BOUNDS FOR THE MAXIMAL CHARACTERISTIC ROOT OF A
NON-NEGATIVE IRREDUCIBLE MATRIX

By ALEXANDER OSTROWSKI AND HANS SCHNEIDER

1. Let A be an n X n non-negative irreducible matrix with row sums (all
summations go from 1 to n.)

() =2 G, R = max,r,, r = min,7, .
B

We shall suppose throughout that
2 r< R.

It is well known that because of (2) the maximal characteristic root of 4 satisfies
the inequality )
3 r<w<R.

In §2 we shall use simple arguments to determine bounds L and U for w
satislying
@ r<L<w<U<R,

which may be computed easily in terms of the elements of 4; more precisely,
L and U will depend only on r and R in (1) and

1
(5) o= n ;E 7
(6) A = min, @,
(7) K= minn‘n arn (avp > 0))

i.e. k is the minimum of the non-vanishing a,, with v > g.

In §3 a more refined and longer argument will lead to better bounds which
still depend only on the r, in (1) and « and A, but require more computation.

When A is positive, bounds satisfying the inequality (4) have already been
found by Ledermann [2] and improved by Ostrowski [3] and Brauer [1], but
these bounds may coincide with » and R if A has zero elements. Of course,
there are bounds which for many matrices A are better than » or R, but these
may again reduce to » and R in some cases. For example, one of us has proved,
[4], that « < max,r%! " wherez, = 2, a,,and 0 < p < 1, but this bound equals
R if A is symmetric.
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2. Tureorem 1. Lel w be the maximal characleristic rool of an n X n non-

negative irreducible mairiz A. Let r, R, p, \; and « be given by (1), (1), (5), (6),
and (7), respectively and sel

® < (R - x) ‘
Then

N (n — DA — &r + nep n — DA ~ R + nep
©) =Dl - +ne ~“S GoDU=0 +ne’

so that, independently of n,
(10) L=r4+edp—r=0—-er+ep <Ll —¢gR+ e

B —R—dB—p=U,
and these bounds obviously sa!isfy (4).

Proof. Let y be the positive characteristic (left-sided) row veetor belonging
to w;

11 Ey,‘a,‘, = wy, , p=1,---,n.
»

Summing these equalities we obtain the identity which is at the basis of our
results:

(12) 2 YT =0 DY, -
Now we may suppose that after a cogredient transformation and a normalization
(13) 220.=1, 2y 2y,

and we shall set

14 =%}h=
(14) 8= e gy,

Then {from (12)

(15) R - w= \Zy,(R —w = Ey.(R —r) 2y 2 B —7) =nyB — p),
and similarly '

1) o ~r=2g—1=2ue -0 >y 20 -0 =nubp -0,
Since F '

a7 = s B b
Ey,_(n—l)yl-kyn m—1+38’
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it now follows from (15) that

R —ow n d
R—p~ -1+

(18)

and from (16) that

@w—-T n o .
p—r " m—1D+

(19

We note that the right-hand side of (18) and (19) increases monotonically
with & for 6 non-negative and hence in both (18) and (19) we may replace &
by any positive lower bound. Such a bound is obtained by applying the argu-
ment of the lemma in [6] to the y, :

(20) 52 (=),

and hence by (3), e in (8) is also a lower bound. Thus

R —w ne
@1 R—sZ(n—D e’
and
(22) w — T ne

p—r " n—1+¢€’
and (21) and (22) are equivalent to (9).
For (10) we simply note that
(n — DA — oR + nep
n — 1)(1 — € + ne

mn—1DA — R -+ nep + (1 — 9B
n— DA —¢ F+ne+ (1 — ¢

(23)

< = (1 — R + ep,

and similarly for the lower bound. Thus our theorem is proved.

We remark that (10) could have been obtained directly by using

yn 1
2 = iy, > = -
( 4) Ya yﬂ/z': Y, Z ny, n )

in place of (17).

3. In this section we shall no longer assume (13) but suppose instead that
after a convenient cogredient transformation

(25) R=r2rn2 -2r=r.
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Tor any vectora = (z,, -+ , 2, # Swithz, > G, v =1, -+, n we shall define
2.1,
(26; V) = o

and prove:
Lemwa i Lell 2 € > 0, and let X, be the set of vectors (x, , -+ , z,) with
(27) 1> 2e¢ y=1, -, n.

The function ¢ is continuous on the closed bounded set X. and thus aflains ils
least wpper bound there, say

(28) ¥t = max (2}, ze X, .
J @ belongs lo X ., then Y(2) = * ¢f and only if

x, =1 i r, —¢* > 0,
x, =¢ If r, - ¢¥ < 0.

Prooj. We note that

(39 P Em~—<m

whenee by the mean value theorem

Vot 2 = v + Do et e

N
[=¥)
s

~

= Y(z) + m (2o z0r, — Yl + 62)

forsome 6,0 < 6 < 1.

