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Comparison theorems for supremum norms
By

HANS SCHNEIDER* and W. GILBERT STRANG

1

The problem of characterizing all supremum norms on a space of matrices
or linear transformations is still unsolved. The theorems of this note are intended
as a step towards solving this problem. Our most general result is Theorem 3,
in which the assumption of finite dimensionality is not needed. Theorems 1
and 2 are special cases of Theorem 3. In view of the independent interest of
Theorem 1, we have thought it desirable to include a separate proof of this case.

2

In this note all vector spaces V considered will be over the real or complex numbers.
By a norm » on ¥V we shall mean an eguilibrated norm; thus » maps V into the
nonnegative numbers and, if x, y€V and ¢ 1s real or complex, then

»{z)>0 1if x=0, (1)
v{x+y) = v(x)+r(y), ' (2)
viex) =]c|r(x). (3)

Let U be a vector space normed by yp and V' a vector space normed by ».
v (A x)

If T is a space of transformations of U into T’ for \\’hich -2/ is bounded over
xin Uforall 4 in T, then sup defined by ()
sup(dy= sup 245 e (@)

0+zelU # (x)

is a norm on 7. In this case it is natural to call sup the supremusn norm belong-
ing to (u,v). If U=V and p=w», we call sup the supremum norm belonging
to the simgle norm ». A special case of a supremum norm is the dual norm »’
of » on the dual space V' of V. Here V' consists of all bounded linear functionals
on V. Thus '

’V'()") — Sup '(3’("};”” ) }I’ 6 I/". (5)
0k£a1eV

If V' is identified with a subspace of V'’ in the canonical way, then 1t is known
(e.g. HousEHOLDER [2]) that »"(x)=wv(x), for all x€ V. This result will be used

* The research of first named author was done while he was a summer participant
at Oak Ridge National Laboratory, Oak Ridge, Tennessce.
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in the proof of Theorem 1. We shall also use a result which applies to finite
dimensional spaces only and which is a consequence of the compactness of the
unit ball {x:»(x)=1} in these spaces:

If », and », are norms on the finite dimensional space V, then L is bounded,

say 72
sup X ==, (6)
v Y2
and the equality is attained [3]; i.e., for some v€V,
y(v)
72@- =n. (7)

In equation (6) we used the notational convention of writing sup -* to mean
v V2

sup nx) Similarly we shall write », = v, to mean » (x)<v,(x) for all x¢ V.
04 xev ¥2(%)

3
Theorem 1. Let V be a finite dimensional vector space. Let v, and v, be norms
on V, and let sup;, 1=1, 2, be the norm on the space L of all linear lransformations
of V into itself belonging to the single novm v;. 1f

sup; < sup, (8)
then actually
Sup; = Sup, 9)
and, for some constant n,
’}Il =N 1}2 . (1 0)

Proof. Let n be defined by (6) and suppose that » satisfies (7). It is an
immediate consequence of (6) and of the definition (5) of the dual norm that

e < myy. (11)

Under the hypothesis (8), we shall prove the reverse inequality. For every
vy’ €V’ we may define the projection £ on V by

Ex=(y,x)v, (12)

for all x€ V. By (3) and (12) we have

'Vl(EZ)r — l(y” 2’)' Y 1
OizeV v (%) oiligv v (%) ") (13)
whence by (5)
sup; (E) = »(y") n.(v), (14)
and similarly
supy (E) = v2(y) 2 (v). (15)

Hence the hypothesis (8) and equation (7) imply

nvy < vy, (16)
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Thus n»;=173, by (11) and (16), whence v;"=mnv,", and therefore (10) {ollows
by the duality theorem »”(x) =w»(x), for x€ V. The equality (9) is an immediate
consequence of (10).

4
Our first generalization of Theorem 1 is

Theorem 2. Let V and L be as defined tn Theorem 1. If sup,, i=1, 2, is
the supremum norm belonging to a single norm v;, then

inf SUP1 _ jnf SUP2 (17)
L Ssup, L sup,
Theorem 2 is clearly a consequence of Theorem 3 below. For, let U and V
be vector spaces normed by y;, »;, ¢=1, 2, and suppose

mlzirl]]fﬁ—:, 17z2=igf%, nlzir‘}f%f-, n2-——i1;fviz, (18)
If we put U=V and y;=v;, 1=1, 2, then my=mn,, my=n,. Hence m ny,=m,n,
and Theorem 2 follows from Theorem 3. Of course, if U and V are finite di-
mensional, then m; and #; are non-zero, and 1t will be convenient to assume
this for the infinite-dimensional case which follows. Thus the norms will be
topologically equivalent, and a transformation bounded with respect to w,, v,
Is bounded with respect to g, »,, and vice versa.

