GROUP MEMBERSHIP IN RINGS AND SEMIGROUPS

GERALD LOSEY AND HANS SCHNEIDER

1. Introduction. Let R be a semigroup or associative ring. A
group G in R is a subset of R which is a group under the multiplication
on R. That is, G contains an idlempotent e¢ which acts as a multiplica-
tive identity on G and if @we G then there exists an element @’ € G such
that e’ = '« = e. An element « of R is said to be a group element
in R if a belongs to some group in R.

The problem of deciding whether a given element of R is a group
element has been investigated in various types of rings in [3], [4], [5].
{61, [10), [11]. The purpose of the. present paper is the generalization
and extension of some results of Barnes and Schneider [3], Drazin [4]
and Farahat and Mirsky [6].

Section 2 of this paper extends some results of [6] on the imbedding
of the groups contained in a ring with identity in the group of units of
the ring.

In §3 use is made of the concept of left m-regularity. McCoy [9]
introduced the concept of m-regularity, the consequences of which have
developed in [1], [2], and |8]. It imposes a finitness condition satisfied,
for example, by rings with minimum condition, by nil rings, by the
“divided’’ rings of [6] and by direct sums of such rings. This condition
is found to be sufficient in many of the cases where [6] uses the condi-
tion that the ring be a direct sum of divided rings. Moreover, the
condition of left m-regularity is applicable to the case of semigroups.
Under this condition, it is shown that if S is an extension of a semi-
group or ring R, ®e¢ R and @ is a group element in S, then « is a group
element of R.

Section 4 deals with conditions under which some power of a given
element of R is a group element.

Section b gives a necessary and sufficient condition for the same
property in terms of annihilators.

In order to point up the comparative weakness of the condition of
left m-regularity of a ring necessary and sufficient conditions are given
in § 6 that a left m-regular ring be a direct sum of divided rings.

2. Groups in rings with identity. Throughout, this section R will
denote a ring with an identity element 1 and U will denote the group
of units of R.
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LEMMA 2.1. (Farahat and Mirsky [6]) Let G be a group with
idempotent ¢ in R. Then the mapping n: G -~ U defined by 7(g) =
g+ (1 —e) is an isomorphism of G onto a subgroup G, of U. The
idempotent e commutes with every element of G, and G =eG,. Morc-
over, if xe€G, then x —ex + (1 — e).

Proof. Let geG and let g’ be its inverse in G. Then
g+ —efg+L—-0l=09+ (L —e=et+(l—-€=1,

whence g + (1 — e)e U. The verification that » is an isomorphism is
routine. :

If xeG, then x = ¢ + (1 — e) for some ge G, Hence ex = ze = g.
It follows that * = ex 4+ (1 — ¢) and that G = eG,. Thus the lemma is
proved.

Now let C(e) denote the set of all elements of U which commule
with e. Then, clearly, eC(e) is a group with idempotent ¢ in R. It
follows from Lemma 2.1 that every group with idempotent ¢ in R is
contained eC (e), whence eC(¢) is the unique maximal group with idempo-
tent ¢ in B, We set M(e) = eC(e). If we now apply the isomorphism
7 of Lemma 2.1 to M(e) we obtain a subgroup M(e) of U. It also
follows from Lemma 2.1 that M,(¢) < C(e). We shall show that M(e) is
not only a subgroup of C(e), but is, in fact, a direct factor. This will
follow from the more general Theorem 2.2,

If e,, €, ---, e, are idempotents of R, let C(e, e, --+, ¢,) denote the
set of all elements of U which commute with each of e, ¢, +--,¢,.

THEOREM 2.2. If e, e, ---, ¢, are mutually orthogonal idempotents
in Rand e, + ¢, + +-- + ¢, =1 then

Clenen v, e) = Mle)Q M) - @ Mle.)
Me) @ Me)® -+ Q Me.) .

il

Proof. Let C=Cle, e, +++,8,).

(1) We shall first show that if 7 s 5 then M,(e;) and M,(e;) commute
elementwise. Let x e M(e;) and ye M(e;). Then x =ex + (1 — ¢;) and
¥ =ey+ (1 —e;). Therefore

Yy = ex(l —e;) + (1 —ee,y = ex + ey

which, by symmetry, is also equal to y=.

