
CHARACTERISTIC POLYNOMIALS 

HANS SCHNEIDER 

Introduction. Let F be a field and let V be a finite dimensional vector 
space over F which is also a module over the ring F[a]. Here a may lie in any 
extension ring of F. We do not assume, as yet, that V is a faithful module, so 
that a need not be a linear transformation on V. It is known that by means 
of a decomposition of V into cyclic F[a]-modules we may obtain a definition 
of the characteristic polynomial of a on V which does not involve deter
minants. In this note we shall give another non-determinantal definition of the 
characteristic polynomial. Instead of considering a single module V, we shall 
accordingly study the set of all finite dimensional F[a]-modules and mappings 
of this set into monic polynomials with coefficients in F. Admittedly our 
procedure does not yield the theory of the elementary divisors of a, but it 
has certain advantages. First , all questions of uniqueness are settled 
immediately by the Jordan-Holder theorem. Secondly, it is possible to derive 
some classical results, usually proved using determinants, without excessive 
labour. To illustrate the use of our method we shall complete and generalise 
some results due to Goldhaber (2) and Osborne (5). 

1. A principal ideal in a semigroup of mappings. Let 58 be the set of 
all finite dimensional F[a]-modules, and let ffi1 be the multiplicative semigroup 
of (non-zero) monic polynomials with coefficients in F. Let ~ be the set of 
mappings of 5B into ffi1. We shall assume throughout that if f is a mapping of 
~, and if VI and V2 are isomorphic modules of 5B, then f(V 1 , t) = f(V 2 , t) . 
The set ~ becomes a semigroup if we define multiplication in the obvious way, 
viz. flf2 (V, t) = fl (V, t) . f2 (V, t) for all V in 5B. The subset ® of ~ consisting 
of all mappings satisfying 

(1) f(V, t) = f(VjZ, t) ·f(Z, t) 

for all V E 5B and all submodules Z of V, is also a semigroup. Now let /l be 
any mapping of ~ such that /l((O), t) = 1 and 

(2) /l(V, t) divides /l(Vj Z, t) ·/l(Z, t) 

for all V E 5B and all submodules Z of V. Let ~ be the ideal in the semigroup 
@5 consisting of all if; of @5 divisible by /l in ~ i.e. let ~ = /l~ n @5. 

Then an element f of :t belongs to ~ if and only if f satisfies (1) and 

(3) /l ( V, t) divides f (V, t) 

for all V E 5B. 
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Let V = Vo ~ ... ~ Vs = (0) be a composition series for the F[aJ-module 
V. Then it is an immediate consequence of the Jordan-Holder theorem that 
the polynomial 

s 

(4) x(V, t) = 11 p,(Vi-dVi, t) · p,((0), t) 
i= 1 

depends only on the module V and not on the composition series we use in 
the definition. (The last factor p, ((0), t) = 1 has been put in to cover the case 
V = (0), yielding x((O), t) = p,((0), t) = 1. In some of the arguments below 
it has been assumed that V ~ (0), the case V = (0) being trivial.) 

This remark allows us to think of X as a mapping of lB into we, i.e. as an 
element of the semigroup 'to The semigroup @5 is not a principal ideal semi
group. But we shall prove 

LEMMA 1. The mapping X defined by (4) is the unique generator of the ideal 
(£ in @5. 

Proof. We shall first show that X E @5. If Z is any submodule of V 
then there is a composition series V = V o' ~ ... ~ Vs' = (0) in which Z 
occurs, say Z = VT. Thus it follows from our remarks about the J ordan
Holder theorem, and since (V i_1' / Z) / (V/ / Z) is isomorphic to Vi_/ / V/ 
that 

T S 

x(V/ Z,t) x(Z,t) = 11P,(V;-1 / V;,t)11P,(Vi~dV:,t) = x(V,t) 
i=l i=r+l 

whence X E @5. 

J t follows from (3) applied to the factor modules that 
s 

11 p,(Vi-dVi, t) 
1.= 1 

divides x(V, t). Hence by (2), p,(V, t) divides x(V, t). Thus p, divides x, 
and we deduce that (x) ~ (£. 

