
GROUP MEMBERSHIP IN RINGS AND SEMIGROUPS 

GERALD LoSEY AND HANS SCHNEIDER 

1. Introduction. Let R be a semigroup or associative ring. A 
group G in R is a subset of R which is a group under the multiplication 
on R. That is, G contains an idempotent e which acts as a multiplica
tive identity on G and if a E G then there exists an element (t' E G such 
that aa' = a'a = e. An element a of R is said to be a group element 
in R if a belongs to some group in R. 

The problem of deciding whether a given element of R is a group 
element has been investigated in various types of rings in [3], [4], 15], 
[6], [10J, [111. The purpose of the. present paper is the generalization 
and extension of some results of Barnes and Schneider [3], Drazin [4] 
and Farahat and Mirsky [6J. 

Section 2 of this paper extends some results of [6] on the imbedding 
of the groups contained in a ring with identity in the group of units of 
the ring. 

In § 3 use is made of the concept of left 1r-regularity. McCoy [9] 
introduced the concept of 1r-regularity, the consequences of which have 
developed in [t], [2], and [8]. It imposes a finitness condition satisfied, 
for example, by rings with minimum condition, by nil rings, by the 
"divided" rings of [6] and by direct sums of such rings. This condition 
is found to be sufficient in many of the cases where [6] uses the condi
tion that the ring be a direct sum of divided rings. Moreover, the 
condition of left 1r-regularity is applicable to the case of semigroups. 
Under this condition, it is shown that if S is an extension of a semi
group or ring R, a E Rand (t is a group element in S, then a is a group 
element of R. 

Section 4 deals with conditions under which some power of a given 
element of R is a group element. 

Section 5 gives a necessary and sufficient condition for the same 
property in terms of annihilators. 

In order to point up the comparative weakness of the condition of 
left 1r-regularity of a ring necessary and sufficient conditions are given 
in § 6 that a left 1r-regular ring be a direct sum of divided rings. 

2. Groups in rings with identity. Throughout, this section R will 
denote a ring with an identity element 1 and U will denote the group 
of uni ts of R. 

Received August 1, 1960. The research of lhe second named author was supported by 
the United States Army under Contract No. nA -ll 022 ORIJ -20;'9. Mathematics Research 
Center, United States Army, Madison, Wis. 

1089 



1090 GERALD LOSEY AND HANS SCHNEIDER 

LEMMA 2.1. (Farahat and Mirsky !6J) Let G be a gr01tp with 
idempotent e in R. Then the mapping '7: G -~ U defined by 1j(g) = 
g + (1 - e) is an isomorphism of G ont.o a s1Ibgroup G, of U. The 
idempotent e comm1tte.~ with ('very e/(lment of G, and G = eG,. More
O1Jer, if x E G, then x = ex + (1 - e). 

Proof. Let g E G and let g' he its inverse in G. Then 

{g + (1 - e)) {g' + (1 - e)l = gg' --I- (1 - e)' = e + (1 - e) = 1 , 

whence g + (1 - e) E U. The verification that 1) is an isomorphism is 
routine. 

If x E G, then x = g + (1 - e) for some g E G. Hence ex = xe = g. 

It foIlows that x = ex + (1 - e) and that G = eG, . Thus the lemma is 
proved. 

Now let C(e) denote the set of all elements of U which commute 
with e. Then, clearly, eC(e) is a group with idempotent e in R. It 
follows from Lemma 2.1 that every group with idempotent e in R is 
contained eC(e), whence eC(e) is the unique maximal group with idempo
tent e in R. We set M(e) = eC(e). If we now apply the isomorphism 
1) of Lemma 2.1 to M(e) we obtain a subgroup M,(e) of U. It also 
foIlows from Lemma 2.1 that M,(e) ~ C(e). We shaIl show that M,(e) is 
'not only a subgroup of C(e), but is, in fact, a direct factor. This wiII 
follow from the more general Theorem 2.2. 

If e" e" "', e. are idempotents of R, let C(e" e" "', e,) denote the 
set of all elements of U which commute with each of ell e" "', e,. 

THEOREM 2.2. If ell e" "', e. are mntually orthogonal idem po tents 
in Rand e, + e, + ... + e, = 1 then 

C(e" e" .. " e,) = M,(e,) I8l M,(e,) I8l ... I8l M,(e,) 

~ M(e,) I8l M(e,) I8l ... ® M(e,) . 

Proof. Let C = C(e" e" "', e.). 

