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1. . Many investigations have been concerned with a square 
matrix P with non-negative coefficients (elements). It is remarkable 
that many interesting properties of P are determined by the set ~ of 
index pairs of positive (i.e. non-zero) coefficients of P, the actual 
values of these coefficients being irrelevant. Thus, for example, the 
number of characteristic roots equal in absolute value to the largest 
non-negative characteristic root p depends on ~ alone, if P is irreduc_ 
ible. If P is reducible, then ~ determines the standard forms of P 
(cf. §3). The multiplicity of p depends on ~, and on the set S of 
indices of those sub matrices in the diagonal in a standard form of P 
which have p as a characteristic root. . It has apparently not been 
consider,ed before whether ~ and S also determine the elementary 
divisors associated with p. We shall show that, in general, the 
elemental'Y divisors do not depend on these sets alone, but that 
necessary and sufficient conditions may be found in terms of ~ and S 
(a) for the elementary divisors associated with p to be simple, and 
(b) that there is only one elementary divisor associated with p. 

The square matrix A = [aij] is called an M-matrix 1 if (1) aji ~ 0 
for all i; (2) aijs. 0 wheni*j; and , (3) all non-zero characteristic 
roots of A have positive real part. If P = [Pij] is a square matrix 
with non-negative coefficients and p is its greatest non-negative 
characteristic root, then p ~ Pu, for all i (0. Taussky [7]). Hence 
pI - P is a singular M·matrix. Conversely, if A is a singular 
M-matrix and p ~ mii for all i, then pI - A is a matrix with non~ 
negative elements. Thus it is equivalent, a'nd rather more convenient, 
to study the elementary divisors assooiated with the characteristic 
root 0 of a singular M-matrix. 

2. We shall now explain our notation and terminology, which 
differ in some respects from the usual ones. We introduce a partial 
ordering on a set of conformable matrices with real coefficients by 
setting A (~ B if aij ~ bi) for all i, j, where A = [aij] and B = [bij]. 
A second partial ordering is introduced by setting A ~ B, if either 

I The term M·detenninant was used by A. Ostrowski [~], [5]. It has been proved 
[6], p. 19, that our definition is equivalent to Ostrowski's. 

• 
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Q.iJ> bijfor all i, j, or A.= B. Expressions such as A (> B, and A < B 
then have their natural meanings. If A > 0, we call A "strictly 
positive," if A (> 0 we call .A "weakly positive" or just" positive." 
We shall similarly call A negative if A <) O. 

The notation used by previous authors (cf. Frobenius [2], Wielandt 
[8], and others) is less convenient and a little less satisfactory logically. 
It obscures the fact that we are continually dealing with two partial 
orderings. Whilc A > B has the same meaning in both notations. 
these authors use A ~ B in place of A (~ B. Where we may write
"A (> 0," they would have to write "A ~ 0 but A .* 0." It is 
surely unfortunate, also, that in their notation ".A~ B JJ is not 
equivalent to "either A> B or A = B." 

We note that if A = [a] is 1 X 1, then A > 0 is equivalent to 
.A (> 0, and if A is identified with a then A > 0 has its usual meaning. 

Column and row vectors may be regarded as matrices, and the
same notation will be employed there. 

3. Our principal results will be enumerated in terms of the numbers 
Rij (A, P) defined below. Let A be a square matrix 1 and le~ P be the 
diagonally symmetric partition [Aij], i, j = 1, ... , k. For i,j = 1, ... , k 
we set 

and 
ri; (A, P) = 0 if i * j and Ai; = 0, 
ri;(A, P) = 1 if i =j, or if Ai; * O. 

Where no confusion can arise we shall write Tij for rij (A, P). Next 
we set 

RiJ (A, P) = max: Till rill'" Tn;, 

the maximum being taken ovor all sequences (i, h, "'J n, j). Again we
shall generally write RiJ f.or RiJ (A, P). For future reference we note that 

k 

~ 
11-1 

Rill R llj ~ 

k 

~ riA RIIJ 
11 = 1,11'" i 

~ 

either Rij = 0 or Rij = 1; 

R i; = 1 for i = 1, •••• , k; 

RiJ ~ Ril R ,;, 

Raj ~ max rill R llj 
11 "" i 

1~ l ~ k; (1) 

if i * j. (2) 

1 The field of the coefficients of .A is h"ere immaterial. But in the remaining 
sections we shall assume that all matrices occurring have real coefficients. 
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If A is a square matrix, then there exists a permutation matrix, T, 
for which A *= T-l AT can be partitioned [A~. ], i,j=l,. 00, k such that 

'J . 

