438 CARLSON AND SCHNEIDER 

As Hii ~ 0, i = 1, .", q, there exist unitary Uii such that U~HiiUii is diago
nal. We set U = ~~-1 $ Uii and note that U*HU has at most r nonzero 
diagonal elements, and hence, as u* HU ~ 0, at most r nonzero rows. This 
proves (2.18), and with (2.17), we have proved (2.16). 

That (2.16) is best possible is obvious from Lemma I, Theorem II, and 
Corollary II. 1. 

2f. COROLLARY III. I. Let A be given. There exists an H > 0 for which 
fJI(AH) ~ 0 if and only ifv(A) = 0 and (1.1) holds. 

PROOF. In general, p(A) ::;: 8(A); (l.l) is equivalent to P(A) = 8(A). 
It follows that 7T(A) + p(A) = n = 7T(A) + v(A) + 8(A) if and only if 
v(A) = 0 and (l.l) holds. The corollary now follows from Theorem III, 
the sufficiency following from the best possible property of (2.16). 

COROLLARY III. 2. If 9l(A) ;:;::: 0 and H > 0, then all elementary divisors 
of imaginary eigenvalues (if any) of AH are linear. In particular, this is true of 
A itself. 

PROOF. Let B = AH and K = H-l > 0, then A = BK and this corol
lary follows from Corollary III. I applied to Band K. 

For AI = A, this result is part of Theorem 2 of [7]. 

2g. We shall use Lemma 2 in Section III. It is interesting to compare 
Lemmas I and 2. 

LEMMA 2. Let A be any matrix and H be a nonsingular Hermitian matrix 
for which 9l(AH) ~ 0, then In A ::;: In H. If, in addition, 8(A) = 0, then 
InA = InH. 

PROOF. We let B = AH, K = H-l, and apply Corollary 4 to Theorem I 
of [7] to Band K. We have In A = In BK ::;: In K = In H-l = In H. 
(We see by the proof of Theorem I that this inequality is best possible if all 
elementary divisors of imaginary eigenvalues are linear.) The statement of 
equality when 8(A) = 0 follows from Lemma I, and what has already been 
proved. 

III. THE INERTIA PROBLEM WITH PRESCRIBED NULLSPACES 

3a. Letil'" be a subspace of "r (the n-dimensional space of all columns); 
thenil'".L = {y :y*x = 0 for all x inil'"}. We may find an orthonormal basis 
"1> ... , u.. of "Y .. so that "1> ... , " .. is a basis of iI'".L and U"+1' ••• , u.. is a basis 
of iI'". Let U = [ul , ..• , un], a unitary matrix. For any matrix B, B' = U*BU 
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with respect to the basis U1, ••. , u.,. is the same transformation as B with respect 
to the usual basis e1, " ' , en' It is clear that in the proofs below we may simul
taneously replace all matrices B by U* B U, and then if'" -L is spanned by the 
first T unit vectors and if'" the last n - T unit vectors. 

We will say that B is in form (3.1) with respect toif'" when we have replaced 
B by B' = U*BU, and partitioned B (actually B' ) in the following way: 

B = [Bn Bl2] , 
B21 B22 

where Bll = [b;j], I s: i, j s: T, etc. (3.1 ) 

We will, in several proofs, let if'" =.%(B), where.%(B)is the nuUspace of B. 
Then for B in form (3.1), we have 

B = [Bll 0) , 
Bn 0 

(3.2) 

where the rank of [~~] is full. If B is Hermitian, then also B2l = 0, and Bn 

is nonsingular. For B in form (3.2), .%(B) s .%(C) is equivalent to C12 = 0 
and C22 = O. 

In other proofs, B will map a subspace if'" -L into itself: Bif'" -L s if'" -L; then 
we shall use (B Iif'"-L) to denote the restriction of B toif'"-L. When B is in 
form (3.1) with respect to if'", Bif'" -L r:;; if'" -L is equivalent to B2l = 0, and to 
B*if'" S 1(/" and then (B I if'" -L) = Bn, (B* Iif'") = B22. Thus 

In B = In Bn + In B22 = In (B \ if'" -L) + In (B* \ jII~), (3.3) 

since In B22 = In B~. 
It seems preferable to us to state our theorems in terms of subspaces, 

thus avoiding the dilemma of either constantly referring to unitary similarity 
transformations or else restricting ourselves to special cases. In the proofs, 
however, we shall usually go to a pure matrix form of our theorems. 