(1) We shall first show that if i *' j then M,(e,) and M,(ej) commute 
elementwise. Let x E M,(e,) and Y E M,(e j). Then x = e,x + (1 - e,) and 
Y = elY + (1 - ej)' Therefore 

xy = e,x(1 - ej) + (1 - e,)ejll = e,x + e jll 

which, by symmetry, is also equal to yx. 

( 2) Next, C = M,(e ,) x M,(e,) x .. , x M,(e,) . For suppose x E C. 
Then e,x + (1 - e,) E M,(e,), i = 1, "', n. Now 
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{e,x + (1 - eJ) .•. fenx + (1 - en)} 

= e,x + ... + enx = (e, + ... + en)x = X • 

(3) We now prove that M,(e ,) n fLIi M,(ej) ~ 1. For let x belong 
to this intersection. Then 

x = e,x + (1 - e,) = IT fe jxj + (1 - ej)} , 
j ~i 

where Xj E U. Hence, from the commutativity of the ejX; + (1 - e;) and 
the fact that e,{ejx j + (1 - ejl) =' e,. it followR that 

e,x = xe, = e, x e, x •.. x e, "'" e, , 

and so 

x = e,x + (1 - eJ = e, + (1 - e,) = 1 . 

From (1), (2) and (3) it follows that C is the direct product of the M,(e,) . 

COROLLARY 2.3. C(e) = M,(e) 0 M,(l - e) ~ M(e) 0 M(l - e). 

Proof. It is merely necessary to notice that C(e) = C(e, 1 - e). 

3. Group elements in ex:ten8ion~ of 1t·regular semigrouPfi and rings. 
In this section R will generally denote a semi group; results in which R 
must be assumed to be a ring will be so indicated . 

Let R be a semigroup and a E R. We say that IX is left 1t-regular 
([8], [Z]) if there exists an element x in R and a positive integer n such 
that xa"" = a". The semigroup R is said to be left 1t-regular if every 
element of R is left 1t-regular. Similar definitions are made for right 
1t-regularity. Evidently, if a is both left and right 1t-regular then there 
exist x and y in R and a positive integer n for which xa"" = a" = a"" y . 

Left 1t-regularity is a finiteness condition in the following sense: 
The element a is left 1t-regular if and only if the descending sequence 
of left ideals Ra ~ Ra' ~ Ra' ~ •.• terminates in a finite number of 
steps. More precisely, xa" II = a" implies that Rrx'" = Ra", and conversely, 
Ra"+! = Ra" implies that xa" " = an H for some x E R, and, if R h\'oB an 
identity, implies xa' ·' , = a'. 

Left 1t-regularity does not imply right 1t-regularity and, of course, 
conversely. In the case of semigroups this is shqwn by the following 
example. Let 11 and 1: be two infinite cardinals with 1: ~ 11, and let E 
be a set of cardinal 11. Let B be the semigroup of all one-to-one map
pings of E into itself for which the completement of aE in E is of 
cardinal 1:. It is easy to see that for each ([ E B there is an x E B such 
that Xlr is the identity map on aE and RO X([' = a, whence B is left 
1t-regular. But for all integers n and all Y E E, an "yE is properly 
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contained in aRE and, hence, no element of B is right 1r-regular. (In 
the case that (1 = T = ~ .. the semigoup B is caBed the semigroup of 
Baer and Levi.) 

I 

THEOREM 3.1. Supp08e R i8 a semigroup and S i8 an exten8ion of 
R. If a E R i8 left 1r-regular and a is a group element in S, then a 
is al80 a group elemen,t in R. 

Proof. Suppose 0: is a group element in S. Then there exists a', 
e E S such that 

ae = ea = a, a'e = ea' = a', aa' = a'a = e . 

Since a E R is left 1r-regular there exists an element x E R and a positive 
integer n for which a" = xa" II. Hence e = o:"a'" = Xlr" 110:'" = xae = 

xa E R. Moreover, a' = ea' = xaa' = xe E R. Consequently, (r is a group 
element in R and the theorem is proved. 

We note that it fol1ows from this theorem that if S is any 
extension of the semigroup B of our example and a E B, then a is not 
a group element in S. For if a: were a group element in S it would 
also be a group element in B and hence right 1r-regular in B. 

An element a of a semigroup R is caBed cancellable (often caBed 
regular) if a is both right and left canceBable, viz: ax = ay implies 
x = y and xa = ya implies x = y. In a ring an element is cancel1able 
if and only if it is not a proper divisor of zero. 

