Reprinted from the Proceedings of the Cambridge Philosophical Society, Volume 57, Part 2, pp. 234–236, 1961 PRINTED IN GREAT BRITAIN

COMPLETELY SIMPLE AND INVERSE SEMIGROUPS

BY R. McFADDEN AND HANS SCHNEIDER

Communicated by D. C. J. BURGESS

Received 21 November 1959

1. The purpose of this paper is to investigate the structure of certain types of semigroups. Rees (6), (7) has determined the structure of a completely simple semigroup, and has shown that such a system may be realized as a type of matrix semigroup. Clifford (2) and Schwarz (8) have found conditions, namely, the existence of minimal left and minimal right ideals, under which a simple semigroup is completely simple, and have made a more detailed study of such semigroups. Preston (4), (5) has studied inverse semigroups, in which each non-zero element has a unique relative inverse, and has also considered inverse semigroups which contain minimal right or left ideals.

In the present paper we obtain a set of conditions on a simple semigroup, each of which is equivalent to the semigroup being both completely simple and inverse. Section 2 defines the terms used and gives a brief résumé of the main results which have already been proved. Section 3 is devoted to our present considerations.

2. A semigroup S is simple if it has no non-trivial two-sided ideals and if $S^2 \neq (0)$. This last condition excludes the semigroups (0) and (0, a) with $a^2 = 0$. The semigroup S is completely simple if it is simple, and

(i) to every non-zero element a of S there correspond idempotents e and f of S such that ea = a = af;

(ii) if e is an idempotent of S, the only non-zero idempotent f of S for which ef = fe = f is f = e.

An idempotent e for which (ii) holds is said to be primitive.

A semigroup S is *inverse* if idempotents commute and if to every non-zero element a of S there corresponds at least one element e of S for which ea = a, and for which the equation ax = e is soluble for x in S.

A minimal left ideal is a non-zero left ideal which does not properly contain any non-zero subset which is also a left ideal. If S is simple and contains a non-zero idempotent, it is known that the existence of a minimal left ideal implies that of a minimal right ideal. Thus we may prove the following results; let S be a simple semigroup containing at least one non-zero idempotent. Then the following are equivalent:

(i) S is completely simple.

(ii) S contains a minimal right (left) ideal.

(iii) S is the union of all its minimal right ideals and of all its minimal left ideals.

If L is a minimal left, and R a minimal right ideal of S then either LR = S and $R \cap L = RL$ is a group with zero, or LR = (0) and RL is a zero semigroup. $\{(RL)^2 = (0)\}$. For each R there exists at least one L, and for each L at least one R such that LR = S.

These results were first proved by Clifford (2), Rees (6), (7) and Schwarz (8). A concise summary of most of the results quoted, with simple proofs, may be found in Bruck (1).

Completely simple and inverse semigroups

3. THEOREM. Let S be a simple semigroup. Then the following are equivalent:

(i) S is a completely simple semigroup in which idempotents commute.

(ii) For each non-zero a in S there exists a unique x in S such that axa = a.

(iii) For each non-zero a in S there exist unique elements e and e' such that ea = a = ae'. (It is easily seen that e and e' are idempotent.)

(iv) Every non-zero principal right ideal and every non-zero principal left ideal contains just one non-zero idempotent.

(v) S is completely simple. For every minimal right ideal R there exists just one minimal left ideal L, and for every minimal left ideal L there exists just one minimal right ideal R, such that LR = S. (Or equivalently, RL is a group with zero. Hence the sets of minimal left and minimal right ideals are in (1-1) correspondence.)

(vi) S is completely simple. Every minimal right ideal R of S is the union of a group with zero and a zero semigroup which annihilates the right ideal on the left, and every minimal left ideal L of S is the union of a group with zero and a zero semigroup which annihilates the left ideal on the right.

(vii) S contains at least one non-zero idempotent, and the product of distinct idempotents is zero.

Proof. (i) *implies* (ii). If a is any non-zero element of S, there exist idempotents e and f such that ea = af = a. Since S is completely simple, e is primitive, so eS is minimal (2). But $eS \supset aS$ and $aS \supset af \neq 0$, whence by the minimality of eS, eS = aS. It follows that the equation ax = e has a solution x in S. Hence S is inverse. Further, the equation axa = a is soluble. Clearly, x and xa are non-zero, so since S is completely simple, xS and xaS are minimal; as $xaS \subset xS$ we must have xS = xaS. Thus the idempotent xa is a left identity for xS, and since $x \in xS$, xax = x. But in an inverse semigroup the equations axa = a and xax = x have a unique common solution, (3), so x is the only element for which axa = a.