For example, Theorem IV below is equivalent to: 
If 9l(AH) 20 and H = Hn $ 0, Hn nonsingular, then for conformably 

partitioned A, 

9l(AH) = 9l(AnHn) ffi 0 
A2l =0 

In An :-:;; In H. 

This is the form of the proposition we shall prove. 

(3.4) 
(3.5) 
(3.6) 

Our definition of In A :-:;; In B will be carried over to the case where A 
and B are square matrices of perhaps different orders. For such matrices 
we define 

and 
In A :-:;; In B 

In A = In B 

if 

if 

1T(A) :-:;; v(A), 

1T(A) = 7T(B), 

v(B) ~ v(B). 

v(A) = v(B). 
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3b. THEOREM IV. If 9l(AH) ~ 0 then 

%(91(AH)) 2 %(H), (3.4) 

and 
A%(H).1. s:; %(H).1., (3.5) 

In (A 1%(H).1.) s: In H. (3.6) 

PROOF. We may assume that all matrices are in form (3.1) with respect 
to%(H); thus H = Hll ffi 0, where Hn is nonsingular. Then 

so, since fJt(AH) ~ 0, A21Hll = 0 and A2l = 0 follows. Thus (3.5) is proved. 
For (3.4) we simply note that 9l(AH) = fJt(AnHn) ffi 0, and to prove 

(3.6) we note that 9l(AUHll) ~ 0, whence, by Lemma 2, 

In Au s: In Hu = In H. 

We remark that (3.4) is also a consequence of the following easily-proved 
assertions (with B = AH): 

%(AH)2 %(H), 

% (fJt(B)) 2 %(B), if 9t(B) > O. 

The first corollary generalizes Lemma 2. 

(3.7) 

(3.8) 

COROLLARY IV. I. If 9t(AH) ~ 0 and In (A* I%(H)) = (0, 0, S), then 
In A = In (A /%(H).1.) s: In H. 

PROOF. The proof follows immediately from (3.3) (with "/I' =%(H)) and 
Theorem IV. 

COROLLARY IV. 2. If Bt(AH) ~ 0 and rank A = rank fJt(AH), then 
In A = In (A 1%(H).1-) s: In H. 

PROOF. We may assume H = Hll ffi ° and AZI = O. Then, using (3.8), 
rank A ~ rank All ~ rank AllHn ~ rank 9t(AnHll) = rank £Ji(AH), and 
by our hypotheses we must have equality throughout. Rank A = rank All 
implies that A22 = 0, and hence In (A* I%(H)) = (0, 0, S). We apply 
Corollary IV. 1 to complete the proof. 

The following lemma reduces to Lemma 1 when %(H) = O. 

LEMMA 3. Suppose that £Ji(AH) ~ 0 and S(A 1%(H).1.) = O. Then 
In H = In (A /%(H).1.) s: In A. 



INERTIA THEOREMS FOR MATRICES 441 

PROOF. We assume as usual that H = Hu E9 0, with H11 nonsingular. 
Then 

As Hu is nonsingular and 

we must have 

In H = In Hu = In (A 1%(H)-1-) s In A, 

by Lemma 2. 

THEOREM V. (Generalization of the Main Inertia Theorem). Let A be a 
given matrix and % a given subspace. There exists a Hermitian H such that 

fJt(AH) > 0 
and 

%(fJt(AH)) =%(H) =.¥ 
if and only if 

If (3.9) and (3.10) hold, then 

In H = In (A I%.L) sIn A. 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

PROOF. Suppose that (3.11) and (3.12) hold. We may assume that A 
is in form (3.1) with respect to %; then An = 0 and 3(Au) = O. By the 
Main Theorem, there exists a nonsingular H11 such that fJt(AUHll) > O. 
Let H = Hu E9 O. Then fJt(AH) = fJt(AllHll) E9 0 ~ 0, and, as both 
fJt(AllHu) and H11 are nonsingular, (3.9) and (3.10) hold. 

Conversely, suppose we are given matrices A and H satisfying (3.9) and 
(3.10). Setting H = HIl E9 0, where Hn is nonsingular, we see that (3.11) 
is part of Theorem IV. Also fJt(AuHu) = fJt(AH)n 2: O. By (3.10), fJt(AH)n 
is nonsingular; hence 3(Au) = 0 by the Main Theorem. This is (3.12). 