COROLLARY 3.2. Let R be a 8emigroup and let T be an extension 
of R. Supp08e 

( i) Every element of R is cancellable in T, 
(ii) For each a E R, x E T there exi8t a' E R, x' E T 8uch that ax' = 

xa', 
(iii) Every element of R i8 left 1r-regular in R. 

Then T contain8 an identity and R i8 a group. 
Note that if R is a ring and R' is the set of non-zero elements of 

R, then if R' satisfies (i), (ii) and (iii), the conclusion of the corollary 
teBs us that R is a division ring. 

Proof. By a slight modification of an argument of Jacobson 171, 
p. 118, we may form a semigroup of fractions x/a, x E T, (1 E R. If we 
denote this semigroup of fractions by S, we may imbed T, amI conse
quently R, in S by the mapping x ~ xa/a. The element a/a is an 
identity for S and, of course, also for T. Every element of R is inverti
ble in S with respect to 1, namely it..'1 inverse is a/a' , In view of (iii) 
it follows that 1 E R, amI thus to T, and that each element of R ha.'1 
an inverse in R, whence R is a group. 
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We note that if R is assumed to be in the center of T then condi
tion (ii) is automaticaIly satisfied with a = a' and x = x'. 

COROLLARY 3.3. Let R be a ring, finitely generated as a module 
over its center C. Supp08e 

(i) Every non-zero element of R is cancellable, that. i8, R has no 
proper zero divi80rs, 

(ii) Every element of C i8 left 1t-regular in C, 
then R is a divi8ion ring. 

Proof. By Corollary 3.2, C is a field. Thus R is a finite dimensional 
algebra over C. But, by (i), this algebra has no zero divisors and a 
finite dimension algebra without zero divisors is a division ring. 

4_ Powering elements into group elements. Under certain conditions 
an element a of a semigroup R may not be a group element itself 
although some power of it may be. An example of this is the case when 
R contains a zero element and a is a nilpotent element of R. 

THEOREM 4.1. Let R be a 8emigroup and S an extension of R such 
that for each XES there is a p08itive mteger m = m(x) for which x· E R. 
Suppose It E R and Ir is both left and right 1t-regular in S.' Then a' 
is a group element in R for some n and conversely. 

Proof. Since a is both left and right 1t-regular, find x, YES and 
a positive integer n such that xa" I = 1(' = a' "y. If p;;; m then it 
foIlows that xa" 1\ = a" = 1("' 'y. Find m(x) and m(y) such that X""' , 

y"" ) E R and set p = m(x)m(y)n. Then x", y" E Rand xa"" = a' = a''''y. 
Note that 

and so we may set /3 = x"a" = a'y" and e = x"aP = a'y'. Then /3, 
e E Rand 

Similarly IX"/3 = e. Also 

By another similar argument aPe = a". Further, 

e{3 = x'a"y" = x"aPy' = x"a' = /3 

I DraT-in 141 calls an element which is both left and right n-regular a pseudo-invertible 
element. 
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and /3e = /3. Thus, in order to show that a P is a group element, it is 
now sufficient to show that e is idempotent. But e' = x'a"y' = aPyP = e. 

Conversely, if a' is a group element in Rand /'l is the group in
verse of a', then /'la" =-, It' = (X'"f:]. Hence, It is both left and right 
1r-regular in R, and therefore in S. 

COROLLARY 4.2. If R is a semigroup, a E R and a is both left and 
right 1r-regular, then a' is a group element in R for some n and con
versely. More precisely, n' is a group element if and only if 

Xl.~" I I = n:n = an I 'y 

for some x, y E R. 

Proof. Take S = R is the preceding theorem . 

This result appears in a somewhat different guise in a paper by 
M. P. Drazin, [41. 

CoROLLARY 4.3. Let R be a semigroup and It' a group element 
with identity e in R. If ea = (X then It is a group element in R. and 
conversely. 

Proof. Let It" be a group element with identity e and inverse /3. 
Then It"" is also a group element with the same identity and so a = 
ea = fllt"·a = /'l(X' " a product of group elements with idempotent e and 
thus a group element itself. 

Conversely, if a is a group element with identity f and a' is a group 
element with identy e, then e = f since a' is al~ a group element with 
identity f. 

5. Annihilator conditions that a given element be a group element. 
In a ring R we define the left amI right annihilators of an element 

a in the usual manner: 

A,(O, a) = lz E R: za = O} and A,(O, a) = {z E R: az = O} . 

So that we may state our next result.<; for Remigroups as well as rings 
we shall generalize the concept of an annihilator. In a semigroup R we 
shall set 

A,(x, a) = lz E R : Zit = xa} • 

A,(x, a) = /z E R: az = ax} . 