To prove the reverse inclusion let us suppose that f E (£. Then for an\' 
V E lB, we have 

s 

f(V, t) = 11 f(Vi-dV i , t) 
i =1 

by (1). But, by (3), P,(Vi- 1/ V i, t) divides f(V i- 1/ V i, t), whence x(V, t) 
divides f( V, t) . It follows that X divides fin 1:, say f = xf* . To show that 
f* belongs to @5 we observe that for all submodules Z of V 

x(V, t) f*(V, t) = f(V, t) = f(V/ Z, t) f(Z, t) 
= x(V/ Z, t) x(Z, t) f*(V/Z, t) f*(Z, t) = x(V, t) f*(V/ Z, t) f*(Z, t) 

whence f* satisfies (1) since x( V, t) is non-zero. We have now proved that 
f E (x), and this implies that (£ ~ (x). It follows that (x) = (£, and we 
conclude that X is a generator of (£. 
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To prove uniqueness, let us now suppose that ~ = (X) = (x*). Then 
x* = x1/; and also X = x*1/;*. Vve obtain that X = x1/;if;*, and it follows that 

1/;1/;* = 1], where 1](V, t) = 1, for all V E Q3. The mapping 1] is the identity of 
@5 (and also, of course, of ~), and since 1] is the only inverse in ~, it follows 
that 1/; = 1], whence X = x*, and the lemma is proved. 

COROLLARY. If 1/; belongs to the ideal ~, and 1/;( V, t) has the same degree as 
x(V, t) for all V in Q3, then X = 1/;. 

Proof. Clearly 1/; = x1/;* , where, for all V in Q3, 1/;* (V, t) is a monic poly
nomial of degree 0, and the only· such polynomial is 1. 

2. The definition of the characteristic polynomial. As is well known, 
the polynomials p(t) in F[tJ for which p(a) V = 0 form an ideal in F[tJ. By a 
slight extension of the usual terminology, we shall call the monic generator 
of this ideal the minimum polynomial of a on V, and denote it by ,ua (V, t). 
Thus ,ua is a mapping of Q3 into 'iJR such that ,ua ((0), t) = 1 and which satisfies 
(2) since 

,ua(Z, a) . ,ua(Vj Z, a) V ~ ,ua(Z, a) Z = (0), 

when Z is any submodule of V. I t follows, therefore, that the ideal ~a, which 
consists of all1/; E ~ divisible by ,ua, and which we shall call the characteristic 
ideal ofa in@5, is a principal ideal with a unique generator. Thus we may make 
the following definition: 

Definition. Let V E Q3. Then the characteristic polynomial of a on V is 
Xa (V, t), where Xa is the unique generator of the characteristic ideal 
(Ia = ,ua'r n @5 of a. 

By virtue of Lemma 1, we obtain immediately 

THEOREM 1. Let V E Q3, and let V = Vo ~ ... ~ Vs = (0) be a composition 
series for V. Then the characteristic polynomial Xa( V, t) of a on V is 

s 

(5) Xa(V, t) = TI ,ua(Vi-dVi , t) . ,ua((O), t). 
i=l 

COROLLARY 1. For each 11 in Q3, the degree of Xa (V, t) equals the dimension 
of V. 

Proof. In view of (5), we need only prove that the degree of ,ua(Z, t) equals 
the dimension of Z, when Z is an irreducible F[aJ-module. This is well-known 
if Z is faithful over F[a]. If Z is not faithful over F[a], then we must have 
aZ = o. The dimension of Z must equal 1, and ,ua (Z, t) = t. 

COROLLARY 2. If if; belongs to the characteristic ideal of a, and if the degree 
of 1/; (V, t) equals the dimension of V for each V E Q3, then 1/; = Xa· 

This corollary follows from the previous one and from the corollary to Lemma 1. 
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Vile shall now show that our definition of the characteristic polynomial 
leads to the usual one in the case of matrices. For any basis for V we obtain 
a matrix of a on V in the usual way. Since we have not assumed that a is it 

linear transformation on V, a non-zero a may have a zero matrix on V. The 
determinant of a matrix A will be denoted by IA I. 