(1) A~ = u if i <j, (2) A~ ,i = 1, ... , k, is irreducible. We shall 
u u 

call A * a standard form of A, and we shall say that A * is in standard 
form. In general, the standard form of A is not unique. If AO is a 
standard form of A, and A~., i = 1, ... , l, are the irreducible matrices 

II 

in its diagonal, then l = k, and A0U(i)u{j) = T;- I A: T j, where u is a 

permutation of (1, .. 0' k) and Til ... , TI.: are permutation matrices. Thus 
there exists a one-one correspondence between the irreducible sub
matrices in the diagonal of any t~o standard forms such that oorres
ponding submatrices have the same characteristic roots. In particular, 
all standard forms have the same number of singular irreducible sub
matrices in the diagonal. 

In view of what is to follow we shall examine the connec\ion 
between the Rij (A, P) and a standard form of A. 

LEMMA 1. Let P be the partition [Aij], i, j = 1, ... , k of the square 
matrix A such that the Aii in the diagonal are irreducible. Then A i8 in 
standard form if and only if Rij = 0 whenever i <j. 

Proof. We must show that' R ij = 0 whenever i <j' is equivalent 
to 'rij = 0 whenever i <j '. Clearly' Rij = 0 whenever i <j' implies 
'rij = 0 whenever i <j '. To prove the converse we note that if i <j, 
then any sequence (i, h, ... , n, j) contains two consecutive members 
I, m such that l < m. The lemma follows from the definition of Rij• 

THEOREM 1. Let P be the partition [Au], i, j = 1,. 00, k of A, where 
the Aii are irreducible, and let A be in standard form. Let 1 ~ 0., {J ~ k. 
There exists a permutation u of (1, ... , k) for which A* = [AO'(i)O'(;)]' 
i, j = 1,. 00, k, is in 8tandard form and u (p) < u (0.) if and only if 
RfJo. (A, P) = O. 

Proof. Let p* be the partition [AO'(i)aW] of A* and put 

R~ = R i; (A*, P*). We haveR;i)O'{J) = R;j = R;;(A,P),i,j= l,oo.,k. 

Hence by Lemma 1, if A * is in standard form and u ((J) < U (0.), then 
Rpa = R* a{/J)a{a) = O. 

Conversely let Rp.. = O. Since by (1) Rpa ~ RfJ; Ria it follows that 
R/Ji Rio. = 0 for i = 1, ... , k. Hence we may partition (1, " ., k) into 
three sets E l , E 2, E3 so that if!E1 if HfJ; = 1 and Rio. = 0; if! E'I. if 
R/Ji = Rio. = 0; and if!Es if R/Ji = 0 and Rio. = 1. Let u be the permu
tation of (1, ... , k) for which u(i) < u(j) if i <j and if!EA, jf!E,., with 

) 
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,\ < 1-'; while a(i) < a(j) if i • .ieE" and i <j. where'\ = 1. 2.3. Let P* 
be the partition [A ,,(iju(j)]. i. j= 1 •...• k. of A *. Let R~ = Ri; (A*. P*). 

" Let ieE", JEE,... and suppose that a(i} < a(j}. Then'\:5: 1-" If,\ = 1-', 
then i < j so that by Lemma 1, R*(o) 0 = R;,o = O. If, on the other 

'" aiJ) 

hand, A < 1-'. then either,\ = 1 or I-' = 3. If,\ = 1, then RPi = l, whence 
RiJ = RPi Rij ~ RPi = 0, since I-' >2. If I-' = 3, then Rja= 1, whence 
Rii = RiiRjo.:5:Rio. = 0, since A :5: 2. We conclude that R* aii)u(j)=Ri;= 0 
whenever a(i) < a(j). Thus. by Lemma 1, A * is in standard form. 
We need now only prove that a(f3) < a(I1). But Rp{J = 1, R{Ja = O. 
RaD. = 1 imply that f3eE1, l1eED, and the result follows. 

