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Matrix Norms applied to Weakly Ergodic Markov Chains

By J. L. Mott in Edinburgh and Hans ScENEIDER in Belfast

Recently Haswar [2] and MoTT [4] have considered conditions for a non-homo-
geneous finite MAREOV chain to be weakly ergodic, that is, for the probability distri-
bution to tend to independence of the initial distribution as the number of trials in-
creases. This case is to be distinguished from the more particular one of a chain

[0

which is strongly ergodic, where the probability distribution tends not only to inde- -

pendence of the initial distribution but also to a limit. Thus in the case of weak
ergodicity, if Py, Py, ... are the successive matrices of the chain and

P® = P P,... Py,
there exists for each given n a stochastic matrix @(® such that the difference P(» —Q(n)

tends to the limit zero as » increases. Because of the tendency to independence of the
initial distribution the rows of P(™ tend to be the same, so that here @ is a stoch-

astic matrix with identical rows: such a matrix we call stable. In this note we shall use.

a result on matrix norms to prove another condition sufficient for weak ergodicity.

Let ¥ be a subalgebra of the algebra of real matrices of some fixed order k over the
real numbers. A (multiplicative) norm on % is a mapping » of ¥ into the non-negative
numbers satisfying ‘

1) y(4) > 0 ifd =0;
- (i) - v(A4) = |4]| »(4) if Ais real; -
(i) v(4 + B) < v(4) + v(B);
(iv) : v(AB) < v(4)v(B).
It is known that if 4, 4o, ... is a sequence of matrices in ¥, then lim v»(4,) =0
n—>o0
implies that lim A4, = 0. This theorem is an immediate consequence of a result
n—

proved by OsTrOwWSKI [5] in the course of the proof of his Theorem 4; it is also a
special case of Theorem 2 of BourBaxi [1], §2.3. It has been used extensively by
HouseaoLDER [3], and others.

Now take U as the subalgebra generated by the stochastic matrices of order %.
Clearly A belongs to % if and only if all rows of 4 have the same sum, We now
prove the

Theorem. Let v be & norm on U, and T'1, Ty, ... be some sequence of stable stochastic
mairices: Then the chain of stochastic matrices Py, Py, ... 13 weakly ergodic f

n
lim [[v(Pi— T: P)=0.

o t=1

ol
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Proof. If P is stochastic and T is stable then P T = T and T P is stable. Hence in
particular 7', P is stable and so, by the result on matrix norms quoted above, it is
enough to prove that im »(P® — T Pm) = (. But

n—>w
(P1—~ T1Py) (P2 — T Pg) = PyP; — T1P, Py — P1T2 Py 4 T1 Py Ty Py =
= PPy — TP, Py,

and so by induction it follows that

n
H (Ps — T;P;) = P — T P |
i=1
The proof now follows from the hypothesis of the theorem since P; — T'; P; belongs
to U and

n n
H v(Py — Ty Py) = ”{H(P¢ - T,-P;)} = y(P® — Ty Pm) .
=1 =1 .

The usefulness of our theorem lies in the wide variety of norms available. In
addition, it is clear that the rows of T'P are weighted means of the rows of P, and
consequently we should normally choose our 7'; corresponding to each given P; so as
to make the elements of P; — T P; as small as possible.

As a simple example’ consider a homogeneous chain whose matrix of transition
probabilities is P where -

-1 0-2

- -3 0-3

1 0-3

‘2 0-4

For the norm here use the column norm; »(4) = max Z]aql, where 4 = [ay;].
i 1 '

Then clearly, whatever the choice of 7, the least possible values of Z | a¢j| in our case

1
of A =P —TPare0.86,0.8, 0.8, 0.4 for j =1, 2, 3, 4 respectively; so that, with this
choice of norm, the least value of ¥(P — T P) is 0.8. This value is achieved, for
example, by T with each row [0.2, 0.4, 0.2, 0.2]. With each row of T the simpler
1 [1,1,1,1] we have (P—T P) = 0.9, but this value of the norm, although not the
best possible, is sufficient to show that the chain is weakly ergodic. (In fact, the chain,
being homogeneous, is also strongly ergodic.) We note that the ergodicity of this
chain, and of analogous non-homogeneous chains, can not be demonstrated by use
of the sufficient conditions given by Haswar [2] and MoTr [4].
The following example illustrates some further points. Let
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Then the homogeneous chains with P and R respectively as their matrices of
transition probabilities are each strongly ergodic. But

i -
)
11
23

QR = 11

2 2

11

N 22

and, since (Q.R)* = @ R which is not stable, the homogeneous chain with matrix of
transition probabilities ¢ R is not weakly ergodic. Thus for all stable stochastic
matrices V and all norms » we have from our theorem that v(QR — VQR) = 1. It
follows that

V(@ —TQ)v(R— SR) Zv(QR—TQR) =1

for all stable stochastic matrices 7, S and all norms ». The equality is attained by
taking § = T and each row of T as [1, -,-,- T, and for norm the column norm as
above; for then »(Q — 7'Q) = v(R — TR) = 1.

Now consider the non-homogeneous chain defined by the sequence {@1, R, @,
R, Qs B,...} where Q, is as @ above but with the first row of Q replaced by

1 1 1
aﬂ,?—an,?—'an,an) 0§_¢n§?°

Then »(Q, — TQn) =1 — a, so that the chain is weakly ergodic provided that

] L .
Zoc,- diverges as n — co.

r=1
’
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