(2) Next, C = M(e) x M(e)) x --- x M(e,). For suppose zeC.
Then e;x + (1 - e)e M(e), i = 1, ---,n. Now



GROUP MEMBERSHIP IN RINGS AND SEMIGROUPS 1091

ez + (1 —e)) - ez + (1 —e)l
=ex+ - tex=( 4 - Fe)x=2x.

(3) We now prove that M(e)n [[;,;Mfe,) = 1. For let = belong
to this intersection. Then
r=ex+(1—e)=]l{ez; + (1 —e)},
ik
where z;e¢ U. Hence, from the commutativity of the e;z; + (1 —¢,) and
the fact that efe;x; -+ (1 —¢,))} = e, it follows that

exT =mTe, =€, X e X o X € e,
and so

r=e¢ex+(l—¢)=e+(1—e¢)=1.
From (1), (2) and (8) it follows that C is the direct product of the Me,).

COROLLARY 2.3. C(e) = M(e) @ M\(1 —e) = M(e) @ M(1 — e).
Proof. It is merely necessary to notice that C(e) = C(e,1 — e).

3. Group elements in extensions of 7-regular semigroups and rings.
In this section R will generally denote a semigroup; results in which R
must be assumed to be a ring will be so indicated.

Let R be a semigroup and e B. We say that o is left w-regular
(181, 12]) if there exists an element x in K and a positive integer n such
that za*'!' = a®. The semigroup R is said to be left m-regular if every
element of R is left m-regular. Similar definitions are made for right
r-regularity. Evidently, if « is both left and right z-regular then there
exist z and ¢ in R and a positive integer n for which za"'' = a" = a™''y,

Left =m-regularity is a finiteness condition in the following sense:
The element « is left r-regular if and only if the descending sequence
of left ideals Rax 2 Ra* 2 Ra® 2 --- terminates in a finite number of
steps. More precisely, za™'' = a” implies that Ra""' = Ra™, and conversely,
Ra™*' = Ra® implies that za"** = a"*' for some z € R, and, if R has an
identity, implies za"*' = a*,

Left m-regularity does not imply right m-regularity and, of course,
conversely. In the case of semigroups this is shoqwn by the following
example. Let ¢ and 7 be two infinite cardinals with 7 < g, and let £
be a set of cardinal o. Let B be the semigroup of all one-to-one map-
pings of E into itself for which the completement of nF in K is of
cardinal 7. It is easy to see that for each «te B there is an x € B such
that xz« is the identity map on aE and so xri' = a, whence B is left
rw-regular, But for all integers » and all ye B, a"''yE is properly
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contained in @*E and, hence, no element of B is right m-regular, (In
the case that ¢ = v = ,, the semigoup B is called the semigroup of
Baer and Levi.)

I

THEOREM 3.1. Suppose R i8 a semigroup and S 18 an extension of
R. If acR is left m-regular and a 18 a group element in S, then a
18 also a group element in R.

Proof. Suppose « is a group element in S. Then there exists «’,
e € S such that

ae=ex=a, ae—=cext' =a, ad' =auw=c¢.

Since @€ R is left m-regular there exists an element x € R and a positive
integer n for which a" = za"''. Hence e = a"a’™ = z"'''" = ze =
zae R. Moreover, a' = e’ = xaa' = xee R. Consequently, «v is a group
element in R and the theorem is proved.

We note that it follows from this theorem that if S is any
extension of the semigroup B of our example and a € B, then a is not
a group element in S. For if « were a group element in S it would
also be a group element in B and hence right m-regular in B.

An element a of a semigroup R is called cancellable (often called
regular) if a is both right and left cancellable, viz: ax = ay implies
z =y and za = ya implies z = y. In a ring an element is cancellable
if and only if it is not a proper divisor of zero.

CoROLLARY 3.2. Let R be a semigroup and let T be an extension
of R. Suppose

(i) Every element of R is cancellable in T,

(ii) For each «we R, x € T there exist a'e R, x' € T such that ax’ =
za',

(ili) Ewvery element of R i8 left m-regular in R.
Then T contains an identity and R is a group.

