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1. The purpose of this paper is to investigate the structure of certain types of semi­
groups. Rees (6), (7) has determined the structure of a completely simple semigroup, 
and has shown that such a system may be realized as a type of matrix semigroup. 
Clifford (2) and Schwarz (8) have found conditions, namely, the existence of minimal 
left and minimal right ideals, under which a simple semigroup is completely simple, 
and have made a more detailed study of such semigroups. Preston (4), (5) has studied 

. inverse semigroups, in which each non-zero element has a unique relative inverse, and 
has also considered inverse semigroups which contain minimal right or left ideals. 

In the present paper we obtain a set of conditions on a simple semigroup, each of 
which is equivalent to the semigroup being both completely simple and inverse. 
Section 2 defines the terms used and gives a brief resume of the main results which 
have already been proved. Section 3 is devoted to our present considerations. 

2. A semigroup S is 8imple if it has no non-trivial two-sided ideals and if 82 =\= (0). 
This last condition excludes the semigroups (0) and (0, a) with a2 = O. The semigroup 
S is completely 8imple if it is simple, and 

(i) to every non-zero element a of 8 there correspond idempotents e and f of S 
such that ea = a = af; 

(ii) if e is an idempotent of 8, the only non-zero idempotent f of 8 for which 
ej = je = f is f = e. 

An idempotent e for which (ii) holds is said to be primitive. 
A semigroup S is inver8e ifidempotents commute and if to every non-zero element a 

of S there corresponds at least one element e of 8 for which ea = a, and for which the 
equation ax = ' e is soluble for x in 8. 

A minimal left ideal is a non-zero left ideal which does not properly contain any 
non-zero subset which is also a left ideal. If S is simple and contains a non-zero idem­
potent, it is known that the existence of a minimal left ideal implies that of a minimal 
right ideal. Thus we may prove the following results; let S be a simple semigroup 
containing at least one non-zero idempotent. Then the following are equivalent: 

(i) S is completely simple. 
(ii) 8 contains a minimal right (left) ideal. 

(iii) S is the union of all its minimal right ideals and of all its minimal left ideals. 
If L is a minimal left, and R a minimal right ideal of S then either LR = Sand 

RnL = RLisagroupwithzero,orLR = (0) andRLis a zero semigroup. {(RL)2 = (On. 
For each R there exists at least one L, and for each L at least one R such that LR = S. 

These results were first proved by Clifford (2), Rees (6), (7) and Schwarz (8). A concise 
summary of most of the results quoted, with simple proofs, may be found in Bruck (1). 
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3. THEOREM. Let S be a simple semigr07bp. Then the following are equivalent: 
(i) S is a completely simple semigroup in which idempotents commute. 

(ii) For each non-zero a in S there exists a unique x in S such that axa = a. 
(iii) For each non-zero a in S there exist unique elements e and e' such that ea = a = ae'. 

(It is easily seen that e and e' are idempotent.) 
(iv) Every non-zero principal right ideal and every non-zero principal left ideal 

contains just one non-zero idempotent. 
(v) S is completely simple. For every minimal right ideal R there exists just one 

minimal left ideal L, and for every minimal left ideal L there exists just one minimal right 
ideal R, such that LR = S. (Or equivalently, RL is a group with zero. Hence the sets 
of minimal left and minimal right ideals are in (1-1) correspondence.) 

(vi) S is completely simple. Every minimal right ideal R of S is the union of a group 
with zero and a zero semigroup which annihilates the right ideal on the left, and every 
minimal left ideal L of S is the 1mion of a group with zero and a zero semigroup which 
annihilates the left ideal on the right. 

(vii) S contains at least one non-zero idempotent, and the product of distinct idempotents 
is zero. 

Proof. (i) implies (ii). If a is any non-zero element of S, there exist idempotents e 
and f such that ea = af = a. Since S is completely simple, e is primitive, so eS is 
minimal (2). But eS ::J as and as ::J af =l= 0, whence by the minimality of eS, eS = as. 
It follows that the equation ax = e has a solution x in S. Hence S is inverse. Further, 
the equation axa = a is soluble. Clearly, x and xa are non-zero, so since S is completely 
simple, xS and xaS are minimal; as xaS c xS we must have xS = xaS. Thus the'idem­
potent xa is a left identity for xS, and since x E xS, xax = x. But in an inverse semigroup 
the equations axa = a and xax = x have a unique common solution, (3), so x is the 
only element for which axa = a. 

