Reprinted from the *Proceedings oj the Cambridge Philosophical Society,* Volume 57, Part 2, pp. 234-236, 1961 PRINTED IN GREAT BRITAIN

COMPLETELY SIMPLE AND INVERSE SEMIGROUPS

By R. McFADDEN AND HANS SCHNEIDER

Communicated by D. C. J. BURGESS

Received 21 November 1959

1. The purpose of this paper is to investigate the structure of certain types of semigroups. Rees (6), (7) has determined the structure of a completely simple semigroup, and has shown that such a system may be realized as a type of matrix semigroup. Clifford (2) and Schwarz (8) have found conditions, namely, the existence of minimal left and minimal right ideals, under which a simple semigroup is completely simple, and have made a more detailed study of such semigroups. Preston (4), (5) has studied . inverse semigroups, in which each non-zero element has a unique relative inverse, and has also considered inverse semigroups which contain minimal right or left ideals.

In the present paper we obtain a set of conditions on a simple semigroup, each of which is equivalent to the semigroup being both completely simple and inverse. Section 2 defines the terms used and gives a brief résumé of the main results which have already been proved. Section 3 is devoted to our present considerations.

2. A semigroup *S* is *simple* if it has no non-trivial two-sided ideals and if S^2 \neq (0). This last condition excludes the semigroups (0) and (0, a) with $a^2 = 0$. The semigroup *S* is *completely 8imple* if it is simple, and

(i) to every non-zero element a of S there correspond idempotents e and f of S such that $ea = a = af$;

(ii) if e is an idempotent of S , the only non-zero idempotent f of S for which $ef = fe = f$ is $f = e$.

An idempotent *e* for which (ii) holds is said to be *primitive.*

A semigroup *S* is *inver8e* ifidempotents commute and if to every non-zero element *a* of S there corresponds at least one element e of S for which $ea = a$, and for which the equation $ax = e$ is soluble for *x* in *S*.

A minimal left ideal is a non-zero left ideal which does not properly contain any non-zero subset which is also a left ideal. If *S* is simple and contains a non-zero idempotent, it is known that the existence of a minimal left ideal implies that of a minimal right ideal. Thus we may prove the following results; let S be a simple semigroup containing at least one non-zero idempotent. Then the following are equivalent:

(i) S is completely simple.

(ii) S contains a minimal right (left) ideal.

(iii) S is the union of all its minimal right ideals and of all its minimal left ideals.

If L is a minimal left, and R a minimal right ideal of S then either $LR = S$ and $R \cap L = RL$ is a group with zero, or $LR = (0)$ and RL is a zero semigroup. $\{(RL)^2 = (0)\}.$ For each *R* there exists at least one *L*, and for each *L* at least one *R* such that $LR = S$.

These results were first proved by Clifford (2), Rees (6), (7) and Schwarz (8). A concise summary of most of the results quoted, with simple proofs, may be found in Bruck (1).

IS

235 *Completely simple and inverse semigroups*

3. THEOREM. Let S be a simple semigroup. Then the following are equivalent:

(i) *S is a completely simple semigroup in which idempotents commute.*

(ii) *For each non-zero a in S there exists a unique x in S such that* $axa = a$ *.*

(iii) *For each non-zero a in S there exist unique elements* e *and* e' *such that* $ea = a = ae'$ *. (It is easily seen that* e *and* e' *are idempotent.)*

(iv) *Every non-zero principal right ideal and every non-zero principal left ideal contains just one non-zero idempotent.*

(v) *S is completely simple. For every minimal right ideal R there exists just one minimal left ideal L, and for every minimal left ideal L there exists just one minimal right ideal R, such that LR* = *S. (Or equivalently, RL is a group with zero. Hence the sets of minimal left and minimal right ideals are in* (1-1) *correspondence.)*

(vi) *S is completely simple. Every minimal right ideal R of S is the union of a group with zero and a zero semigroup which annihilates the right ideal on the left, and every minimal left ideal L of S is the 1mion of a group with zero and a zero semigroup which annihilates the left ideal on the right.*

(vii) *S contains at least one non-zero idempotent, and the product of distinct idempotents is zero.*

Proof. (i) *implies* (ii). If *a* is any non-zero element of *S,* there exist idempotents e and *f* such that $ea = af = a$. Since *S* is completely simple, *e* is primitive, so *eS* is minimal (2). But $eS = aS$ and $aS = af + 0$, whence by the minimality of eS , $eS = aS$. It follows that the equation $ax = e$ has a solution x in S. Hence S is inverse. Further, the equation $axa = a$ is soluble. Clearly, x and xa are non-zero, so since *S* is completely simple, xS and xaS are minimal; as $xaS \subset xS$ we must have $xS = xaS$. Thus the idempotent *xa* is a left identity for *xS*, and since $x \in xS$, $xax = x$. But in an inverse semigroup the equations $axa = a$ and $xax = x$ have a unique common solution, (3), so *x* is the only element for which *axa* = *a.*

(ii) *implies* (iii). Solve $axa = a$ for x and set $e = ax$. Then $e^2 = e + 0$; suppose that in addition $fa = a$. Then $e = ax = fac = fe$, and so $f = e$ by (ii). The proof of the uniqueness of the right identity is similar.

