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Comparison theorems for supremum norms 

By 

HANS SCHNEIDER* and W. GILBERT STRANG 

1 

The problem of charac~erizing all supremum norms on a space of matrices 
or linear transformations is still unsolved. The theorems of this note are intended 
as a step towards solving this problem. Our most general result is Theorem 3. 
in which the assumption of finite dimensionality is not needed. Theorems 1 
and 2 are special cases of Theorem 3. In view of the independent interest of 
Theorem 1, we have thought it desirable to include a separate proof of this case. 

2 

In this note all vector spaces V considered will be over the real or complex numbers. 
By a norm l' on V we shall mean an equiHbratul norm; thus l' maps V into the 
nonnegative numbers and, if x, y E V and c is real or complex, then 

p(x»O if x: 0, 

l'(X + y) ~ l' (x) -;- ].(y) I 

l' (c x) = i c i1'(x) . 

(1 ) 

(2) 

(3) 

Let U be a vector space normed by II and V a vector space normed by 1'. 

If T is a space of transformations of U into T', for which .!.'..~ ~L is bounded over 
x in U for all A in T, then sup defined by /1 X 

AET (4) 

is a norm on T. In this case it is natural to call sup the s'U.premum norm belong
ing to (p,,1'), If U = V and p,=p, we call sup the supremum norm belonging 
to the single norm 1'. A special case of a supremum norm is the dual norm 1" 

of l' on the dual space V' of V. Here V' consists of all bounded linear functionals 
on V. Thus . 

pl(y') = sup 1(,,', x)/ , y' E V'. 
O*xEV t'(x) 

(5) 

If V is identified with a subspace of V" in the canonical way, then it is known 
(e.g. HOl.'SEHOLDER [2J) that v"(x) =1' (x), for all xEV. This result will be used 
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16 HANS SCHNEIDER and \\T. GILBERT STRANG: 

in the proof of Theorem 1. We shall also use a result which applies to finite 
dimensional spaces only and which is a consequence of the compactness of the 
unit ball {x: Y (x);:;;; 1} in these spaces: 

If Vl and "2 are norms on the finite dimensional space V, then 2'!.. is bounded, 
say ~ 

sup~ =n, 
v V 2 

and the equality is attained [3J; i.e., for some vE V, 

~~=n. 
112 (v) 

(6) 

(7) 

In equation (6) we used the notational convention of writing sup.2'!.. to mean 
v V 2 

sup vdx). Similarly we shall write "1 ;:;;;Y2 to mean '!I(X)~"2(X) for all xE V. 
0* xE V V 2 (x) 

3 

Theorem 1. Let V be a finite dimensional vector space. Let Yl and ':2 be norms 
on V', and let sup., i = 1, 2, be the norm 01t the space L of all linear transformations 
of V into itself belonging to the single norm Y.. If 

SUPl;:;;; SUP2 (8) 
then actually 

SUPI = SUP2 (9) 
and, for some constant n, 

"1 = nY2' (10) 

Proof. Let n be defined by (6) and suppose that v satisfies (7). It is an 
immediate consequence of (6) and of the definition (5) of the dual norm that 

(11) 

Under the hypothesis (8), we shall prove the reverse inequality. For' every 
y' E V' we may define the projection E on V by 

Ex=(y',x)v, 

for all xE V. By (3) and (12) we have 

sup V1 (E x) = sup I(y', x)1 "dv) 
O*xEV ~(~ O*xEV ~(~ 

whence by (5) 

SUPI (E) = Y~ (y') Yl (v) I 

and similarly 

SUP2 (E) = Y~ (y') Y2 (v). 

Hence the hypothesis (8) and equation (7) imply 

(12) 

(13) 

(14) 

( 15) 

(16) 
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Thus 1t71~=7'~' by (11) and (16), whence 11~'=n11;', and therefore (10) follows 
by the duality theorem 11"(X)=V(x), for xE V. The equality (9) is an immediate 
consequence of (10). 

4 

Our first generalization of Theorem 1 is 

Theorem 2. Let V and L be as defined in Theorem 1. If sup;, i = 1, 2, ~s 

the supremum norm belonging to a single norm 7' i' then 

inf sUP.L = inf ~P2 • 
L SUP2 L SUPI 

( 17) 

Theorem 2 is clearly a consequence of Theorem 3 below. For, let U and V 
be vector spaces normed by fl;, )'i' i=1, 2, and suppose 

m., = inf fLJ., 
• U 11-2 

( 18) 

If we put U= V and fli=11;, i=1, 2, then 11~=nl' m2=n2. Hence 11~n2=m2nl 
and Theorem 2 follows from Theorem 3. Of course, if U and V are finite di
mensional, then mi and ni are non-zero, and it will be convenient to assume 
this for the infinite-dimensional case which follows. Thus the norms will be 
topologically equivalent, and a transformation bounded with respect to fl1' VI 

is bounded with respect to fl2' 112 , and vice versa. 