Note that if R is a ring and R* is the set of non-zero elements of
R, then if R* satisfies (i), (ii) and (iii), the conclusion of the coroliary
tells us that R is a division ring.

Proof, By a slight modification of an argument of Jacobson |7],
p. 118, we may form a semigroup of fractions zf/a, xe T, xe R, If we
denote this semigroup of fractions by S, we may imbed 7, and conse-
quently R, in S by the mapping z — xa/a. The element «fa is an
identity for S and, of course, also for 7. Every element of R is inverti-
ble in § with respect to 1, namely its inverse is «/a’. In view of (iii)
it follows that 1¢ R, and thus to 7, and that each element of R has
an inverse in R, whence R is a group.
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We note that if R is assumed to be in the center of T then condi-
tion (ii) is automatically satisfied with @ = a' and =z = z".

COROLLARY 3.3. Let R be a ring, finitely generated as a module
over its center C. Suppose

(i) Every non-zero element of R i cancellable, that i3, R has no
proper zero divisoers,

(ii) Every element of C 18 left n-regular in C,
then R i3 a division ring.

Proof, By Corollary 3.2, C is a field. Thus R is a finite dimensional
algebra over C. But, by (i), this algebra has no zero divisors and a
finite dimension algebra without zero divisors is a division ring.

4. Powering elements into group elements. Under certain conditions
an element @« of a semigroup R may not be a group element itself
although some power of it may be. An example of this is the case when
R contains a zero element and a is a nilpotent element of R.

THEOREM 4.1. Let R be a semigroup and S an estension of R such
that for each x € S there is a positive integer m = m(x) for which x™¢€ R.
Suppose xe B and (¢ i3 both left and right m-regular in S.! Then a”
i8 a group element in R for some n and conversely.

Proof. Since « is both left and right z-regular, find z,y€S and

a positive integer n such that za"' =" =a**'y. If p 2z m then it
follows that za™'' = o = «*''y. Find m(z) and m(y) such that z™*,
y™ e R and set p = m(x)m(y)n. Then 2", y"€ Rand za™'"! = a® = a’''y.
Note that

zra® = z2a®t = ® Hy"t = al‘y

and so we may set § = z”a® = a*y*® and ¢ = z’a® = a’y®*. Then B8,
ee R and

Bar = xPa = xP-'par ) = 2l = .. = xfat = e,
Similarly "8 =e. Also
et™ = P = Pzttt = " '\P V=2 eee = ”,
By another similar argument «” = a”. Further,
ef = PPy = z'aty? = xPa® = B

! Drazin [4] calls an element which is both left and right r-regular a pseudo-invertible
element.
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and Be = B. Thus, in order to show that a® is a group element, it is
now sufficient to show that ¢ is idlempotent. But ¢’ = 2°*"y® = a®y® = e.

Conversely, if a" is a group element in & and 8 is the group in-
verse of «a", then Ba™ = a" = a*"f. Hence, « is both left and right
n-regular in R, and therefore in S.

COROLLARY 4.2. If R ig a semigroup, ac R and « i8 both left and
right m-regular, then " is a group element in R for some n and con-
versely. More precisely, «" is a group element if and only if

"' = " = (1"“7]

for some x,yc R.
Proof. Take S = R is the preceding theorem.

This result appears in a somewhat different guise in a paper by
M. P. Drazin, [4].

COROLLARY 4.3. Let R be a semigroup and a" a group element
with identity e in R. If ex = « then « i3 a group element in R, and
conversely.

Proof. Let a" be a group element with identity ¢ and inverse 3.
Then a**' is also a group element with the same identity and so « =
et = fSat-a = Ba”'' a product of group elements with idempotent e and
thus a2 group element itself.

Conversely, if @ is a group element with identity f and «" is a group
element with identy e, then e = f since @" is also a group element with
identity f.

5. Annihilator conditions that a given element be a group element.
In a ring R we define the left and right annihilators of an element
a in the usual manner:

A0, @) ={ze R:za =0} and A,(0,a) = {ze R:az = 0} .