4. We now turn to the consideration of M-matrices. If the 
matrix A is partitioned [Aij], i.j,= 1, ...• k, we shaH assume any column 
vector x to be conformably partitioned into (Xl"'" Xot). 

LEMMA 2. LetA = [Aij],i.} = 1 •.••• kbeanM-matrix in 8tandard 
form. Let x = (XIt •••• x,;) anti let 

Xi=O when Ria = 0 l 
Xi> 0 when Rio. = 1,) 

for i = 1 •...• h - 1. where h > 11. If 

then 

YI =0 

Yh = 0 

Yh(> 0 

(3) 

(4) 

(5) 

o Proof. Clearly Yh (> 0; and Yh = 0 if and only if Ahjx; = 0 for 
j = 1, ...• h - I, since A hj Xj :5:) 0 for} = 1, •.. , h - 1. Hence, by the 
assumptions a.bout the Xj, Yh = 0 if and only if 

rhj Rjo. = 0, } = 1 •...• h - 1. (6) 

h-l " 
Since rhj = 0 when h <j we have ~ rhj Rjo. = ~ rhjRia and 

j=1 ;=l,j:h 

max rhJ R;", = max rhj Ria. Since h =1= 11, it can now easily be shown 
j<h jzh 

from (2) that (6) holds if and only if Rha = O. The lemma follows: 

THEOREM 2. Let A = [Ai;]. i,} = 1 ••.• , k be a singular M-matrix in 
standard form. Let B be the 8et of indice8 of singular A ii' if aeB, and 
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RflIJ = 0 whenever f3€S, 13 9= a, then there exists a positive characteristic 
column vector x of A allsociated with 0 satisfying (3) for i = 1, .•. , k. 

Proof. Let x be any column vector, and let Y satisfy (4). Then 
Ax = 0 if and only if 

(7) 
for i= 1, •. . ,k. 

Now let Xi = 0 when i < a. The singular irreducible M-matrix 
A ..... has a strictly positive characteristic vector Xa associated with 0, 
cf. [2], [4]. As A is in standard form, Rill = 0 when i < a, Raa = I, and 
therefore Xl> ••• , Xa satisfy (3). 

Let us suppose inductively that Xl> ••• , Xh -1' h> a, satisfy (3). 
If Ylt ••• , Yh satisfy (4), then Yh also satisfies (5) by Lemma 2. Thus 
if R ha = 0 then Yh = 0; and so if Xh = 0 then Xh satisfies (7) for i = h. 
If Rho. = I, then Yh (> 0, and by assumption Ahh is non-singular. It 
is known that the inverse of a non-singular irreducible M-matrix is 
strictly positive ([2], [4]). Hence if Xh = A~ 1 Yh, then Xh> 0, and 

Xh satisfies (7). We have thus constructed a vector Xh satisfying (3) 
and (7), for i = h. The theorem follows by induction. 

For the sake of completeness we shall prove the well-known 
Corollary I. 

COROLLARY l. A singular M -matrix has a positive characteristic 
vector associated with O. 

Proof. Let a be the largest member of S. Then RflIJ = 0, when
ever f3€S, 13 9= a, and the corollary follows from Theorem 2. 

It is also convenient to state Corollary 2 at this point. 

COROLLARY 2. Let Yt, ••• , y, be the members of S. If Rpa. = () 
whenever a, f3€S, a 9= 13, then A has 8 linearly independent characteristic 
column vectors xl, ... , x' associated with 0, where xi satisfies (3) with 
a=y;. 

Proof. Theorem 2 shows the existence of the characteristic 
vectors x;, j = 1, .. _,8, satisfying (3) with a = Yj. Suppose that 

• • 
~ .\h xh = o. Then, for i = 1, .•. , k, we have ~ Ahxh = O. Let a=y;. 

h-l h~l 

Since R{Ja = 0 when f3 = Yh, h 9= j, it follows that x! = 0 if h 9= j . . 

Hence .\p:! = 0; ~nd xi 9= 0 now implies A; = o. The linear independ

ence of Xl, ••• , r follows. 

) 
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5. If x = (XI' •• ' Xk) we shall call Xi the ith vector component 
of x. 

