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HyperpJanes and Prime Rings 

By EDWARD C. POSNER and HANs SCHNEIDER in Madison (Wise.) 

1. A ring R is prime if cad = 0 for all a in R implies that either c = 0 or d = O. 
Recently one of us has proved ([1] , Lemma 2) that in a prime ring cadal = 0 for 
all a in R implies c = 0, or d = 0, or I = O. It is still an open question under which 
conditions on a prime ring R the product Cl ac2 ••• acr = 0 for all a in R implies 
that some c, is O. However, we settle this question for prime rings with minimal 
ideals. To prove our theorem we require some lemmas on the covering of a vector 
space by hyperplanes, which may be of some interest in their own right. 

For completeness, we begin by giving a somewhat shorter proof of the result quoted 
above. Let R be prime, and suppose that cadal = 0 for all a in R. Then for all e', 
u' ·in R 

c(e' + u') d(e' + u') 1= ce'du'l + cu'de'l = 0 

whence, for all a, e, u, 

c(eca + alu) d(eca + alu) 1= cecadalul + caludecal = caludecal 

whence for all a, e either cal = 0 or decal = 0 and so, for all a, e decal = O. Thus 
either d = 0, or, for all a, cal = 0, whence we conclude that c = 0 or d = 0, or 
1=0. 

2. We now turn our attention to hyperplanes - or linear functionals - of a vector 
space. A division ring D we define to be an associative ring with identity in which 
every non-zero element is invertible. A right (left) vector space F over D is a unitary 
right (left) D-module of finite or infinite dimension. We shall denote by (x,1/) the 
image of 1/ in F under the linear functional x and shall call the set X of non-zero 
linear functionals on the vector space F over D a covering of F if for each 1/ in F 
there is an x in X for which (x, 1/) = O. Clearly vector spaces of dimension 0 and 1 
have no coverings. 

Lemma 1. Let F be a vector 8pace over the division ring D, and let E be a 8pace 01 
linear lunctionals on F, and suppose tMi dim E G 2. Then E contains a covering X 
01 F lor which 

(i) card X = q + 1, il card D = q is finite, 

(ii) card X = card D, il card D is infinite. 

Proof. Let Xo and z be linearly independent elements of E. Let 

X = {z} U {XA =:to + h: AeD}. 
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If y E F, either (z, y) = 0, or else (x)., y) = 0 where A = - (xo, y) (z, y)-l, whence 
X is a covering. 

Lemma 2. Le F be a vedor space over D, with dim F ~ 2, and let X be a covering 
of F by linear funclionaUi. Then 

(i) card X ~ q + 1 , if card D = q is finite, 

(ii) card X ~ No , if card D is infinite. 

Proof. It is sufficient to prove that if D has at least r elements, where r is finite, 
then for all families {Xl, •.. , Xr} of non-zero linear functionals on F there exists a 
y in F such that (Xt, y) 9= 0, i = 1, ... , r; and this we shall do by induction on r. 
If r = I, the result is plainly true. Suppose therefore that D has at least r elements 
and that we can find y' and y" such that 

ott = (Xt, y') 9= 0, i = 1 , ... , r -1 , 

{Jt = (xc,Y") 9=0, i=2, ... ,r. 

If otr = (:tr , y') 9= 0, or {JI = (Xl, y") 9= 0 there is no more to prove. Otherwise, since 
D has at least r elements, we can choose 0 9= A E D, A 9= - Pilott, i = 2, ... ,r -1, 
and verify immediately that y = y' + y" A satisfies (xc, y) 9= 0, i = I, ... , r. 

We shall prove Lemma 3 because of its intrinsic interest when compared with 
Lemma 2. 

Lemma 3. Let F be a finite-dirneMional veclor space over D, with dim F 6 2, and 
let X be a covering of F by linear functiorwls. Then 

(i) card X ~ q + 1 , if card D = q is finite, 

(ii) card X ~ card D, if card D is infinite. 