So that we may state our next results for semigroups as well as rings
we shall generalize the concept of an annihilator. In a semigroup R we
shall set

Afz, ) = {ze R: za = za},
Az, ) = {ze . az = ax} .

Several consequences of these definitions are easily proved (though we
shall makes no use of these properties). The sets A(x, «¥) are equivalence
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classes modulo the equivalence relation z =, 2 defined by za = za, and
similarly for the sets A,(z, ). An element e /¢ is cancellable if and
only if A/(x, @) = A(z,«) = {2} for all z¢ R. If R is a ring, then
Afz, ) = x - A0, ) and Az, ) = z 4 A.(0, «). Finally, (and this we
shall need) it is evident that

Al(xr (-() = A,(x, al) = Al(x, 'r.l) S e

and that Az, ') = A(>, a"'') implies that A(x, «*) = Az, ™) for all
m = n, and similarly for the sets A (x, «¥), A,(r, ), ete.

In analogy with the phrase left m-regular we introduce the following
terminology: An element « of a semigroup It is called left A-regular
in R if there exists a positive integer n for which xr”'* = zee**' implies
that zn” == zet~ for all x and z in B, Thus ¢ in R is let A-regular if
and only if the ascending chains A,(x, ) & A(x, ") & --- terminate in
finitely many steps for all z ¢ It.

It is easy to see that a left m-regular element of a semigroup R is
right A-regular, and a right n-regular element is left A-regular. In
this connection, a slight generalization of a theorem Azumaya |2] proved
for rings is of interest.

THEOREM 5.1. Let R be a semigroup and « a left n-regular element
of R. If « iy left A-regular then « is right x-regular, and conversely.

Proof. Suppose ¢ is left A-regular in . Then we may choose a
positive integer n such that ze"'' = 2’a""'implies ze® = 2’ for all z,
z’e R and xre'' = «* for some v € R. We wish to prove that a"''y = "
for some ye R. It is clearly sufficient to prove that a™x™a* = a" for
m=10,1,2,+--. Since the case m = 0 is trivial, we proceet by induction,
Thus, assume that a™z™«x" = «". Then

amUigmiignil — gmblgman — gl = g s

whence a™!'z"Vq" = zn-n" = @,

That the converse is true has already lLeen remarked before the
statement of the theorem.

The second theorem of this section relates the integers = iwhich
occur in the definitions of m-regularity and A-regularity. Let n be a
positive integer and let z and « be elements of the semigroup R. We
shall say that condition A(z, rt, n) holds if both Afz, *'") == A,(z, ") and
Az, "'y = A(z, "). Thus an element (r is both right and left A-regular
if there exists a positive integer n such that A(z,, n) holds for all z,
and conversely. If R is a ring and A(z, «t, ) is satisfied for some z¢ R
then A(z, @, n) is satisfied for all ze R.

THEOREM 5.2. Let R be a semigroup and lct ¢ be an element of R
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which i8 both left and right m-regular in R. The following resulls
hold:

(i) If a* i8 a group element in R then A(z, a,n) holds for all
ze R.

(ii)) If A(a, a, n) holds then a™'' i3 a group element in R.

(i) If R has identilty 1 and AQl, a, n) holds then a~ 18 a group
element.

We remark that under the hypotheses of the theorem, " is a group
element for some n and a is both left and right A-regular.

Proof. (i) If a® is a group element, then it follows from Corollary
4.2 that za""' = a" = "'y for some x, y € K. Suppose that u is any ele-
ment of A,(z, ') where z¢ R. Then za" = za" "'y = ua"''y = uax”, whence
u € Az, a") which implies A,(z, «"'") = Az, «"). The proof of A (z,a"*')=
Az, a") i3 similar.

(ii) Suppose that A(a, @, n) holds. Since a is let 7-regluar there
exists a positive integer m and an z ¢ R such that za™"' = a™, We shall
show that za***=a""'. If m <n + 1, we obtain this equality by
multiplying the previous equality by a*™'', If m =xn + 1 there is
nothing to prove. If m > n + 1 then za’a™' = aw™ ' and A(«, a,n)
implies that

' = et = aat = at't

The existence of an element ye R satisfying «"'’y = «"'' is proved
similarly. 1t now follows from Corollary 4.2 that a”''is a group element,.