THEOREM 2. If A is any matrix of a on V and I -is the unit matrix , then 

(G) Xa(V, t) = It I - AI · 

Proof. Any two basis for V yield similar matrices of a on V. Hence the 
determinant It I - A I depends on V only and not on the basis used to obtain A. 
Thus we may define a mapping of st by setting 1/; (V, t) = It I - A I· 

Let Z be any submodule of V. We choose a basis for Z and complete it to a 
basis for V. With respect to this basis the matrix of a on V is 

B = [~l ~~2J, 
where Bl is a matrix of a on Z, and B2 is a matrix of a on VIZ. 
Hence 

1/;(V, t) = It I - BI = It I - Bd It I - B21 = 1/;(Z, t) 1/;(VIZ, t); 

and so 1/; belongs to 0. 
It is easily verified that p(A) = ° is equivalent to p(a) V = 0, whence the 

minimum polynomial of the matrix A is just J.!a(V, t). Thus by the classical 
Cayley-Hamilton theorem applied to the determinant It I - A I, the polynomial 
J.!a (V, t) divides 1/;( V, t). It follows that 1/; belongs to the characteristic ideal of a. 
The degree of 1/;( V, t) is clearly equal to the dimension of V. We may now use 
Corollary 2 to Theorem 1 to conclude that Xa(V, t) = 1/;(V, t) = It I - AI. 

We may remark that it is possible to obtain an extension of some of the 
above results to the case of F[aJ-modules of infinite dimension over F, in 
which case V has no composition series and 1/;' (V, t) = 0. 

3. Characteristic polynomials with a common factor. In this section 
we shall again assume that the F[aJ-module V is finite dimensional. If Z is a 
submod ule of V, then J.!a ( V, t) is clearly divisible by both J.!a ( VIZ, t) and J.!a (Z ,t). 
But the product J.!a(VI Z, t) ·J.!a(Z, t) is divisible by J.!a(V, t). It follows by (5) 
that Xa(V, t) divides a power of J.!a(V, t). Thus we have proved from our 
definitions the very well-known result that every irreducible factor of Xu (V, t) 
is also a factor of J.!a (V, t). This enables us to prove the next lemma . 

• 
LEMMA 2. There exists a composition series for V with the factor modules 

appearing in any order. 

Proof. Let p (t) be any irreducible factor of Xa (V, t) and therefore also of 
J.!a (V, t) . Let q (t) = J.!a (V, t) I p (t), and let Z be the submodule of V consisting 
of all v E V for which q(a)v = O. Then p(a) V ~ Z, and so J.!u(VIZ, t) divides 
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p(t). But Z is a proper submodule of V, whence Ji.a( VI Z, t) ,e. 1. We deduce 
that the minimum polynomial of a on VI Z and any of its irreducible sub
modules is p(t). Since we may start a composition series for Vwith a composi
tion series for VI Z, the lemma follows. 

LEMMA 3. Let Z be a submodule of the F[a]-module V, and let Y be a submodule 
of the F[a]-module W. Let !\j be a vector space isomorphism of Y onto Z. If V I Z 
and WI Yare irreducible submodules for which Ji.a ( VI Z, t) = Ji.a (WI Y, t), 
then there exists an extension of 1..1 to a vector space isomorphism A of Wonto V 
such that awx - (bw)X E Z, for all w E W. 

Proof. The conditions on VI Z and W I Y imply that there is a vector space 
isomorphism K of W I Y onto VIZ such that a(w + Y)< = (b(w + Y))< for 
all w E W. Let Z' be a subspace of V complementary to Z, and let Y' be a 
subspace of W complementary to Y. We shall now define a mapping of W 
into V as follows. 

We let A coincide with 1..1 on Y. If w E Y' we let v = W X be the unique element 
of Z' for which v + Z = (w + Y)<. We then extend A linearly from Y U Y' 
to W = Y + V' . Then A is an isomorphism onto V, and the Lemma follows 
since, for all w E V', we have 

awX + Z = a(wX + Z) = a(w + V)" = (b(w + Y))< = (bw + Y)< 
= (bw)X + Z. 