Proof. This l~mma will be proved by induction on the dimension n of F. ITn=2, 
there is a one-one correspondence between one-dimensional subspaces of F and their 
one-dimensional annihilators in the dual space E of F. Hence a covering X intersects 
each one-dimensional subspace of E, and since E has card D, resp. (q+ 1), one
dimensional subspaces the result is proved. Now suppose the lemma is true for spaces 
of dimension n-l, and let E be n-dimensional. Every covering X contains two 
linearly independent functionals xo, z. IT for every x). = Xo + AZ (A E D) there exist 
A' ED such that A' x). E X, then the set {z} U {A' x). : A ED} is contained in X and 
there is no more to prove. Otherwise, suppose A' x). does not belong to X for all A' in D 
and let F' be the (n-l)-dimensionalsubspace of F annihilated by x).. Then the re
strictions of the functionals of X to F' are non-zero and hence form a covering of F'. 
The result now follows from the inductive 888umption. 

In general, Lemma 2 caDnot be improved for infinite dimensional spaces F. For 
write F = F'EB F", where F' is of countable dimension, and let (yd, i = 1,2, ... , 
be a basis for F'. Define the linear functionals Xf, i = 1,2, "', by (Xf,YJ) = 6'J, the 
Kronecker delta, and (XC, F") = O. Since each element of F is a linear combination 
of an element of F" and a finite number of the Yc, the countable set {Xf}, i = 1,2, ... , 
covers F. However, if the linear functionals are restricted to lie in a fixed dual space 

22· 
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of F, then more than a countable number of linear functionals may be required to 
cover F. For example, let F be a Hilbert space and identify F with one of its duals 
in the canonical way. The hyperplanes orthogonal to elements of F are closed and 
nowhere dense in F in the metric topology. It now follows from the Baire Category 
Theorem ([2J, p. 200), applied to the set-theoretic complements of the hyperplanes, 
that the union of a countable set of hyperplanes is properly contained in F. 

In geometrical language, our lemmas refer to the coverings of a vector space by 
hyperplanes through the origin, but it is easy to see that very similar results may be 
proved for the coverings by hyperplanes that need not pass through this point. In 
fact, in the finite part (i) of our three lemmas, we need only replace (q + 1) by q, 
while the infinite part (ii) goes through without change. 

3. We now return to the study of prime rings with minimal left ideals. It is proved 
in JACOBSON ([3J, p. 195 prop. 2), that a ring R is prime if and only if every product 
of two non-zero ideals in R is non-zero. JACOBSON'S proof also establishes the follow
ing condition, which we wish to use: A ring R is prime if and only if every product 
of two non-zero left ideals in R is non-zero_ 

A ring R is called (left) primitive if there exists a faithful irreducible left R-module 
M. In order to make use of the structure theory of primitive rings we shall show that 
a ring with minimal left idealis prime if and only if it is primitive. It is known ([3J, p.195, 
prop. 1) that a primitive ring is prime. For proof, let M be a faithful irreducible left 
R-module, and let J, K be non-zero left ideals in R. Since M is faithful, KM '* 0, 
whence KM = M since 111 is irreducible. Similarly JM = J(KM) = M, (JK)M = 

= M, whence JK '* 0, and R is prime. It may not be so well known that a prime 
ring with minimal left ideal is primitive. For let M be a minimal left ideal and there
fore (since R1I1 '* 0 by primeness) an irreducible R-module. Since the left annihilator 
of M is a left ideal I for which 1M = 0, we conclude, again by primeness, that I = 0 
and so R is faithful on M. Thus the prime rings with minimal left ideal are precisely 
the primitive rings with minimal left ideal, or equivalently ([3J, Chapter IV, 7-9) 
the subrings of the ring of linear transformations on a right vector space F over a 
division ring D which consist solely of transformations continuous with respect to 
a dual space E and contain all continuous transformations of finite rank. (A trans
formation on F is continuous with respect to E if it possesses an adjoint on E.) In the 
proof of our theorem we may therefore assume that R is such a ring of linear trans
formations and thereby we link our lemmas on coverings of vector spaces to the pro
perties of prime rings. 