(iii) The proof is similar to the proof of (ii). This time it follows
from za™'' = 1la™ when m n that za*'' = xan" = la® = a* by virture
of A(1,a,n). Hence a" is a group element.

6. A criterion that a ring be semi-divided. A ring is said to be
divided if it bas an idenlity and every element is invertible or nilpotent.
A ring is semi-divided if it is the direct sum of (possibly infinitely many)
divided rings. The terminology is that of |6]. In this section we shall
give necessary and sufficient conditions that a left m-regular ring be
semi-divided.

LEMMA 6.1. Let R be a semigroup both left and right w-regular.
Then every non-nil (left) ideal of R conlains @ non-zero idempotent.

Proof. Let I be a non-nil left ideal of I and « a non-nilpotent
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element of /. a" is a group element with respect to the non-zero idem-
potent e for some n. Let B be the inverse of @°. Then ¢ = Ba*e I.

If ¢ and f are idempotents then we say that e dominates fif ef =
fe =f. An idempotent ¢ #+ 0 is primitive if it dominates only 0 and
itself. For rings this is equivalent to saying that ¢ is primitive if it is
not the sum of two non-zero orthogonal idempotents.

THEOREM 6.2. Let R be a ring satisfying the following conditions:

(i) R is left and right m-regular;

(ii) Every primitive idempotent of R is in the center of R;

(iii) Every non-zero idempotent of R dominales a primitive idem-
polent;

(iv) If ze R then ze =0 for all but finitely many primitive
idempotents e.
Then R 18 the direct sum of a semi-divided ring and a nil ring, and
conversely. If, in addition, R satisfies the condition:

(v) Every element of R has a left or right identity,
then R is semi-divided, and conversely.

Proof. Let e¢ be a primitive idempotent. Then Re = eR, since e
i in the center of R, and ¢ is the identity of Re. Since e is primitive
e is unique non-zero idempotent of Re. If a e Re is not nilpotent then
«* is invertible in Re. But eax = @ and so, by 4.3, a is invertible in Re.
Hence Re is a divided ring.

Let {e;) be the set of all primitive idempotents of R. ee; = 0 if
¢, # ¢;. The sum YRe, is direct; for if x€ Re; N 3., Re, then z = x6; =
S sizee; = 0. Thus R, = YRe; is semi-divided.

Let R, be the set of all xe R for which xe; = 0 for all primitive
idempotents ¢;. I, is an ideal of B. If R, contains a non-zero idempotent
then, by condition (iii) I, contains a primitive idempotent ¢. But then
we would have ¢ = ¢* = 0. Hence, by 6.1, R, must be nil.

The sum FR, + R, is direct; for if £ # 0 is an element of R, then
xe; # 0 for at least one ¢,. Hence, R,N R, = 0. We now wish to show
that B = R, 4- R,. If x € IR then ze; # 0 for only finitely many primitive
e;. Hence, ' == x — Yze, is well defined. Moreover, z'e; = xe; — xel = 0
and so z'€¢ R,, Therefore, © = Xxe; + 2’ ¢ R, + K,, Hence, K is the
direct sum of a semi-divided ring and a nil ring.

The converse is directly verified. |

Now suppose in addition to (i)-(iv) R also satisfies (v). Letzxe R,
Then x has a (say left) identity e == e, + ¢, ¢,€ R, e,€ F,, and

T =er =€+ €T = 6T,

since ¢,x = 0. But then a = erx for all m = 0. Since R, is nil, e] =0
for some m and so x = 0. Thus kK, == 0 and R = R,, a semi-divided ring.
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Again, the converse is easily verified.

That condition (iv) is actually necessary may be seen from the fol-
lowing example. Let S be the strong direct sum of countably many
copies of Z,, the ring of integers mod 4. Let R be the subring of S
generated by the weak direct sum and the element (2,2, :--,2, :::),
Then R satisfies (i)-(iii) and is not the direct sum of a semi-divided
ring and nil ring.

In conclusion, the authors wish to express their gratitude to M. P,
Drazin for several pertinent criticisms.
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