(ii) *implies* (iii). Solve axa = a for x and set e = ax. Then $e^2 = e \neq 0$; suppose that in addition fa = a. Then e = ax = fax = fe, and so f = e by (ii). The proof of the uniqueness of the right identity is similar.

(iii) *implies* (iv). The principal right (left) ideal generated by any element a in S is defined to be the intersection of all right (left) ideals of S containing a, and under our present assumptions is aS. (Sa). Let e be the unique idempotent such that ea = a. If f is any non-zero idempotent such that ef = fe = f, (iii) shows that f = e, so that e is primitive. As above, aS = eS, so the principal right ideal aS contains e. If g is any non-zero idempotent contained in aS, $g \in eS$ so eg = g, whence again by (iii), g = e. The proof for left ideals is analogous.

(iv) *implies* (v). Let e be a non-zero idempotent of S, and let f be any non-zero idempotent such that ef = fe = f. Then $f \in Se$ so f = e and e is primitive. Since S is simple it is therefore completely simple (7). Let R be a minimal right ideal of S; since S is completely simple, R contains an idempotent $e \neq 0$, and R = eS. By assumption, e is unique. Let L and L' be minimal left ideals of S such that RL and RL' are groups with zero. Then RL and RL' both contain e, so $RL \cap RL' \neq 0$, whence $L \cap L' \neq 0$. It follows that L = L', since L and L' are minimal. The proof for left ideals is again analogous.

235

(v) implies (vi). Let L be the unique minimal left ideal such that RL is a group with zero. Let G = RL and let Z be the complement of the non-zero part of G in R. Then $R = G \cup Z$ and ZR = (0), since each element of Z belongs to a left ideal L' for which L'R = (0). That Z is a zero semigroup is obvious. The proof for left ideals is completely analogous.

(vi) *implies* (vii). Clearly S contains at least one non-zero idempotent e. Let f be any idempotent such that $ef \neq 0$. Since S is the union of its minimal left ideals, e is in some minimal left ideal L, and dually, f is in some minimal right ideal R. Then $LR \supset ef \neq 0$, so RL is a group with zero, say G. Since $RL \subset L$ and $RL \subset R$ it follows that $R = G \cup Z$, $L = G \cup Z'$ where Z and Z' are the left and right annihilators of R and L, respectively. We conclude that e and f must coincide with the identity element of G, and so the product of distinct idempotents is zero.

(vii) *implies* (i). Let e and f be non-zero idempotents of S; then ef = fe = f implies that e = f, so all non-zero idempotents of S are primitive. It follows that S is completely simple (7). That idempotents commute is obvious.

We note that in the proof of the first part of the theorem we have shown that a completely simple semigroup in which idempotents commute is inverse.

To show that the condition of simplicity is necessary for the equivalence of all our conditions, consider the semigroup S with multiplication defined as follows:

	0	a	a_1	a_2	ь	<i>b</i> ₁
0	0	0	0	0	0	0
a	0	a	a_1	a_2	0	0
a_1	0	a_1	a_2	a	0	0
a_2	0	a_2	a	a_1	0	0
b	0	0	0	0	b	b_1
b_1	0 .	0	0	0	b_1	b

Then S is commutative and satisfies condition (vii), having a and b as its only non-zero idempotents, but does not satisfy conditions (i), (v) or (vi) as it is not simple. $(A = (0, a, a_1, a_2) \text{ and } B = (0, b, b_1) \text{ are ideals of } S.)$

By considering the semigroup T in which multiplication is defined by ab = a for all non-zero a and b in T, we see that the left and right conditions of the theorem are necessary. It is easily seen that T is completely simple, but is not inverse, for idempotents do not commute; clearly T satisfies the first part of conditions (iii), (iv), (v) and (vi), but not the second.

REFERENCES

- (1) BRUCK, R. H. A survey of binary systems (Berlin, 1958).
- (2) CLIFFORD, A. H. Semigroups without nilpotent ideals. Amer. J. Math. 71 (1949), 834-44.

(3) MUNN, W. D. and PENROSE, R. A note on inverse semigroups. Proc. Camb. Phil. Soc. 51 (1955), 396-9.

- (4) PRESTON, G. B. Inverse semigroups. J. Lond. Math. Soc. 29 (1954), 397-403.
- (5) PRESTON, G. B. Inverse semigroups with minimal right ideals. J. Lond. Math. Soc. 29 (1954), 404-11.
- (6) REES, D. On semigroups. Proc. Camb. Phil. Soc. 36 (1940), 387-400.
- (7) REES, D. A note on semigroups. Proc. Camb. Phil. Soc. 37 (1941), 434-5.
- (8) SCHWARZ, S. On semigroups having a kernel. Czech. Math. J. 1 (76) (1951).

QUEEN'S UNIVERSITY

Belfast