5 

Theorem 3. Let U and V be vector spaces (possibly infinite dimensional), 
and let fli' )'i' i= 1,2, be norms on U and V respectively, and let m l , n2 be defined 
by (18) and be non-zero. Let T be a set of bounded transformations which contains 
all bounded linear transformations of rank 1. Let SUPl and SUP2 be the norms on 
T belonging to fll' Vl , and fl2 ' 112' Then 

(19) 

Proof. Let AET, and xEU. Then, if Ax=FO, 

VI (A x) = /l2 (x) !!..(A x) V2 (A x) ~ ~ 1$2 v2 (A x) 
III (x) I1-dx) V 2 (A x) 112 (x) - ,u2 (x) , 

(20) 

and, since this inequality is trivial ifAx= 0, we have * 
SUPl> - - =ml n 2 · 
SUP2 . 

(21) 

Let m and n be any positive numbers whi~h satisfy 

(22) 

* The argument leading to (21) is equivalent to a remark of HOUSEHOLDER'S [2J, 
Chapter 2. Vole are grateful to Dr. HOUSEHOLDER for permitting us to see his book 
in manuscript form. 
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To complete the proof of the theorem, we shall demonstrate the existence of 
a linear transformation E of U into V of rank 1 for which 

_SUPl (E) .:S; tit n. 
sup2(E) -

In virtue of the definitions (18) there exist u E U, v'E V such that 

On the one dimensional subspace {u} we define a linear functional )'~ by 

xE{u}. 

(23) 

(24) 

(25) 

It follows by the Hahn-Banach Theorem ([lJ, p. 11) that there exists an extension 
linear functional y' of y~ for which 

(26) 

for all x E u. If \ve now define E by 

Ex = (y', x) v, (27) 

we obtain immediately that for all x E U 

(28) 

whence 
SUPl (E) ~ 1'2 (u) l!l (v). (29) 

But 

(30) 

whence 

SUP2 (E) ~ f..ll (u) 1!2 (v). (3 1 ) 

The inequaiity (23) now follows by (24) and the theorem is proved. 

6 

The following corollary includes assertion (10) of Theorem 1. 

Corollary. It SUPl is a constant on T, then ~ and '::1_ a.re constants On. U 
~~ ~ ~ 

and V (and, trivially, conversely). 

Proof. By the definitions (18) 

(3 2) 

and.l!.!... ~ are constant if and only if 
11'2' ":2 
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But in virtue of (19), SUPl is a constant if and onl" if 
, SUP2 J 

(34) 

Hence SUPl is a constant if and only if 
SUP2 . 

(35) 

and so, by (32), if and only if (33) holds. The corollary is proved. 

7 

We give now a geometric version of the above proof, assuming for the sake 

of clarity that ~ and 2!. attain their infima, say 
PI V 2 

f.L2 (u) = m,. 
f.LJ (u) , 

VI (v) _ --_.- -n2 • 
vz(v) 

(36) 

Suppose M;, N; are the convex bodies belonging to the norms Pi, "i: J.,1; = 
{xEU: ,ui(x)~1}. We may choose u and v satisfying (36) on the boundaries 
.Mf, m of M l , N2 respectively. Let u + H be the support plane of Ml at u, 
where H is a maximal subspace of U. Then the linear transformation E defined 

by Eu=v, EH=O, has SUPd(EE)) =11t1n 2 . This construction is in fact analogous 
SUP2 

to the construction .of E -in the proof of Theorem 3. We shall only remark here 
that the Hahn-Banach Theorem implies the existence of a support plane for 
Ml at every point of Mf: for, * if u E.Mf and y' satisfies (25) and (26). then 
1f. + H = [x E U: (y', x) = pz (u)} is a support plane for Ml at u. 

We shall also relate the proof of Theorem 1 to the proof of the more general 
Theorem 3. As already indicated, the proof of Theorem 1 depends on the theorem 
that 11"(x)=v(x), for all xE V, under the natural identification of V with a 
subspace of V". Now, if x E V, then 

v"(x) = sup I(y', x)1 
.'(y')=l 

and if v'(y')=1 then I(y', x)1 ~ v(x) by (5) . Hence v"(x)=v(x) if there exists 
y' E V' such that I (y', x) I = v (x) and I (y', z) I ~ v (z), for all z E V. Thus the duality 
theorem is implied by the Hahn-Banach Theorem for one-dimensional subspaces. 

8 

Theorem 1, and therefore, of course, Theorems 2 and 3. are false for non
equilibrated norms Pi' vi' viz. those for which (3) is replaced by 

v(cx)=cv(x), if c> 0. (37) 

* \Ve are grateful to Professor 'IN. RUDIN for this remark. 
2" 
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For let V be the real line, and let 

Vl(X) = V2(X) = X if x~ 0, 
but let 

(39) 

If r is identified with the linear transformation X-H x then 

SUPl (r) = SUP2 (r) = r if r> 0, (40) 
but 

sup2(r) = 2supdr) = - 2r if r< o. (41) 

Hence S1iP2~SUP1' but SUP2=FSUP1. 

Finally we remark that a result slightly more general than theorem 3 may 
be proved. If the set T contains all transformations of rank 1 then the assumption 
that mi , 1Zi , i = 1, 2, are non-zero is not needed, and theorem 3 can be formulated 
as a theorem on quasi-norms. 
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