LEMMA 3. Let A = [A;j], i, j = 1, ... , k, be a singular M -matrix 
in standard form. Let 1'1,' .. , 1'" where Yj _ 1 < Yj, be the members of the 
set S of inilices of singular A ii • If there exist m linearly independent 
characteristic vectors of A associated with 0, then for each integer n, n~ m, 
there are at least n of these vectors such that the ilh vector component is 
non-zero for some i ~ 1'" + 1- m' 

Proof. If Yn + • ...: m = k there is nothing to prove. So let 
Yn +, _ m < k and suppose that Xl, ••• , xm are linearly independent 
characteristic vectors associated with 0, such that x~ = 0, for i = 1, ... , 

• 
1'''+1 _mandj = n, ... , 1n. If I-' =Yn+. -m +1, the vectors (xj , ... , x j ), 

,. I; 

j = n, .. . , m, form n - m + 1 linearly independent characteristic 
vectors associated with 0 of the matrix B = [Aij], i, j = 1-', ••• , k. 
But the multiplicity of 0 in B equals the number of singular Ai; in B, 
and so equals m - n. This yields a contradiction, and the lemma 
follows. 

LEMMA 4. Let A = [Aij]' i, j = 1,. .. , k, be a singular M-matrix 
in standard form. Let 1'1' ".,1'" where Yj _ 1< Yj, be the members of S. 
If A has s linearly independent characteristic column vectors associated 
with 0, then there exists a set Xl, ••• , x· of .such vectors for which 

xi = 0 
i 

but 

forj = I, .. . ,s. 

if i < Yi l 
if i = yi ~ 

(8) 

Proof. Let Zl, ••• , Zl be linearly independent characteristic vectors 
associated with o. If z~ = 0 if i < OJ but z~ =F 0 if i = OJ, then Ai; z~ = 0 

• • • 
for i = OJ. Hence OjES. Thus z~ = 0 if i < 1'1' for j = 1, ... , s. It , 
also follows from Lemma 3, with m = 8, n = 1, that for some j we have 
%~ =F O. if i = 1'1. We may therefore assume inductively that we 
• 

have linearly independent characteristic vectors ,rl, .•.• xn, z" + 1, •.. , z'. 
assocjated with 0, such that (a) (8) holds for j = 1, ... , nand 
(b) z~ = 0 if i < 1'", for j = n + 1, ... , 8. Let a = 1',,' Then 

• 
A"" x: = A .... z! = 0, j = n + 1, ... , s. Since an irreducible singular 
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M-matrix has only one linearly independent characteristic column 
vector associated with 0, it follows that z! = \ x: , j = n + 1, •.. , s· 
Let x j = zj - :\j xn,j = n + 1, ., ., 8. The vectors Xl, ••• , x' are linearly 
independent characteristic vectors associated with 0, and, for 
j = n + 1, ... , s, x{ = 0 if i:::;: Yn' Renee by the remark at th e 

beginning of t,he proof, x~ = 0 if i < Yn+ 1. fOT j = 11, + 1, ••. , s. It 
• 

follows from Lemma 3 that there is a j 2 n + 1 such that x~ * 0, • 
if i = Yn + l' Suppose this j = n + 1. Then (a) (8) holds for 
j=l, .~.,n+l,and (b) x~ = 0 if i<Yn+lt for j=n + 2, ••• ,8. The 

• 
lemma follows by induction. 

6. The following lemma is of some interest in itself. It is related 
to a theorem of Collatz [1], and other results on positive irreducible 
matrices. 

LEMMA 5. Let A be an irreducible 8ingular M -matrix and let 
Ax (2 0 or 0) 2 Ax. Then Ax = O. 

Proof. Let Ax (> 0 or Ax :::;:) 0, a.nd let u' be the strictly positive 
characteristic row vector of A, associated with O. If either z (> 0 
or z <) 0, then either u'z > 0 or u'z < O. Hence Ax = O. 

We now come to one of our main theorems. 

THEOREM 3. Let A = [A ij ], i, j = 1, ••• , k, be a singular M-matrix 
in standard form. Let S be the· set of indices of singular A ii • The 
elementary divisors associated with the characteristic root 0 are all linear 
if and only if Rf3a. = 0 whenever a, {3 ES and a * {3. 

Proof· Let S have the 8 members Y1' .•• , Y8 where Y; _ 1 < Yj. 
The elementary divisors associated with 0 are all linear if and only 
if that characteristic root has 8 linearly independent characteristic 
vectors associated with it. 