If (3.9) and (3.10) hold, then we have proved (3.12). By Lemma 3, 

In H = In (A I%.L) :s In A. 

COROLLARY V. l. If fJt(AH) "2 0 and rank fJt(AH) = rank H, then 

In H = In (A I%(H).L) :S In A. 

PROOF. By Theorem IV, %(fJt(AH)) =%(H). The result follows from 
Theorem V. 
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COROLLARY V. 2. If gt(AH) ~ 0 and 

rank 91(AH) = rank H = 11(A) + v(A), 

then In H = In A. 

PROOF. Assuming that H = H11 9 0, we have Au = 0 and 
gt(AllHll ) > O. We must have 8(A11) = 0, and by our hypothesis, 

rank H = rank H11 = 11(A11 ) + v(All) = 11(A) + v(A). 

Then In H = In H11 = In An = In A, and the proof is completed. 

3d. In Theorem V we found necessary and sufficient conditions for the 
existence of a K for which 9l(AK) 2': 0 and % =%(K) =%(91(AK», 
% being given. Now we shall attack the following problem. Suppose there is 
one K satisfying these conditions. By Theorem IV we know that for every H 
with 9l(AH) 2': 0 and %(91(AH) =% we have %(H)S;; %. Under what 
conditions can we conclude that%(H) =% for all such H. 

If A and B are square matrices of order nand p respectively, we shall 
denote by T(A, B) the produce 1t{a; + {Ji) over all pairs of eigenvalues of A 
and B . . 

We shall write l T(A) = T(A, A*). If A is an empty matrix (i.e., operator 
or a O-dimensional space) consistency conditions connected with direct sums 
of matrices force us to put T(A, B) = I, and this is in conformity with the 
usual convention that the empty product is 1. 

We remark that in the next theorem we have omitted the usual hypothesis 
that gt(AH) ~ o. 

3e. THEOREM VI. Let f be a subspace of "Y and A a matrix for which 
Af.Ls;;%.L. If 

T(A If~, A* If) T(A* 1%) =1= 0, 

thenf(91(AH»;2f.L implies thatf(H);2N. ComJeTsely, if 

T(A I%~, A* 1%) T(A* 1%) = 0, 

then there exists an H such that %(&f(AH»;2 %, but %(H);\2 %. 

(3.13) 

(3.14) 

We remark that if f = "Y in Theorem VI then (A I%.L) is an empty 
matrix, whence T(A 1%-1., A* 1%) T(A* 1%) = T(A*) = T(A). Thus in 
this case the theorem reduces to the /mown result that there exists a nonzero 
H such that 91(AH) = 0 if and only if T(A) = 0, [I, Vol. II, p. 225; 7]. This 
result will be used in the proof of theorem. 

1 In [7] ,0,(A) was written instead of T(A). 
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PROOF OF THEOREM VI. We assume A is (and all H are) in the form 
(3.1) with respect to.¥. Our assumptions on A now state that An = O. 
Suppose 

T(Aw A:z) T(A~) = T(A I.¥ol, A* I.¥) T(A* I.¥) =1= O. 

[ 

!Jt(AllHll + A 12HzI) ! (AllHI2 + H12A:2 + A 12H22)l 
9t(AH) = 

!(A22HU + H21Atl + H2~i2) !Jt(Azzll22) 

Now suppose that 

9t(A2,.H22) = 0, 

(.¥(9t(AH» 2 .¥). Since T(Az2) =1= 0, we obtain HZ2 = 0, whence 
l (AllH12 + H 12A 22) = 0, and so H12 = HZI = 0 by T(Aw A~ -=I- O. 
Hence H = Hu ED 0, or.¥(H)2'¥. 

Conversely, suppose that T(All' A:2) T(A:2) = O. We consider two cases. 

(0:) T(All' A:.) =1= O. In this case T(A:2) = 0, and there exists nonzero 
H22, such that 9t(A2zH22) = 0, and just because T(AUt A:2) =1= 0 there exists 

* HI2 such that AuHu + H1zA12 = - A 12H22· 

((3) T(A ll, A:2) = O. This time we set H22 = 0, and our condition now 
guarantees the existence of a nonzero H12 for which AllH12 + H12A:2 = O. 

In both cases, 9t(AH) = !Jt(AH)l1 ffi 0, while either H22 =1= 0 or H12 =1= O. 
Thus.¥(9t(AH»2'¥ but.¥(H)2'¥, and the theorem is proved. 