Now suppese that ¢(x) = ¢* and that 2 = ¢ and
{

(32) V

0 according 2s ¥, — ¢* = 0.

IA IV

1.
9]

Let z be eny vector whose modulus is so small that for all v and all 6, with
G <6< i tueagne ol v, — Yo 4 d2) @ 1d' — F =, — {x) are the same
el

wheneve, 7, — ¢*% # Q. Kor all su iews from (81 and (8Z) that

eI

(28) Y@ 4 2 > vl = ¥

iee that {or these z the vector & -{- z doez not belong tc X, , and
ows imiediately.
(,onvelsely, suppose the vector z satisfies (33) and belongs to X, . Since
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Y attains its maximuem on X, , there exists a vector z* in X, with ¢(2%) = y*.
Put z = 2* + w. By the first part of the proof «* also satisfies (29), whence

(34) w, =0 U r, — ¢y* =0
and so

(35) D, = ¥t 2w, .
Thus

oA, onat A4 2w @ ar 4yt Jw,

LD YEORD SPCuD S D

v

(36)

and the lemms is proved.
The analogous result [or the greatest lower hound ig

LeEMMa 2. Lef X, be defined by (27). The function § aldains ils grealest lower
bound on X, , say

37) ¢, = min y(z), z2cX,.
If 2 belongs to X, then ¢(2) = ¥, if and only tf

{.’c,=e it — ¢, >0,
z, =4 i r,~ ¥, <0

(38;

We shalt now state and prove

‘

Treourm 2. Lel w be the mazimal characteristic roof of an n X n non-negalive
srreducible mafrix A, Sel

(3% p, = (L/ilre + -+ + 1k,
(40) 0, = (I/F)(Tn—ﬂrl - e + Tn})
where the v, are ordeved by (23), and lef ¢ be given by (B). Then

o P = dpr + nep
= Pl — ¢ 4+ e

(1 U(}.' — dag 4- e

<w
¢l — ¢ +ne —

where 118 (he smalles! tndeger v for which
(42} (”Nf - J’.»;l) ‘E' Lo _" (Tu - T--v!) ": 5((:(:4-1 — “'rr‘i} _{ T _I‘ (T,.,-.-: - Tr'.))
and ¢ 18 He shnndes! (niagcr v Tor which

A Nt \

(43 ('\"-l Y M "E_ (?‘n—z — i E".(rE T reent _Jl cee (’:'\-z—r-{ - ”’n—t)) -

g

Frooj, We inlioduce & new nototon for certzin vectors: Weite

-

(4—4) £ = (:El [ Iq) = (C“-"! [
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if
(45) T, = "=, =, xr+l="'=xn=ﬁ1

and from now on we shall suppose ¢ is given by (8). Let y again be the character-
istic row vector belonging to w and, since ¢ is a lower bound for § in (14), we may
suppose that y is normalized to belong to X, .

The equation (12) asserts that w = y(y), whence by (28) and Lemma 1

(46) w < P* = @),

where z is any vector satisfying (33). Since

47 > () >,

for all z in X, , there is a unique integer p, 1 > p > n such that
(48) T, > Y* 21,

and as (1%, €'77) satisfies (33), we obtain
w < YF = Y17, )
(49) _nt ot ) el o) p(l — o, + mep

P+ en — p) p(l — & +mne ’

which is one of the inequalities of (41).
Now by (48) p obviously satisfies

(50) Tpe1 — W1, &) = T — ¥* <0,
while for v < p, in virtue of r,,, 2> r, and (48)

(51) Torr — Y7, €7) > 1, — ¥* > 0.
Hence by (50) and (51) the integer p is the smallest v with
(52) r — (1, €77) < 0.

But

(s3) T T L', &) = Qg — (v —7rg)) + -+ + (, —1.0))

- 6((7.”1 - r!+2) + -+ (rv+1 - rn)))

whence it follows that p is the smallest integer satisfying (42).

Using Lemma 2 we may prove similarly that ¢, = ¢(¢"7% 17), where ¢ is the
smallest integer v satisfying (43); or alternatively this result may be obtained
by applying Lemma 1 tor, — r,, -+ , 7, — r, in place of v, , --- ,7.. We
have completed the proof of Theorem 2

It is clear that the bounds of Theorem 2 are better than those of Theorem 1,
since for all »
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vl — dpv +nep _ vl — OR +nep . (n — D1 — QR + nep
(54) (1 — ¢ + ne < (I — ¢ + ne = n—1DA — ¢ +ne ’

and these upper bounds are equal if and only if r, = -+ =r,_, > 7,.

A similar argument holds for the lower bounds, with equality here if and only
Hry >r,= - =n7,.

4. Recently one of us [5] has obtained some other bounds for §, and thus at
the expense of introducing more data depending on the elements of the matrix
A our results may be improved. When A is a postfive matrix, a particularly
simple bound for & is m/M where

(55) m = min, , a, and M = max,,a,,. .
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