If Rf3a. = 0 whenever a, {3 ES and a * {3 then by Corollary 2 to 
Theorem 2, 0 has s linearly independent characteristic vectors 
associated with it. Suppose, conversely, that 0 has the 8 linearly 
independent characteristic vectors x!, ... , x' associated with it. 
By Lemma 3, we may assume that Xl, ••• , r satisfy (8). Let us 
assume that for some a, {3 ES, a * {3, we have Rp .. = 1. We shall 
obtain a contradiction. We may choose a, {3 so that Rf3a. = I,{3 > a 
and {3 - a :::;: {3' - a' for all a', {3'ES, a' * {3', for which RIf .. · = 1. If 
a:S;; Y :::;: a :::;: {3 and Y, 8ESthen Ray = 0 unless Y = a and a = {3. Let 



THE ELEMENTARY DIVISORS, ASSOCIATED WITH 0, OF A SINGULAR 115 
M-MATRIX 

B be the matrix [Aijj, i, j = a, . _ -, f3 - 1. Let 81, 82 , • _ ., 8, be the 
indices of the singular Ai; of B in ascending order of magnitude. 
Thus 81 = a = Yi' say. We deduce from Cor~llary 2 to Theorem 2 
that B has r linearly independent characteristic vectors (zh , .•. , zh ), 

.. P-1-
h = 1, . _., r, associated with 0, where Zh satisfies (3) (provided we 

I 

replace a by 8h there), for i = a, ... , f3 - 1. Since the multiplicity 
of 0 in B is r, any characteristic vector of B associated with 0 
is a linear combination of these. Since a = Yi' (xi, •.. , xi ) is a. 

Q 13-1 , 
characteristic vector of B associated with o. Hence x~ = ~ AhZh 

• h ~l i' 

for i = a, . .. ,f3 - 1. Further, A1 '*' 0 since xi *' 0 but Zh = 0 if h = 2. 
o 0 

, P-l 
... , r. It follows that App xi = ~ Ahyh where yh = - ~ ApiZ~. 

fJ h ~ 1 13 fJ i =0 \ 

h = 1, ... , r. On putting z~ = 0 when i = 1, ... , a-I, we obtain • 
from Lemma 2 that 'Y'! (> 0 if RfJy = 1, but yh = 0 if Rpy = 0, where fJ fJ 
y=8h. Hencey~(>O, buty~ =0,forh=2, __ .,r. ThllSAppx~=A1ylfJ' 

and so either A/lp xi (> 0 or 0 (> AfJfJ xi _ But this is not possible, by 
fI p 

Lemma 5. It follows that R{l4 = 0 whenever a, f3 foS and a '*' f3. The
theorem is proved. 

In view of Theorem 1 we obtain immediately 

COROLLARY 1. The elementary divisors associated with 0 are all 
linear if and only if for each aeS there "exists a permutation a of (I, _ .. , k) 
such that [Aa(i)u(j)], i, j = 1,/ ... , k, is in standard form, and a(f3) =:;;; a( a} 
for any f3eS. 

The square matrix A = [aii] is called Minkowskian if (1) aii~ 0 
for all i, (2) aii =:;;; 0, when i '*' j, and (3) ~ aii~ 0 for all i. A 

i 
Minkowskian matrix is an M-matrix: cf_ [4], [6]. 

COBOLLARY 2. Let A be a singular Minkowskian matrix. The 
elementary divisors associated with 0 are all linear. 

Proof. We may assume that A = [Aji]' i, j = I, ... , k, is in 
standard form. Let S be as above. If G = [Ci;] is an irreducible
Minkowskian matrix, then G is singular if a.nd only if ~Ci; = 0 for 

i 
all i, [4]- Hence if aeS, then Aa; = 0, provided thatj '*' a. It follows 
that R.; = 0, if j '*' a.The corollary now follows from Theorem 2. 
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In the case when ~aij = 0 for all i. this result has already been 
j 

proved by Ledermann [3]. 