Several consequences of these definitions are easily proved (though we 
shall makes no use of these properties). The sets A(x, a) are equivalence 
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clas.'!es modulo the equivalence relation z =, x defined by za = xa, and 
similarly for the sets A,(x, ((). An element (( E R is cancellable if and 
only if A,(x, a) = A,(x, a) = {x} for all x E R . If R is a ring, then 
A,(x, (() ~- x j- A,(O, (1:) and A,(x, (x) = x + A,(O, rr) . Finally, (and this we 
shall need) it is evident that 

A,(x, (X) C;;; A,(x, a ' ) C;;; A,(x, d') c";; ••• 

and that A,(x, ((") '0' A,(x, ((" ") implies that A,(;r., ((") = A,(x, (x"') for all 
m ?:; n, ami similarly for the sets A,(x , (e), A,(;r. n'), etc. 

In analogy with the phrase left Jl"-regular we introduce the following 
terminology: An element fX of a semigroup R is called l~ft A-regular 
in R if there exists a positive integer n for which ~;(( '" 1 == zn"" implies 
that X((" ,,., :m" fOI' all x and z in R . Thus (X in R is let A-regular if 
and only if the ascending chains A,(x, (Y.) S A,(x, H') c;;;, ••• terminate in 
finitely many steps for all x E R. 

It is easy to see that a left it-regular element of a semigroup R is 
right A-regular, and a right it-regular elemeni is left A-regular. In 
this connection, a slight generalization of a theorem Azumaya 121 proved 
for rings is of in terest. 

THEOREM 5.1. Let R be a semigrou,p and (f a left Jl"-regular element 
of R. If (( is left A-re.gular then a is riflht it-regular, and conver8ely. 

Proof. Suppose (( is left A-regular in R. Then we may choose a 
positive integer n such that Z((" " =c z'rt' "implies Z((" ,,= Z '((" for all z, 
z' E Rand X((" " = n" for some x E R. We wish to prove that (tOO fly = a" 
for some Y E R. It is clearly sufficient to prove that (("'.r-m(f" = (f" for 
m = 0, I, 2, .... Since the case m = 0 is trivial , we procee'i by induction. 
Thus, assume that (x"'x"'((" = a'. Then 

(t"' "X"'l 'a" 11 == fY'" Hx"'a" = f1." I I == X(l'.('{" tit 

whence a 7n l 1x"'Ha" == X(l'·(l''' = a". 
That the converse is true has already been remarked before the 

statement of the theorem. 
The second theorem of this section relates the integers n Iwhich 

occur in the definitions of Jl"-regularity and A-regularity. Let n be a 
positive integer and let z and (( be elements of the semigroup R. We 
shall say that condition A(z, ((, n) holds if boih A,(z, n"' ') "" A,(z, (x") and 
A,(z, (("1) = A,(z, ((") . Thus an element (( is hoth right and left A-regular 
if there exists a positive integer n such that A(z, ((, n) holds for all z, 
and conversely. If R is a ring and A(z, ((, /I) is satisfieJ for some z E R 
then A(z, ((, n) is satisfied for all z € R. 

THEOREM 5.2. Let, R be. a, 8emigrou,p and let, (( be am element. of R 
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which is both left and right 1r-regular in R. The following results 
hold: 

( i) If a' is a group element in R then A(z, a, n) holds for all 
zERo 

(ii) If A(a, a, n) holds then a" " is a group element in R. 
(iii) If R has identity 1 and A(l, a, n) holds then a" is a group 

element. 

We remark that under the hypotheses of the theorem, a" is a group 
element for some n and a is both left and right A-regular. 

Proof. (i) If a' is a group element, then it follows from Corollary 
4.2 that xa" " = a' = a" " y for some x, y E R. Suppose that u is any ele
ment of A,(z, a" ") where z E R. Then zan = za' , 'y = ua" "y = ua", whence 
u e A,(z, a') which implies A,(z, a" ") = A,(z, tr"). The proof of A,(z,a" ") = 
A,(z, a') is similar. 

(ii) Suppose that A(a, a, n) holds. Since a is let 1r-regluar there 
exists a positive integer m and an x E R such that xa"'+' = a"'. We shall 
show that xa' · ' = a"". If m < n + I, we obtain this equality by 
multiplying the previous equality by a" -mll. If m = n + 1 there is 
no'thing to prove. If m > n + 1 then xa'a"' -' = mr'" ' and A(IX, a, n) 
implies that 

xall 
I ~ = xa'a" = aa'" = all I l . 