(ii) implies (iii). Solve axa = a for x and set e = ax. Then e2 = e =l= 0; suppose that 
in addition fa = a. Then e = ax = fax = fe, and so f = e by (ii). The proof of the 
uniqueness of the right identity is similar. 

(iii) implies (iv). The principal right (left) ideal generated by any element a in S 
is defined to be the intersection of all right (left) ideals of S containing a, and under our 
present 'assumptions is as. (Sa). Let e be the unique idempotent such that ea,:= a. 
Iff is any non-zero idempotent such that ef = fe = f, (iii) shows thatf = e, so that e is 
primitive. As above, as ~ eS, so the principal right ideal as contains e. If g is any 
non-zero idempotent contained in as, gEeS so eg = g, whence again by (iii), g = e. 
The proof for left ideals is analogous. 

(iv) implies (v). Let e be a non-zero idempotent of S, and let f be any non-zero 
idempotent such that ef = fe = f. Then f ESe so f = e and e is primitive. Since S is 
simple it is therefore completely simple (7). Let R be a minimal right ideal of S; since 
S is completely simple, R contains an idempotent e =l= 0, and R = eS. By assumption, 
e is unique. Let Land L' be minimal left ideals of S such that RL and RL' are groups 
with zero. Then RL and RL' both contain e, so RL ('\ RL' =l= 0, whence L ('\ L' =l= O. 
It follows that L = L', since Land L' are minimal. The proof for left ideals is again 
analogous. 
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(v) implies (vi). Let L be the unique minimal left ideal such that RL is a group with 
zero. Let G = RL and let Z be the complement of the non-zero part of G in R. Then 
R = G u Z and ZR = (0), since each element of Z belongs to a left ideal L' for which 
L'R = (0). That Z is a zero semigroup is obvious. The prooffor left ideals is completely 
analogous. 

(vi) implies (vii). Clearly S contains at least one non-zero idempotent e. Let f be 
any idempotent such that ef =l= 0. Since S is the union of its minimal left ideals, e is 
in some minimal left ideal L, and dually, f is in some minimal right ideal R. Then 
LR ~ ef =l= 0, so RL is a group with zero, say G. Since RL eLand RL c R it follows 
that R = G u Z, L = G u Z' where Z and Z' are the left and right annihilators of R 
and L, respectively. We conclude that e andf must coincide with the identity element 
of G, and so the product of distinct idempotents is zero. 

(vii) implies (i). Let e andf be non-zero idempotents of S; then ef = fe = f implies 
that e = f, so all non-zero idempotents of S are primitive. It follows that S is com­
pletely simple (7). That idempotents commute is obvious. 

We note that in the proof of the first part of the theorem we have shown that a 
completely simple semigroup in which idempotents commute is inverse. 

To show that the condition of simplicity is necessary for the equivalence of all our 
conditions, consider the semigroup S with multiplication defined as follows: 

o a a1 a 2 b b1 

o 0 0 0 0 0 0 
a 0 a a1 a 2 0 0 
al 0 a1 a2 a 0 0 
a2 0 a 2 a a1 0 0 
bOO 0 0 b b1 

b1 0 0 0 0 b1 b 

Then S is commutative and satisfies condition (vii), having a and b as its only non-zero 
idempotents, but does not satisfy conditions (i), (v) or (vi) as it is not simpl.e. 
(A = (0, a, av a2 ) and B = (0, b, b1 ) are ideals of S.) 

By considering the semi group T in which multiplication is defined by ab = a for 
all non-zero a and b in T, lye see that the left and right conditions of the theorem are 
necessary. It is easily seen that T is completely simple, but is not inverse, for idem­
potents do not commute; clearly T satisfies the first part of conditions (iii), (iv), (v) 
and (vi), but not the second. 
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