COROLLARY VI. 1. Let 9l(AH) 2. 0 and set % = %(9t(AH». If 
A.¥olS;:::.¥.1, and (3.13) holds, then%(9l(AH» ='%(H). 

PROOF. By Theorem IV, A%(H).L S %(H).L, and %(9t(AH»2 .¥(H) 
But as (3.13) holds, .¥(H)2 % =,¥(9t(AH». 

COROLLARY VI. 2. Let 9t(AK) 2. 0 and % =%(K) =.%(9t(AK». If 
(3.13) holds, then 9t(AH) 2. 0 and %(9t(AH» =% imply.¥ =.¥(H). 
ContJersely, if (3.14) holds, there exists an H such that 9t(AH) 2. 0 and 
'¥(9t(AH» =.% yet.¥(H) C.¥. 

(Here C means "properly contained in.") 

PROOF. From the assumptions of the corollary we deduce that 
A% .1 £; %.1. Hence Theorem VI applies, and therefore we deduce from (3.13) 
and%(9t(AH» =% that%(H)2 %. But, since 9t(AH) :2: 0, we also have 
.¥(9l(AH) 2 .¥(H), whence.¥ =%(H). 

Now suppose that (3.14) holds. We partition our matrices corresponding 
to%. As usual we may assume that K = Kll EB 0, where Kll is nonsingular, 
and 9t(AK) = 9t(AK)ll EB 0, where 9t(AK)ll > O. By Theorem VI, we 
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can find a Hermitian L such that either L12 i=- 0 or L22 i=- 0 (Y(L):;2 Af) 
with 9l(AL) = 9l(AL)n <3J 0 (Af(9l(AL)):;2 Af). Thus if £ > 0 is sufficiently 
small and H = K + £L then Hn is nonsingular (Af(H) ~ Af), and either 
H12 i=- 0 or H22 i=- 0 (Af(H):;2 Af, whenceAf(H) CAf), 

9l(AH)u = 9l(AK)u + £9l(AL)u > 0, 9l(AH) = 9l(AH)u ffi 0 

whence 9l(AH):;2 0 and Af(9l(AH)) =Af. The corollary is proved. 
As a final corollary to Theorem VI, we shall combine the results of Theo

rem V and of Corollary VI. 2, into a single statement. 

COROLLARY VI. 3. Let A be a matrix, Af a subspace of 1~. The following 
two sets of properties are equivalent. 

AfA.L~Af·L, 8(AIAfl.) =0, 

and 
T(A IAf1:, A* IAf) T(A* IAf) i= 0 (3.15) 

There exists a Hermitian H such that 9l(AH) :2: 0 and 
Af(9l(AH)) =Af, and for every such H, Af =Af(H). (3.16) 

IV. AN EFFECTIVE TEST FOR H-STABILITY 

4a. By examining Theorem 2 of [7] and the proof of Theorem 4 of [7], 
it is easy to see that Theorem 4 of [7] may be restated in a somewhat more 
precise form. We call this the 

IMPROVED FORM OF THEOREM 4 OF [7]. Let A be a matrix for 'which 
9f(A) :2: O. If there exists an H > 0 such that 8(AH) = k then there exists a B 
complex congruent to A which has a skew-Hermitian direct summand of order k. 

Thus B = Bn ffi iR22' R22 Hermitian of order k. In the special case 
k = 0, R22 is empty; i.e., B = Bu. This will be used in the proof of the next 
theorem. We also require a lemma. 

If B is complex congruent to A (B = S* AS, where S is nonsingular) we 
shall write B 1'"-..1 A. 

LEMMA 4. Let A = P + iQ, A' = P' + iQ', where P, P', Q, Q' are all 
Hermitian, and P = Pn <3J 0, Pu > 0, P' = Pu ffi ° (partitioned confor
mably). If A"" A', then Q22 "" Q~2' 

PROOF. Suppose A' = S* AS, where S is nonsingular. We partition 
P', Q, Q' conformably with P; then 0 = P~2 = SizPn S 12• If x is any column 
of S12, 0 = x*Pnx, whence x = 0 since Pu > 0. Hence S12 = 0 and S22 
must be nonsingular. We deduce that Q~2 = SizQ22S22' 
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THEOREM VII. Let A be a nonsingular matrix with El(A) 2. 0, and suppose 
that 

max S(AH) = k. 
H>O 

(4.1) 

Let A ~ A' = P + iQ; P, Q Hermitian, with P = Pu E8 0 and Pu > O. 
If Q is partitioned conformably with P, then rank Q22 = k. 

