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1. Let A = [aii] be an n-th order irreducible non-negative matrix. As is very 
well-known, the matrix A has a positive characteristic root p (provided that 
n> I), which is simple and maximal in the sense that every characteristic 
root A satisfies I A I ~ p, and the characteristic vector x belonging to p may 
be chosen positive. These results, originally due to Frobenius, have been 
proved by Wielandt (4) by means of a strikingly simple basic idea. Recently, 
a variant of Wielandt's proof has been given by Householder (2). 

We shall sketch part of the proof. For each non-negative column vector Y 
we set 

p*( y)=sup r : ry~Ay, .............................. (1) 

p*( y)=infr : ry~Ay. . ........... . .. . .............. (2) 

For strictly positive y, we may replace (I) and (2) by 

() . (AY)i . };; ":; 1 ai;Yi (I') p* Y =mmi -- =mlni , .................... . 
Yi Yi 

*()_ (Ay); _ };;:1 a;iYi' (2') p Y -maxi -- -maxi .................... . 
Yi Yt 

Let P be the section of the non-negative cone, (all Yi ~ 0) by the plane};i~1 Yi= l. 
Since p*(AY)=P*(Y), for all positive A, the supremum of p*( y) over P equals 
the supremum of p*( y) over all y~O. On P, p*( y) attains this supremum, 
say p=sup p*( y)=p*(x), where x is on P. It is then shown that Ax=px, 
that p is simple and maximal, and that x> O. Similarly the infimum of p*( y) 
over all Y ~ 0 is attained on P. 

2. In this argument there arises a dilemma: 
(i) Either the whole of P is considered, in which case p*( y) (or p*( y)) 

may have singularities and discontinuities at vectors y which have zero 
elements; 

(ii) Or, the subset P1 of P, consisting of all positive y on P, is considered, 
in which case p*( y) (and p*( y)) are everywhere continuous on Pl> but P1 

is not closed. 
In either case, some justification is required for' the assertion that p*( y) 

attains its supremum (or p*( y) its infimum). 
For an example of a discontinuity in p*( y), examine the case of 

A= [~ ~ ~J 
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At z=(O, 0, 1), we have p*(z)=2. But for all Y of form (oc, oc, 1-2oc) with 
0< oc::;; 1, p*( y) = 1. 

It may however be shown that p*( y) is upper semi-continuous on P, and 
hence p*( y) attains its supremum on P. For p*( y) slightly more complex 
reasoning is required. If RI denotes the real line with infinity adjoined, 
topologised in the normal way, then p*( y) is a lower semi-continuous function 
into R I , for all non-negative A, and is even continuous when A is irreducible. 
Again it follows that p*( y) attains its infimum, on P. 

3. In this no'te we shall demonstrate an alternative method of resolving 
the dilemma. We begin by proving an inequality, which is of some intrinsic 
interest when applied to the characteristic vector x. 

An inequality: Let A be an n-th order non-negative irreducible matrix, K a 
least diagonal element of A, and ,\ a least non-vanishing non-diagonal element. 
Let y be a positive column vector, and suppose that YI"9 Y2"9 ... "9 Yn' If p*( y) ::;; M, 
then 

Yn "9 (M'\ )n-l ............... .. '" ................ (3) 
YI -K 

Proof: Let 1 ::;; k < n. Then for all i> k, 

MYi"9Ej:!;,l aij Y;"9Ej!l ai;y;+aiiYi 

whence 

(M - K)Yk+1"9 (M - K)Yi"9 (Ej:1ai;)Yk' ... . .................. . . (4) 

Since A is irreducible, here is at least one i > k for which Ej : 1 a i ;"9'\ > O. Hence 
it follows from (4) that 

Yk+1 ,\ 
y;"9 M -K' ....................................... (5) 

The inequality (3) is obtained from (5) by setting k= 1, ... , n-l and multiplying. 
Corollary: If, in addition, E i : 1 Yi = 1, then for all i 

Yi"9 ~ (M~K r-1 

........................... . ...... (6) 

For 

I=Ei :: 1 Yi::;;nYI::;;n (M;Kr-lYn-

4. We now turn to the proof of the fundamental theorem. We shall 
consider p*( y) only. Set 

and 8 - -_ 1 ( ,\ ),,-1 
- n R-K . 