5
Theorem 3. Let U and V be veclor spaces (possibly infinite dimensional),
and let yu;, v;, 1=1, 2, be norms on U and V respectively, and let m,, n, be defined
by (18) and be non-zero. Let T be a set of bounded transformations which contains
all bounded linear transformations of rank 1. Let sup, and sup, be the norms on
T belonging to uy, v, and py,v,. Then

inf 4P _ .
in sup, My My {(19)

Proof. Let ACT, and x€U. Then, if 4x==0,

v (4 %) (%) n(Adx) v,(4%) > n vy (4 %)
= 20
w@ T m) @A wmE® o L) (20
and, since this inequality is trivial if 4 x=0, we have*
sup; ~,
Sup, = Wiy B (21)
Let m and # be any positive numbers which satisfy
my << m, Ny < 1. (22)

* The argument leading to (21) is equivalent to a remark of HoUSEHOLDER'S [2],
Chapter 2. We are grateful to Dr HouseHOLDER for permitting us to see his book
in manuscript form.
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To complete the proof of the theorem, we shall demonstrate the existence of
a linear transformation E of U into V of rank 1 for which

E
::]]—SZ—EE—; <man. (23)

In virtue of the definitions (18) there exist #€ U, v'€ 1/ such that

(v) <n. (24)
On the one dimensional subspace {x} we define a linear functional y¢ by

(vo, 2)| = g (%) pra (o), € {u}- (25)

It follows by the Hahn-Banach Theorem ([1], p. 11) that there exists an extension
linear functional y* of y4 for which

(v, #)] = g (%) o (a0), (26)
for all x€U. If we now define E by
Ex=(,xv, (27)

we obtain immediately that for all x€ U

" (E x) i |(y', x)l 7 (‘U) ,
u{x) 14 (%) = pra () 11 (9), (28)
whence
sup; (E) = 1y (#) v, (0). (20)
But
vy (E u) __ Iy, u)lvz_(_‘ul _ N fe
= raIm ), 50)
whence
sups (E) 2 1, (1) 3 (2). (31)

The inequality (23) now follows by (24) and the theorem is proved.

6
The following corollary includes assertion (10) of Theorem 1.

su . P, -
Pi s a constant on T, then X2 and 2% are constants on U
sup, My Y2

and V (and, trivially, conversely).
Proof. By the definitions (18)

Corollary. If

mym, <1, g =1, (32)

and £1 ”t are constant if and only if
g ¥y

My, =1,  mymg=1. (33)
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But, in virtue of (19), ?l is a constant if and only if

up;
s
P gy, gy = R (34)
Sup, sSup, ny 1y

Hence Pt js 3 constant if and only if
sup, -

(1) my) (1) m5) =1 (35)

and so, by (32), if and only if (33) holds. The corollary is proved.

7
We give now a geometric version of the above proof, assuming for the sake
of clarity that #2 and 1 attain their infima, say
# V2
Ha (4) ¥ (v)
< — ) _—te e = M. 6
) = S ™ (6)

Suppose M;, N; are the convex bodies belonging to the norms g, v;: M,=
{x€U: pu;(x)<1}. We may choose u and » satisfying (36) on the boundaries
M}, NY of M, N, respectively. Let -+ H be the support plane of M, at u,
where H is a maximal subspace of U. Then the linear transformation E defined

by Eu=w, EH=0, has -z%%%— =m#yn,. This construction is in fact analogous
2
to the construction of £ in the proof of Theorem 3. We shall only remark here

that the Hahn-Banach Theorem implies the existence of a support plane for
M, at every point of MY: for,* if w€ M} and y' satisfies (25) and (26), then
u+H=[x€U: (y, x) =p,(un)} is a support plane for M, at .

We shall also relate the proof of Theorem 1 to the proof of the more general
Theorem 3. As already indicated, the proof of Theorem 1 depends on the theorem
that »"(x)=v(x), for all x€ V, under the natural identification of V with a
subspace of V"'. Now, if x€ V, then

»'(x) = sup [(y’, x)]
¥(y')=1
and if +'(y")=1 then |(y’, )| = »(x) by (5). Hence »"’(x)=»(x) if there exists
y' € V' such that |(y’, x)| = »(x) and |[(y", z)| £ »(2), for allz€ V. Thus the duality
theorem is implied by the Hahn-Banach Theorem for one-dimensional subspaces.

8

Theorem 1, and therefore, of course, Theorems 2 and 3, are false for non-
equilibrated norms u;, #;, viz. those for which (3) is replaced by

v{c x) =cv(x), if ¢>o0. (37)
* We are grateful to Professor W. RupIN for this remark. '
2%
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For let V be the real line, and let

n(x) =vy(2) == if x=0, (38)
but let . '
1 () =2v(x)=—x if x<0. (39)

If 7 is identified with the linear transformation x —7x then

sup, (r) = sup,(r) =7 if »>0, (40)
but

sup, (r) = 2sup,(r) = — 27 if r<O0. 41)
Hence sup,=sup,, but sup,=sup,. ‘ )

Finally we remark that a result slightly more general than theorem 3 may

be proved. If the set T contains all transformations of rank 1 then the assumption
that m,, n;,7 =1, 2, are non-zero is not needed, and theorem 3 can be formulated
as a theorem on quasi-normes.
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