7. Results similar to those we have found for characteristic 
eolumn vectors may be stated for characteristic row vectors. Let 
A = [Aij]. i.j = 1 •... , k. be in standard form. The transposed matrix 
A'= [A'ij]. i, j. = I, .... k (where A'ii = (Aji)') is not necessarily in 
standard form. However. if u is the permutation for which 

'u (i) = k + 1 - i. i = I, .... k.then B = [A'C7(i)a(i)]' i. j = I ..... k, is 
in standard form. Let p. p'. and Q be the pa.rtition described 
a.bove of A, A' and B respectively. Then Ra(j)ufi) (B. Q) = 
Rji (A'. P') = Rij (A, P). To any characteristic row vector (u't • ... , u' k) 
-of A. associated with O. there corresponds the characteristio column 
vector (UC7 (l), .. "Ua(k») of B associated with O. We may deduce Theorem 2a 
a.nd Corollary 2a. from Theorem 2 and Corollary 2. 

THEOR~M 2a. Let A = [A ii]' i. j = I, ... , k, be a singular M -matrix 
in standard form. Let 8 be the set of indices of singular Ai{. If af.8 and 
Rap = 0 whenever fJf.8 and fJ,., a. then there exists a positive character
istic row vector u' = (u/, .... U'.I;) associated with O. satisfying 

Ui = 0 when Rai = OJ. (9) 

Ui > 0 when Rai = 1 
Jor i = 1, .... k. 

COROLLARY 2a. Let Yl' ...• Y. be the members of 8. If Rap = 0 
whenever a, fJf.8 ani a ,., fJ then A has s linearly independent character
istic row vectors U'l, ... , u'· associated with O. where u'J satisfies (9) 

with a = YJ. 

THEOREM 4. Let A be a singular M-matrix. If the elementary 
divisors associated with the characteristic root 0 are all linear. then the 
principal idempotent element associated with 0 is positive. 

Proof. Let C be a matrix whose characteristic root w. of multi
plicity s. has only linear elementary divisors associated with it. There 
exist linearly independent characteristic column vectors Xl ••••• rand 
linearly independent characteristic row vectors U'l, ••• , u" associated 
with w. such that u'hxi = 8h;. h,j = 1, ...• 8, the Kronecker delta. The 

• 
principal idempotent element associated with w is the matriX l: xhu'h. 

,\-1 

,f 
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Let P* be the partition A * = [A~ ], i, j = 1, ... , le, of a standard 
.J 

form of the singular M-matrix A with only linear elementary divisors 
associated with 0, and let S = ('Yl' ••• , 'Y,) be the set of indices of 
singular A:. By Theorem 3, R;' = R{Ja (A*, P*) = 0, when 

a, {J€S, a '" {J. Hence by Corollary 2 to Theorem 2 there exist linearly 
independent characteristic column vectors Xl, 0 •• , x' associated with 0 
such that xi satisfies (3) with a = 'Yjo Similarly, by Corollary 2a to
Theorem 2a there exist linearly independent characteristic row vectors 
'1.£/ 1 , ••• , '1.£", associated with 0, suoh that u'i satisfies (9) with a = 'Yj. 

A: 

Let a = 'Yj and {J = 'Yh' Since U'hXi = ~ U/~ x~ andu'~ x! = O'if and 
'I t 'I t ;=1 

only if R* R* = 0 it follows that u'hxi;;. 0, and that u'hxi = 0 if 
fJi ia 

and only if ~ R* R* =0. But we may deduce from (1) that 
;-1 {H ia 

1< 
~ R*. R~ = 0 if and only if R* = O. Hence u'hxj = 0 if k '" i, but· 
i = 1 fl. &0 {Ja 

u'ixi> 0, for k, j = 1, ... ,8. We may clearly assume that '1.£'1, ••• , '1.£',. 

have been multipled by positive factors so that U'hxi = Shi' Then , 
the idempotent element of A * associated with 0 is E* = ~ xiu'i. 

i~l 

Thus E* (:?: O. If E is partitioned conformably with A, then , 
E" = ~ x~ u'~ , i = 1, ... , le. Since u'i > 0, and xi > 0, butulh = O~ 

h--l ' , (l a a 

and xh = 0, when k '" i, it follows that E* a.4=Xh U'h >0. Hence E* (> O. 
a a /J 

The principal idempotent element E of A associated with 0 is 
obtained from that of A* by means of a transformation by a per
mutation matrix. Hence E, too, is positive. 