Clearly R?- k +,\, whence 
1 

8::;; 1i,' .......................................... (7) 
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Let P2 be that part of the plane section of the non-negative cone defined 
by Li:!l Yi= 1, and Yi~ 0, for all i. Evidently P 2 is bounded and closed, p*( y) 
is continuous everywhere on P2 , and hence p*( y) attains its infimum over 
P 2 , say at the vector x on P 2 • Set p=p*(x)=inf p*( y) over P 2 • 

We note that p is also the infimum of p*( y) over all positive y. It is 
sufficient to consider the infimum on the plane section PI' and to show that 
there exists a Z on P 2 for which p*(z) < p*( y) for all y on PI which do not lie 
on P2 • By (7), the vector Z= ~ (1,1, ... , 1) belongs to P 2, while by (6), 

p*( y) >R=p*(z)~p, ................................. (8) 

if Y belongs to PI but not to P 2 • 

5. In this section we shall show that p is a characteristic root of A, and 
that the positive vector x is a characteristic vector belonging to p, viz. that 
Ax=px. We shall prove the equivalent proposition: IJz>O and p,dz) <p*(z), 
then p < p*(z). Our proof is entirely due to Householder (2). Suppose that 

(AZ)i = p*(z), i= 1, ... , k<n ........................... (9) 
Zi 

(Az); *( ) --<p Z, 
Zi 

i=k+l, ... , n ......................... (10) 

Since A is irreducible there exists a positive element a'M with 1 ~p ~ k and 
k+ 1 ~ q~n. Define the vector z' by setting Zi=Zi if i ¥-q and 0 < z~ <Zq, where 
z~ is chosen sufficiently close to Z1 to ensure that 

(A~')q < p*(z) . .................................... (11) 
Zq 

But for all i ¥- q 

(A~')i ~ (Az); ..................................... (12) 
z.j Zi 

It follows from (9), (10), (11) and (12) that 
p*(z') ~ p*(z). 

Since 
(Az')g> (Az)ll 
--,-<--

zp zll 

the equality (A~'); = p*(z) 
z.j 

can hold for at most k-l indices i. Thus, by repetition of this process we 
may construct a vector zIt satisfying p*(Z") <p*(x). We deduce that p<p*(z). 

6. If p is not a simple characteristic root of A, suppose first that p has the 
linearly independent characteristic vectors x> 0 and Z belonging to it. By 
choosing the real numbers IX and {3 suitably, we may obtain a positive character­
istic vector C1.x+{3z on Pi belonging to p, which has some element less than o. 
But this is impossible, by (6) and (8). Next, suppose that p is not simple, 
but has only one linearly independent characteristic vector belonging to it. 
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Then there exists a' column vector y satisfying 

Ay=py-x, ........................................ (13) 

and replacing y by y+yx, it follows there exists a positive y satisfying (13). 
For this y, p*( y) <p, which is impossible. We have proved that p is a simple 
characteristic root. 

7. For the sake lof completeness, we add a standard proof that p is a 
maximal characteristic root. Let a be any characteristic root of A and U a 
row vector satisfying uA = au. Then, for all j, 

whence 

and so 

I a I I Uj I = I E i : 1 Uiai; I ~ Ei ~ 1 I Ui I aii 

I a IE;?!I lUi I x;~Ed'=1 I Ui I aiiXi=pE/~1 I Ui I Xi' 

la I~p, 

since E":I I Ui I Xi> O. 
8. The inequality (3) leads to a positive lower bound for the ratios of the 

elements of the characteristic vector x. In view of p*(x)=p and (8) it follows 
that 

min. x · (A )n-l ( A )"-1 --'-' ~ -- ~ -- . 
maxi Xi P-K R-K 

For the case A> 0, lower bounds for the ratios Xi/Xi have already been found 
by Ostrowski (3) and A. Brauer (1). These bounds, however, reduce to 0 
when A has zero elements. 
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