The existence of an element y E R satisfying a" ' 'y = a" " is proved 
similarly. It now follows from Coronary 4.2 that a" II is a group element. 

(iii) The proof is similar to the proof of (ii). This time it follows 
from xa"' '' = la'" when tn n that XI~" " = xa(~" = la" = a" by virture 
of A(I, a, n) . Hence a " is a group element. 

6. A criterion that a ring be semi-divided. A ring is said to be 
divided if it has an identity and every element is invertible or nilpotent. 
A ring is semi -di 1l1:ded if it is the direct sum of (possibly infinitely many) 
divided rings. The terminology is that of [61. In this section we shall 
give necessary and sufficient conditions that a left 1r-regular ring be 
semi-divided. 

LEMMA 6.1. Let R be a semigroup both left and right 1r-regular. 
Then every non-nil (left) ideal of R contains a non-zero ·idetnpotent. 

Proof. Let I be a non-nil left ideal of R an!1 IX a non-nilpotent 
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element of I. a" is a group element with respect to the non-zero idem
potent e for some n. Let /3 be the inverse of a". Then e = /3a" € I. 

If e and fare idempotents then we say that e dominates f if ef = 
fe = f. An idempotent e 1= 0 is primitive if it dominates only 0 and 
itself. For rings this is equivalent to saying that e is primitive if it is 
not the sum of two non-zero orthogonal idempotents. 

THEOREM 6.2. Let R be a ring satisfying the following conditions: 
( i) R is left and right 1l:-regular; 
(ii) Every pri'lll-itit'e idempotent of R is in the center of R; 
(iii) Every non-zero idempotent of R dO'lllinai.es a primitive idem

potent; 
(iv) If x € R then xe = 0 for all but finitely many primitive 

idempotents e. 
Then R is the direct sum of a semi-divided ring and a nil ring, and 
conversely. If, in addition, R satisfies the condition: 

(v) Every element of R has a left or right identity, 
then R is semi-d-ivided, and conversely. 

Proof. Let e be a primitive idempotent. Then Re = eR, since e 
is in the center of R, and e is the identity of Re. Since e is primitive 
e is unique non-zero idempotent of Re. If a € Re is not nilpotent then 
a" is invertible in Re. But ea = a and so, by 4.3, a is invertible in Re. 
Hence Re is a divided ring. 

Let Ie,} be the set of all primitive idempotents of R . e,e; = 0 if 
e,1= e;. The sum l'Re, is direct; for if x € Re; n ,:£,...;Re, then x = X6; = 
L""jx,e,e; = O. Thus Il, = l'Re, is semi-divided. 

Let R, be the set of al\ x € R for which xe, = 0 for all primitive 
idempotents e,. R, is an ideal of R. If R, contains a non-zero idempotent 
then, by condition (iii) R, contains a primitive idempotent e, But then 
we would have e = e' = O. Hence, by 6.1, R, must be nil. 

The sum R, + R, is direct; for if x 1= 0 is an element of R, then 
xe,1= 0 for at least one e,. Hence, R, n R, = O. We now wish to show 
that R = R, -I- R,. If x € R then xe, '* 0 for only finitely many primitive 
e,. Hence, x' = x - l'xe i is well defined. Moreover, x'e, = xe, - xel = 0 
and so x' E R,. Therefore. x = l'xe, + x' € R, + R,. Hence, R is the 
direct sum of a semi-divided ring and a nil ring. 

The converse is directly verified. I 

Now suppose in :addilion to (i) -(iv) R also satisfies (v). Let x € R,. 
Then x has a (say left) identity e =" Il, + e" e, € R

" 
e, € R" and 

x = ex = e,x + e,x = e,x • 

since e,x = O. But then x = e;"x for all 'Ill ?- O. Since R, is nil. e;' = 0 
for some m and so:c = O. Thus Il, ~~ () and R = R" a semi-divided ring. 
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Again, the converse is easily verified. 
That condition (iv) is actually necessary may be seen from the fol

lowing example. Let S be the strong direct sum of countably many 
copies of Z" the ring of integers mod 4. Let R be the subring of S 
generated by the weak direct sum and the element (2, 2, ...• 2, ... ). 
Then R satisfies (i)-(Hi) and is not the direct sum of a semi-divided 
ring and nil ring. 

In conclusion, the authors wish to express their gratitude to M. P. 
Drazin for several pertinent criticisms. 
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