8. We have already remarked that the elementary divisors of a.. 
matrix A, associated with the characteristic root 0 of multiplicity 8, 

are all linear if and only if there are 8 linearly independent character
istic vectors associated with O. In the next two sections we shall 
discuss the other extreme case when there is only one elementary 
divisor associated with the characteristic root 0 of a singular M -matrix. 
Equivalent conditions are (a) that 0 has only one linearly independent 
characteristic vector associated with it; or (b) that there exists a set 
:1:1, ••• , x' of column vectors such that 

Axj = xi+ 1, i = 1, ... ,8 - 1; Ax' = 0, and x' '" 0, (10) 

where 8 is again the multiplicity of' O. 
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LEMMA 6. Let A = [Ai;], i, j = I, ... , k, be a singular M-matrix in 
standard form. Let S = (Y1' ... , Y.), where Y; _ 1 < Yi' be the set of indices 
of singular A ii • If Xl, ••• ; x" is a set of column vectors satisfying (10), 
then xi, j = I, ... , s, satisfies (8). 

Proof. For;' = I, ... , s, let x~ = 0 if i < 0'1' but xi *' 0 if i = 0.· , i ,-

Since Ax" = 0, it follows, as in the proof of Lemma 4, that O,€S. 
Let us asSUme inductively that (a) Oj€S for j = h, •.. , s; and that (b) 
OJ -1 < 0; for j = h + I, ... , s. These assumptions hold for h = s. 
1£ y: satisfies (4), when Xi = ~ , then Ax; = x; + 1 if and only if 

. Aiix~ = y~ + ~ + 1, ( ll) , , . 
for i = I, "', k. Let f3 = 0h' Then ~ = 0; and we may deduce 

from (b) that x:+ I =0. Hence (II) holds' for i = f3 and j = h 

if and only if A{JQxh = O. Hence either xii > 0 or Xh < O. But 
" {J f. f. 

A{J{JX~-l = y~ -1 + ~. It follows by Lemma 5 that (a) and (b) imply 

that ?f.-I*, O. Thus Oh _ 1 < fJ = 0h' We deduce that if a = Oh -1 then 
{J 

xh=yh-1=0. Bence by (ll) A aaxh - 1=0, and so 0h_l€8. By 
" " a 

induction we obtain that O;€S,j=I, .•. , s, and that 0; _1<oj,j=2, . ", s. 
Hence OJ = Yj, j = I, ... , s and the lemma is proved. 

9. LEMMA 7. Let A be an irreducible M -matrix. 
y (> O,be column vectors conformable with A. Then 
and a column vector x such that Ax = >..y + z. 

Let z and y, where 
there exist a real >.. 

Proof. If A is non-singular, then there exists such an x for any>... 
Suppose A singular. Since 0 is a. simple characteristic root of A, 
the nUllity of A is 1. By Lemma 5, y is linearly independent of the 
columns of A. Hence any column vector is a li'near combination of 
the columns of A and y. The lemma follows. 

THEOREM 5. Let A = [Aij], i, j = I, ... , k, be a singular M -matrix in 
standard form. Let S be the set of indices of singular A". There is only 
one elementary divisor associated with the characteristic. root 0 of A if and 
only if R{Ja = I, whenever a, f3€S and f3 > Cl. 

Proof. Suppose that there is only one elementary divisor associated 
with O. Let Xl, ••• , x" be a set of column veotors satisfying (10). By 
Lemma 6, x j satisfies (8), j = I, •..• s. Let Cl = Yh -I, f3 = Yh' The 
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conditions (a) and (b) of the proof of Lemma 6 are clearly satisfied, and 
fJ-I fJ-I 

SO'!l.-I=- 1: A "Xh- 1 =- 1: A"Xh- 1 *0 Rut (Xh- I Xh-I) 
{J i=1 U i ',",IZ. U i . a J ••• , {J-l 

is the one linearly independent characteristic column vector associated 
with 0 of B = [Aii] , i, j = a, ... , fl - 1, since :0, = 0, for i= a, ... , fl-1. 

