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The group membership of a polynomial in an element 
algebraic over a field 

By W. E. BAR~ES and H. SCHNEIDER in Pullman (Wash.) 

Let F be a field, R an arbitrary extension ring of F, and let a be an element of R 
algebraic over F. Let q(x) be a polynominal in an indeterminate x with coefficients 
in F. If there exists a subgroup of the multiplicative semi-group of R to which q(a) 
belongs, we shall call q(a) a group-element in R. FARAHAT and MIRSKY [1] have 
recently proved . that the minimum polynominal of a matrix A of order n with ele
ments in the complex field C has simple zeros (and hence that A is diagonable) if 
and only if, for every irreducible polynomial q(x) = x - win C[x], q(A) is a group
element in the ring of all n-th order matrices with elements in C. Our theorem 2 is a 
generalization of this result; however we are chiefly interested in finding a condition 
for q(a) to be group-element in R for given polynomial q(x) . 

Since a is assumed to be algebraic 'over F, the ideal of polynomials in F [x] foJ' 
which p (a) = 0 has a non-zero generator m (x), which we shall call the minimum 
polynomial of a. By (p(x):m(x)) we shall denote the greatest common divisor of 
p(x) and m(x) in F[x]. Lemma 1 is related to s~me familiar results on principal 
ideal rings. 

Lemma 1. Let a be an element of R algebraic over F with minimum polynom·ial m (x), 
and let q (x) be a polynomial in F [x]. Then there exists an r in R such that 

(1) rq(a)e = q(a)e-l 

if and only if 

(2) (q(x)e,m(x)) = (q(x)e- l ,m(x)) 

in which case there is an r in F[a] satisfying (1) . 

Proof. We set da(x) = (q(x)e, m(x)),O' = e.-I, e, which of course implies that 
de-dx) divides de (x) . Suppose that q(x)e ).(x) = q(x)e m(x)/de(x) is the least common 
multiple of q(x)Q and m (x). Thusq(a)e ).(a) = 0 and hence if (1) holds q(a)e-l ).(a) = O. 

We deduce that there is a polynomial fl, (x) for which 

q (x)e- l m (x)/de (x) = m (x) fl, (x) 

and we may HOW conclude that de (x) divides q(x)e-l , and therefore also de-dx). We 
have proved that de-l (x) = de (x). 

Conversely assume that (2) holds. There are polynomials v' (x) and 7:' (x) such that 

v' (x) q (x)e + 7:' (x) m (x) = de (x) = de-dx) 
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whence 
v(x) q(X)2 + .(x) mix) = q(x)e-l 

for suitable v (x) and. (x). It follows that 

v(a) q(a)e = q(a)Q-I 

and the lemma is proved since v (a)" lies in F[a]. 

Lemma 2. The polynomial q(a) is a group-element oj R ij and only ij 

(3) rq(a)2 = q(a) 

jor some r in R. 
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Proof. The condition is clearly necessary. If (3) is satisfied, then by lemma 1, we 
may assume that.r lies in F[a], and so commutes with q(a). We set b = q(a), e = rb 
c = r2b. It is easily verified that be = b, e2 = e, ce = c, and be = e. Hence the semi
group generated by band c in F[a] is a group. 

Combining lemmas 1 and 2 we obtain: 

Theorem 1. Let a be an element oj the extension ring R oj F, which is algebraic over 
F with minimum polynomial mix), and let q(x) be a polynomial in F[x]. Then q(a) is 
a group-element in R ij and only ij 

(4) (q(X)2, mix)) = (q(x), mix)), 

in which case q(a) is a gj'oup-element even in F[u]. 

Thus q (a) is a group-element in R if and only if it is a group-element in F[a]. 
We may note that if c is transcendental over F, then c is a group-element in F(c), 
but not in F[c]. 

Corollary. There is a power oj a which is a group-element in R. 
Proof , of Corollary. Let x! be the highest power of x dividing mix). If (] ~ fl, 

then (x!, mix)) = (x2a , mix)) = x! whence aa is a group-element in R. 

In the case of matrices with complex elements, this corollary was proved by 
RANUM [2]. We may add that it holds for matrices in any division ring, being a 
consequence of the decomposition of such a matrix into the direct sum of a non
singular and a nilpotent matrix. 

It is easily seen that (4) holds for every polynomial q(x) in F[x] if and only if the 
irreducible factors of mix) are simple. Thus we have: 

Theorem 2. Let a be an element oj the extension ring R oj the field F, which is algebraic 
over F with minimum polynomial mix). Then q(a) is a group-element in R jor every 
polynomial q (x) in F[ x] ij and only ij the irreducible jactors oj m (x) are simple. 

Evidently in theorem 2 we could have put "every irreducible polynomial" for 
"every polynomial", and so our theorem includes that of FA RAHAT and MIRSKY [1]. 

As is known, the algebra F[a] is semi-simple if and only if the irreducible factors 
ofm(x) are simple. Thus: 

Corollary to theorem 2. The algebra F[a] is semi-simple ij and only ij q(a) is a 
group-element in R jor every q(x) in F[x]. 
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Theorem 2 and its corollary may also be derived from the decomposition of F[a] 
(which i~, of course, isomorphic to F[xJ/(m(x))) into a direct sum of fields and 
primary rings; for each summand is a field if and only if the irreducible factors of 
m(x) are simple. 

Finally, we shall consider a slightly more general situation. Let I be a commutative 
principal ideal domain, a -+ a' a homomorphism of I onto l' with non-zero kernel (m), 
and let R be an arbitrary extension ring of 1'. It is readily seen that all our results and 
their proofs apply to this situation. Thus the element g' of l' is a group-element in R 
ifand only if (g, m) = (q2, m) in I (i. e. if and only if the homomorphic images of the 
ideals (q) and (q2) are equal), in which case q' is a group-element even in 1'. The as
sum ption that (m) *' 0 is essential to this result. For let I be the ring of integers 
and set 1= 1'. Then 3 is a group-element in R = I [1/3J but not in I itself. This 
raises the question under which conditions an element of a ring S is a group-element 
in S if it is a group-element in an extension ring R. 
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