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The group membership of a polynomial in an element
algebraic over a field

By W. K. Bar~es and H. ScaNeIDER in Pullman (Wash.)

Let F be a field, R an arbitrary extension ring of F, and let a be an element of R
algebraic over F. Let ¢(z) be a polynominal in an indeterminate = with coefficients
in F. If there exists a subgroup of the multiplicative semi-group of R to which ¢(a)
belongs, we shall call g(a) a group-element in E. FaramaT and Mirsky [1] have
recently proved.that the minimum polynominal of & matrix 4 of order n with ele-
ments in the complex field C has simple zeros (and hence that 4 is diagonable) if
and only if, for every irreducible polynomial g(z) = z — w in C[z], ¢(4) is a group-
element in the ring of all n-th order matrices with elements in C. Our theorem 2 is a
generalization of this result; however we are chiefly interested in finding a condition
for g(a) to be group-element in R for given polynomial ¢ (z).

Since a is assumed to be algebraic 'over F, the ideal of polynomials in F[z] for
which p(e) = 0 has a non-zero generator m(z), which we shall call the minimum
polynomial of a. By (p(z), m(z)) we shall denote the greatest common divisor of
p(z) and m(z) in F[z]. Lemma | is related to some familiar results on principal
ideal rings.

Lemma 1. Let a be an element of R algebraic over F with minimum polynomial m(x),
and let g () be a polynomial in F [x]. Then there exists an v tn K such that

(1) rq(a) = q(a)™
if and only if
(2) (g(x)e, m(2)) = (q(x)et , m (2))

in which case there is an v in Fla] satisfying (1).

Proof. We set d,(x) = (g¢(x)¢, m(z)),0 = 9, — 1, g, which of course implies that
dy-1 (x) divides d, (x). Suppose that ¢ ()¢ A(z) = ¢ (z)¢ m(x)/d, () is the least common
multiple of ¢ ()¢ and m (). Thus'g (@) A(a) = 0and hence if (1) holds g(a)®? A(a) = 0.

We deduce that there is a polynomial x (x} for which

q ()t m(z)[d () = m(z) p(z)

and we may uow conclude that d,(z) divides ¢(2)¢?, and therefore also d,_; (z). We
have proved that d, , (z) = d, ().
Conversely assume that (2) holds. There are polynomials »" (z) and 7’ (x) such that

V' (x) g ()¢ + 7' (2) m(z) = dp(%) = dpy ()
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whence
v(z) ¢(2)2 + T(2) m(z) = q(z)*!
for suitable »(x) and 7 (z). It follows that
v(a) g(a) = g(a)*!
and the lemma is proved since v (a) lies in F [a].
Lemma 2. The polynomial q(a) is a group-element of R if and only if
(3) rq(a)* = q(a)

- for some v in R.

Proof. The condition is clearly necessary. If (3) is satisfied, then by lemma 1, we
may assume that r lies in F[a], and so commutes with ¢(a). We set b = q(a), e = rb

" ¢ = r2b. Tt is easily verified that be = b, €2 = ¢, ce = ¢, and bc = e. Hence the semi-
« group generated by b and ¢ in F[a]is a group.

Combining lemmas 1 and 2 we obtain:

Theorem 1. Let a be an element of the extension ring R of F, which is algebraic over
F with minimum polynomial m (x), and let ¢ (x) be a polynomial n F(x]. Then q(a) is
a group-element in R if and only if

(4) (g ()2, m(2)) = (q(z), m(z)),
wm which case q(a) is a group-element even in Fla].
Thus g(a) is a group-element in R if and only if it is a group-element in F[a].

We may note that if ¢ is transcendental over F, then ¢ is a group-element in F(c),
but not in F[c].

Corollary. There is a power of a which is a group-element in R.

Proof-of Corollary. Let 22 be the highest power of z dividing m (z). If ¢ = p,
then (22, m(z)) = (2%°, m(z)) = «® whence a° is a group-element in R.

In the case of matrices with complex elements, this corollary was proved by
Ranom [2]. We may add that it holds for matrices in any division ring, being a
consequence of the decomposition of such a matrix into the direct sum of a non-
singular and a nilpotent matrixz.

It is easily seen that (4) holds for every polynomial ¢ (z) in F(z] if and only if the
irreducible factors of m (z) are simple. Thus we have:

Theorem 2. Let a be an element of the extension ring R of the field F, which is algebraic
over F with minimum polynomial m(z). Then ¢(a) is a group-element in R for every
polynomial q (x) in Fx] if and only if the irreducible factors of m(z) are simple.

Evidently in theorem 2 we could have put ’every irreducible polynomial” for
“every polynomial”’, and so our theorem includes that of FaAramaT and Mmsky [1].

As is known, the algebra F[a] is semi-simple if and only if the irreducible factors
of m () are simple. Thus:

Corollary to theorem 2. The algebra Fla] is semi-simple if and only if q(a) is
group-element tn R for every q (z) in F(z].
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Theorem 2 and its corollary may also be derived from the decomposition of F[a]
(which is, of course, isomorphic to F[z]/(m(z))) into a direct sum of fields and
primary rings; for each summand is a field if and only if the irreducible factors of
m(z) are simple.

Finally, we shall consider a slightly more general situation. Let I be a commutative
principal ideal domain, ¢ — ¢’ a homomorphism of I onto I’ with non-zero kernel (m),
and let R be an arbitrary extension ring of I’. It is readily seen that all our results and
their proofs apply to this situation. Thus the element ¢’ of I’ is a group-element in R
if-and only if (g, m) = (¢ m) in I (i. e. if and only if the homomorphic images of the
ideals (g) and (¢?) are equal), in which case ¢’ is a group-element even in I’. The as.
sumption that (m) + 0 is essential to this result. For let I be the ring of integers
and set I = I'. Then 3 is a group-element in B = I [1/3] but not in [ itself. This
raises the question under which conditions an element of a ring S is a group-element
in S if it is a group-element in an extension ring R.
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