(iii) *implies* (iv). The principal right (left) ideal generated by any element *a* in *S* is defined to be the intersection of all right (left) ideals of *S* containing *a,* and under our present assumptions is *aS.* (*Sa*). Let *e* be the unique idempotent such that $ea = a$. If f is any non-zero idempotent such that $ef = fe = f$, (iii) shows that $f = e$, so that e is primitive. As above, $aS = eS$, so the principal right ideal aS contains e. If *g* is any non-zero idempotent contained in *aS*, $g \in eS$ so $eg = q$, whence again by (iii), $g = e$. The proof for left ideals is analogous.

(iv) *implies* (v). Let e be a non-zero idempotent of *S,* and let *f* be any non-zero idempotent such that $ef = fe = f$. Then $f \in Se$ so $f = e$ and e is primitive. Since *S* is simple it is therefore completely simple (7). Let *R* be a minimal right ideal of *S;* since *S* is completely simple, *R* contains an idempotent $e \neq 0$, and $R = eS$. By assumption, e is unique. Let Land *L'* be minimal left ideals of *S* such that *RL* and *RL'* are groups with zero. Then RL and RL' both contain e, so $RL \cap RL' \neq 0$, whence $L \cap L' \neq 0$. It follows that $L = L'$, since L and L' are minimal. The proof for left ideals is again analogous.

(v) *implies* (vi). Let *L* be the unique minimal left ideal such that *RL* is a group with zero. Let $G = RL$ and let Z be the complement of the non-zero part of G in R. Then $R = G \cup Z$ and $ZR = (0)$, since each element of *Z* belongs to a left ideal *L'* for which $L'R = (0)$. That Z is a zero semigroup is obvious. The proof for left ideals is completely analogous.

(vi) *implies* (vii). Clearly *S* contains at least one non-zero idempotent *e.* Let *f* be any idempotent such that $ef \neq 0$. Since *S* is the union of its minimal left ideals, *e* is in some minimal left ideal *L,* and dually, f is in some minimal right ideal *R.* Then $LR \supseteq ef + 0$, so RL is a group with zero, say *G*. Since $RL \subseteq L$ and $RL \subseteq R$ it follows that $R = G \cup Z$, $L = G \cup Z'$ where Z and Z' are the left and right annihilators of R and L , respectively. We conclude that e and f must coincide with the identity element of G, and so the product of distinct idempotents is zero.

(vii) *implies* (i). Let *e* and *f* be non-zero idempotents of *S*; then $ef = fe = f$ implies that $e = f$, so all non-zero idempotents of *S* are primitive. It follows that *S* is completely simple (7). That idempotents commute is obvious.

We note that in the proof of the first part of the theorem we have shown that a completely simple semigroup in which idempotents commute is inverse.

To show that the condition of simplicity is necessary for the equivalence of all our conditions, consider the semigroup *S* with multiplication defined as follows:

Then *S* is commutative and satisfies condition (vii), having *a* and *b* as its only non-zero idempotents, but does not satisfy conditions (i) , (v) or (vi) as it is not simple. $(A = (0, a, a_1, a_2)$ and $B = (0, b, b_1)$ are ideals of S.)

By considering the semigroup *T* in which multiplication is defined by $ab = a$ for all non-zero *a* and *b* in *T*, we see that the left and right conditions of the theorem are necessary. It is easily seen that T is completely simple, but is not inverse, for idempotents do not commute; clearly T satisfies the first part of conditions (iii), (iv), (v) and (vi), but not the second.

REFERENCES

- (1) BRUCK, R. H. *A BUryJey of binary·systems* (Berlin, 1958).
- (2) CLIFFORD, A. H. Semigroups without nilpotent ideals. *Amer.* J. *lvlath.* 71 (1949), 834-44.

(3) MUNN, W. D. and PENROSE, R. A note on inverse semigroups. *Proc. Camb. Phil. Soc. 51* (1955), 396-9.

- (4) PRESTON, G. B. Inverse semigroups. J. *Land. lYlath. Soc.* 29 (1954), 397-403.
- (5) PRESTON, G. B. Inverse semigroups with minimal right ideals. J. *Land. Math. Soc. 29* $(1954), 404-11.$
- (6) REES, D. On semigroups. *Proc. Camb. Phil. Soc.* 36 (1940), 387-400.
- (7) REES, D. A note on semigroups. *Proc.Camb. Phil. Soc.* 37 (1941), 434-5.
- (8) SCHWARZ, S. On semigroups having a kernel. *Czech. Math.* J. 1 (76) (1951).

QUEEN'S UNIVERSITY

BELFAST