Theorem. Let R be a prime ring with minimal left ideal and let D be the divison ring 
of R-endomorphismB of a faithful irreducible left R-module F. If D contains at least r 
elements, where r is a positive integer, then for each family {PI, P z, .... , P ,+l} of non-zero 
elements of R, there exists an A in R with P1APzA -.. P,AP'+l '* O. Conversely, if D 
contains fewer than r elements and R is not a division ring, there exists a family {PI, 
Pz, ... , P,+l} of non-zero elements of R such that P1APzA ... P,AP'+l = 0 for all A 
in R. 

Proof. Let E be such that E, F is a pair of dual vector spaces over the division ring 
D. Let R contain all continuous transformations of finite rank and consist solely of 
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transformations on F, continuous with respect to the given pairing. Given the family 
{PI, P 2, ... , Pr+d of non-zero elements of R, we will construct an A of rank 1 such 
that the product PIAPz ... APr+1 '*' O. Since each p. '*' 0, there is a Y. in F for which 
PlYf '*' O. By Lemma 2, applied to coverings of E, the r elements p.Yt, i = 2, ... , r + 1, 
do not cover E; hence there exists an Xo in E such that 

(xoP;, yt) = (xo, ptYt) '*' 0, i = 2, ... , r + 1. 

In particular, note that for i = 2, ... , r, xoP; '*' 0, and set 

G:r+l = (xo, P r+l Yr+l) '*' O. 

N ext choose Xl so that Xl P~ '*' 0; by applying Lemma 2 to F this time, choose Yo in F 
so that. 

G:I = (Xl, PI Yo) = (Xl P~, Yo) '*' 0, 

G:I = (xo, P fYO) = (xo P~, Yo) '*' 0, i = 2, ... ,r. 

Now define the transformation A on F by 

Ay = Yo (xo, y). 

Clearly A belongs to R since A is of finite rank and its adjoint A • is given by xA· = 

= (x, Yo) x. Observe that APr+lYr+l = YOG:r+l, APtyo = YOG:t, i = 2, ... , r, and 
(Xl, PI Yo) = G:I. It follows that 

(Xl, PIAP2 .. • APr+I Yr+1) = G:I G:2 ... G:r+l '*' 0 

whence, for this A, PIAPz .. · APr+l '*' O. 
To prove the converse, we first note that if F has dimension one over D, then E 

is also one-dimensional and R is a division ring. So suppose that D has a finite 
number q of elements and R is not a division ring. We need only consider the case 
r = q + 1. By Lemma 1, there exist non-zero Xl,"" Xa+l in E which cover F, since 
F and E have dimension at least 2 over D. Let Yo be a non-zero element of F, and 
define the linear transformations p. by 

PtY=Yo(xt,Y), i= 1, ... ,q+ 1, 

P a+2 Y = Yo (xo, y), 

where Xo is a non-zero element of E. If A is an arbitrary continuous linear transforma
tion on F, and if we write (Xt, Ayo) = th, i = 1, ... ,q + 1, then for all Y in E 

(xo, PIAPO'" APa+zY) = PIPZ'" Pa+I(XO, y) = 0 

since some Pi = 0 by the covering property of Xl, ... , Xa+l. Hence 

PIAP2 ... APa+2 = 0, 

for all A in R. This proves the theorem. 
By inspecting the covering family of Lemma 1, we note that the transformations" p. 

in the second part of the theorem may be taken as having a common one-dimensional 
range and a null-space of codimension at most two. Hence, the transformations of 
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our counterexample are direct sums of zero transformations and transformations 
which can be realized by the family of matrices of order 2: 

Pf=(~ ;], i=l, .... q;p«+l=(~ ~], Pa+2=[~ ~2], 
where 1.1 = 0, 1.2, '" , Aa are the q elements of D, and /-l1, /-l2 are any two elements 
of D not both zero. 
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