Let 2 (V) be the algebra over F of linear transformations on the finite 
dimensional vector space V. If W is also a vector space over F, and A is a 
vector space isomorphism of W onto V, then A induces an isomorphosm p 

of 2(W) onto 2( V), which may be defined by bpwx = (bw)\ for all w E W. 
Conversely, let p be an isomorphism of 2(W) onto 2(V). If we consider F as a 
subalgebra of both 2(W) and 2(V) in the normal way, then elements of F 
are left fixed by p. Hence it can be shown that p is induced by an isomorphism 
A of W onto V (4, p. 237). It is this result which almost immediately yields 
the following lemma. 

LEMMA 4. Let p be an isomorphism of the algebra of linear transformations 
2(W) onto 2(V). If b E 2(W} andc = b p, then Xb(W, t) = xc(V, t). 

Proof. Let A be the isomorphism of the vector space Wonto V which induces 
p. Then any composition series for the F[b]-module W is mapped by A into 
a composition series for the F[c]-module V. It is easy to see that the minimum • polynomial of b on a factor module of the first series equals the minimum 
polynomial of c on the corresponding factor module of the second series. 
The lemma now follows from Theorem 1. 

This lemma is rather less trivial than may appear at first sight. For, if p 

is an isomorphism merely of the subalgebra F[b] of 2(W) into ~(V), and 
c = b p, then we can only conclude that Ji.b(W, t) = Ji.r( V, t). 
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Goldhaber (2) and Goldhaber and Whaples (3) have proved that if A and 
B are square matrices with coefficien tsin F such that there exists a non-singular 
matrix P for which N = A - PBP-I lies in the radical of F[A, PBP-I] 
then Itl - A I = Itl - B/. This result is generally known as Goldhaber's 
lemma. By means of the theory of canonical matrices and under the assump
tion that F is an infinite perfect field Osborne. (5) ,has proved this lemma 
together with its converse. From now on we shall assume that a and bare 
linear transformations on the finite dimensional vector spaces V and W 
respectively, and we shall prove a theorem equivalent to Osborne's without 
any restriction on the field F. 

THEOREM 3. Let a and b be linear transformations on the finite dimensional 
vector spaces V and W respectively. Then the characteristic polynomial of a on V 
equals the characteristic polynomial of b on W if and only if there is an iso
morphism p of ~ (W) onto ~ (V) such that n = a - bp lies in the radical of 
F[a, bp] . 

Proof. If p is an isomorphism of ~ (W) on to ~ ( V), and e = b p, then by 
Lemma 4 we need only prove that Xa (V, t) = Xc ( V, t) when n = a - e 
lies in the radical of 

F[a, e] = F[a, n] = F[e, n]. 

Let Z be an irreducible F[a, e]-module. Then nZ = (0), whence Z is irreducible 
also over F[a] and F[e]. Further, J.l.a(Z, t) = J.l.c(Z, t), since for a polynomial 
pet) in F[t] the equality p(e)Z = 0 implies (p(a) + n')Z = 0, where n' 
belongs to the radical of F[a, e], whence p(a)Z = 0; and conversely. Let 

V = Vo ~ ... ~ V. = (0) 

be a composition series for the F[a, e]-module V. It follows from the remarks 
we have just made that this series is also a composition series for V as an 
F[a] and F[e]-module, and that 

J.l.a(Vi-dV i, t) = J.l.c(T' i-dVi, t), 'f, = 1, ... , s. 

Hence by Theorem 1, Xa(V, t) = xc(V, t). 
Now let us suppose that Xa(V, t) = Xb(W, t), and let V = Vo ~ ... ~ V, 

= (0) be a composition series for the F[a]-module V. We deduce from Lemma 2 
that there is a composition series 

W = Wo ~ ... ~ TV., = (0) 

for the F[b]-module W such that J.l.b(Wi-dWi, t) = J.l.a(Vi-dV i, t), for i = 1, 
... , s. Then using Lemma 3 we may prove by induction that there is a vector 
space isomorphism A of Wonto V which takes Wi onto Vi such that aw'
(bw)' E Vi, whenever w E Wi-lei = 1, .. . ,s). Let p be the isomorphism 
of ~(W) onto S2(V) associated with A. If v = w' E Vi- I, and n = a - bp, 
then 
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Thus for any polynomial p(t) in F[tJ we have (p(a)n)SV = (0). Since Vis 
faithful over F[a, bpJ, we conclude that n lies in the radical of F[a, bpJ. 