In particular, A is H-stable if and only ifQ22 = O. 

PROOF. (a) We set s = rank Q22' and shall first show that s ~ k. Since 
Q22 is Hermitian, Q22 has a nonsingular principal minor L22 of order s, which 
by a cogradient permutation of rows and columns of Q22 may be brought 
into bottom right position. Repartitioning, we have A ~ A' = K + iL, 
where order K22 = order L22 = s, K = Ku E8 0, and L22 is non-singular. 
Define S by 

An easy computation shows that 

S*KS = Ku Ee 0, 

It is clear that 0 = O(S* A' S) 2. s, and since S*-I(S* A' S) S* = A'(SS*) 
and SS* > 0, we must have 0 = S(A'(SS*» = O(AH) for some H > O. 
Thus s ~ S .<::::: k, by (4.1). 

(b) We next show that s 2. k. By the improved version of Theorem 4 
of [7], there exists a B ~ A,...., A' with B = C Ee iR33' with Ra3 Hermitian, 
of order k. (The reason for our choice of subscripts will be clear later.) 
As B is nonsingular, rank R33 = k. We apply a congruence transformation 
to C and we obtain B '"-' B' = C' Ee iR22' and 

El(C') = S11 Ee 0, S11 > O. 

Thus if R' = J(B') is partitioned conformably, then 

so that the minor complementary to R11 is R22 EB R33. Note that order 
S11 = order Pu since A' ~ B'. Hence we can apply Lemma 4, and obtain 
(R22 EB R 33) ~Q22' whence 

s = rank Q22 = rank (R22 EB R33 ) 2. rank R3j = k. 

As s ~ k by (a), s = k. 
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We have proved Theorem VII (and incidentally also that R~2 = 0.) 
We conclude with a consequence of H-stability. 

COROLLARY VII. 1. If A has order n and is H-stable, then rankbf(A) ::2': n12. 

PROOF. As in Theorem 4.2, A"" A' = P + iQ, where P = Pu $ 0 
and Pu > O. By Theorem 4.2, Qn = O. Thus 

A' = [Qu + Pu QI2] . 
Q21 0 

As rank bf(A) = order Pu> obviously rank A' S 2 rank Pu. But A' (f'OooJ A) 
must be nonsingular; hence rank Pu > n12. 

I. GANTMACHER, F. R. "The Theory of Matrices," Vols. I, II. Chelsea, New York, 
1959. 

2. SYLVESTER, J. J . A demonstration of the theorem that every homogeneous quadra
tic polynomial is reducible by real orthogonal substitutions to the fonn of a sum 
of positive and negative squares. Phil. Mag. (4),4, 142 (1852); Math. Papers 1,378-
381, Cambridge, 1904. 

3. BELLMAN, R. "Introduction to Matrix Analysis." McGraw-Hili, New York, 1960. 
4. LYAPUNOV, A. Probl~me General de la stabilite du mouvement. Commun. Soe. 

Math. KharkOfJ (1892, 1893); Annals of Mathematical Studies, Vol. 17. Princeton 
Univ. Press, Princeton, N.J ., 1947. 

5. TAUSSKY, O. A remark on a theorem by Lyapunov. J. Math. AMI. Appl. 2, 105-
107 (1961). 

6. TAUSSKY, O. A generalization of a theorem by Lyapunov. J. Soc. Ind. Appl. Mati!. 
9, 640-643 (1961). 

7. OsTROWSKI, A., AND SCHNEIDER, H. Some theorems on the inertia of general 
matrices. J. Math. AMI. Appl. 4, 72-84 (1962). 

8. GIVENS, W. Elementary divisors and some properties of the Lyapunov mapping 
X ---.. AX + XA*. Argonne Natl. Lab. Report ANL-6546 (1961). 

9. CAUCHY, A. Sur I'equation a I'aide de laquelle on detennine Ies inegalites secu
laires des mouvements des plan~tes. (1829) & Ouevres completes, lIe serie, 9, 
174-195. 

10. BECKENBACH, E. F., AND BELLMAN, R. Inequalities. Ergeb. Math. u. Grenzg. N.F. 
30 (1961). 

II. HAMBURGER, H . L ., AND GRIMSHAW, M. E. "Linear Transformations in n-Dimen
sional Vector Space." Cambridge Univ. Press, Cambridge, 1951. 