Lemma 4 allows us to state Theorem 3 symmetrically: The characteristic 
polynomials Xa (V, t) and Xb (W, t) are equal if and only if there exist isomor
pht:sms (]' and T of ~ (V) and ~ (W) respectively onto an algebra of linear trans
formations ~ (X) such that n = au - bT lies in the radical of F[ au, bTl. 

Let S (Z, V) be the subalgebra of ~ (V) consisting of all linear transformations 
d E ~(V) for which dZ ~ Z. We note that d E S(Z, V) if and only if Z 
is an F[d]-module. The natural homomorphism d -7 d' of st(Z, V) onto 
~ (Z) is defined by d'v = dv, for all v E Z. Its kernel K 1 consists of all d E 
S(Z, V) such that dZ = (0). Clearly Xa'(Z, t) = Xa(Z, t). There is also a 
natural homomorphism of S(Z, V) onto 2(V/Z), defined by d -7 d" where 
d"(v + Z) = dv + Z for all v E V. Its kernel K2 consists of all d E 3(Z, V) 
such that dV ~ Z. Again Xa"(V/ Z, t) = Xa(V/Z, t). 

LEMMA 5. Let X be a vector space of dimension rover F, and let p(t) be a 
monic polynomial of degree r in F[tJ. Then p (t) divides Xa (V, t) if and only if 
there exists an F[aJ-submodule Z contained in V and a homomorphism (]' of 
S (Z, V) onto ~ (X) such that Xc (X, t) = p (t), where c = au. 

Proof. Let p (t) be a factor of Xa (V, t). By Lemma 2 there exists an F[a]
module Z contained in V for which Xa(Z, t) = p(t), and by Corollary 1 to 
Theorem 1 the dimension on Z is r. Thus we may define the homomorphism 
(]' of S(Z, V) onto ~(X) to be the composed map of the natural homomorphism 
d -7 d' of S(Z, V) onto ~(Z), and any isomorphism of ~(Z) onto ~(X). 
Then putting c = au, we have 

Xc(X, t) = Xa'(Z, t) = Xa(Z, t) = p(t), 

by virtue of Lemma 4. 
Conversely, let (]' be a homomorphism of S(Z, V) onto ~(X) for which 

xc(X, t) = p(t). Using the simplicity of ~(X) it may be shown that the 
kernel K of (]' is S(Z, V), Kl or K 2• If K = S(Z, V), then ~(X) = (0), whence 
X = (0) and p (t) = 1. If K = K 11 then ~ (Z) is isomorphic to ~ (X) under 
an isomorphism which takes aT onto c = au. In this case we deduce that 
I)(t) = Xa'(Z, t) = Xa(Z, t), and Xa(Z, t) divides Xa(V, t). If K = K 2 , then 
~I (V / Z) is isomorphic to ~ (X) under an isomorphism taking a" onto c, and so 

p(t) = Xa,,(V/ Z,t) = x,,(V/ Z,t), 

which again divides Xa( V, t). 

By combining the symmetric form of Theorem 3 and Lemma .5 we Im
mediately obtain a generalisation of Theorem 3. 

.. 
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THEOREM 4. Let a and b be linear transformations on tlte vector spaces V 
and W respectively. Let X be a vector space of dimension rover F. Then the 
characteristic polynomials Xa (V, t) and Xb (W, t) have a common factor of 
degree r if and only if there exist an F[a]-module Z contained in V and a homo
morphism (}' of S(Z, V) onto 2(X), an F[b]-module Y contained in Wand a 
homomorphism T of S(Y, W) onto 2(X), such that n = au - b T lies in the 
radical of F[au , bTl. 

Finally, we claim that some of the results of Goddard and Schneider (1) and 
other results on characteristic polynomials may be derived from Theorem 4. 
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