It therefore follows from Theorem 2 that x~ , i= a, ... , fl -1, satisfies(3), 
• 

provided that Xl, ... , x8 have been multiplied by -1 if necessary. 
Therefore. x~, i = I, ... , fl - 1, satisfy (3). Hence, by Lemma 2, it • 
follows from ~ -1 * 0 that Rp .. = 1, when a = I'll _ 1> fl = Yh' This is 

a particular case of the required result. To deduce the general case, 
let a = Yj, fJ = Yh' where h > j. Then Rpa > Ry y ... Ry. v , = 1. 

h h - 1 , + 1 ., 

Hence Rp .. = 1, whenever a, flES and fl> a. 
Conversely, let us suppose that Rpo. = 1 whenever a, flES and 

fl > .a. By Theorem 2, Corollary I, there exists a characteristic column 
vector x', associated with 0, which satisfies (8). Let us suppose that 
there exist column vectors xi satisfying (8), j = h, ... , s, such that 

Axi= xHI,j = h, . .. ,8 -1, Axs = 0, r * O. (12) 
We shall construct a vector Xh - I satisfying (8) and AXh -I = xh. 

Let a=Yh-h fl=Yh' Let X~-I=O, i=l, ... , a-I, and let 
. , . 
(xh -I, ... , x" -1) be the one linearly independent characteristic vector, 

.. fJ-l 

associated with 0, of B = [Ai;], i, j = a, .. "' fl - 1. Then x~ - .. i = 1, . , 
••. , fl - 1, satisfies (3) provided that the x~ -I have all been multiplied 

• 
by - 1, if necessary. If,-for i =1, ... , fl, y?-1 is chosen to satisfy (4) 

• 
with x replaced there by xh- 1, then it follows by Lemma 2 that 
yh -I (> O. Hence by Lemma 7, there exist a " and an Xh - 1 such 

fJ p 
that AppX; -I = "Y: -1+ ~. We now write x: -I for "X: -I, i = 1, "', 

fl-l, "~-l for '9';,-1, i = 1, ... , fl, and leave x; -I unchanged. Since 

Xh, = 0, when i < fl, ~ - .. i = I, ... , f3 satisfies (11) withj= h - 1. 

Let us assume inductively that x~ - .. i = I, . .. ,l - I, satisfies (11), • 
where l> fl. We must consider two cases: l~S and lES. If liS, then (11) 
is satisfied when xh -I = A - I (yh -1+ xh ). If lES, say l = Yh+m (where 

I U I I 

dearly m > 0) then there exist, by Lemma 7, a" and an x~ - I for which 

A/lX:-I=y:-I+X:+"x~+m, since either ~+m>o or ~+m <0. 

We DOW replace xi by xi + "xi + m, j = h • ... , 8, where, by convention, 
xi+m = 0 if j + m > 8. Then xh, ... , r again satisfy (12) and since 
the original x~+m = 0 when i < l, it follows that Xh.-l ... , X h - I 

• l ' I 
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satisfy (11) with j = h - 1. By induction we obtain a vector 
Xh -1 = (xh -1, ... , xh -1) satisfying (11) with j = h - 1. Thus in 

. 1 k . 

addition to (12) we ha.ve Axh -1 = x\ where xh - 1 satisfies (8). Using 
induction again we obtain a set of vectors satisfying (10) and the 
theorem is proved. 

In virtue of Theorem 1 we obtain the following corollary. 

COROLLARY. Let Y be the largest member of S. There is only one 
elementary divisor associated with the characteristic root 0 of A if and 
only iffor any permutation u of (1, ... , k) for which [AC1(i)a(j)], i,j = I, ... , k, 
is in standard form, we have u(y) ~ u(a) whenever aES. 

An argument along the lines of the second half of the proof of 
Theorem 5 would lead to the following result, which we shall enunciate 
as a theorem, though we shall omit the proof. First we should have 
to generalise Lemma 2. 

THEOREM 6. Let A = [A ii], i, j = I, ... , k, be a singular M-matrix 
in standard form. Let S = (Yl' " ., y.), Yi _ 1 < Yi, be the set of indices 
of singular A,i' If there is only one elementary divisor associated with 0 
then there exist positive column vectors Z1, ••• , z· such that xl, ... , r satisfy 
(10) if xi = ( - l)i zi, j = I, ... , s. In fact 

B 

z'! = 0 when ~ R j • = 0, 
, i= h YJ 

• 
and z~ > 0 when ~ Riy > O. 

j =h j 

The standard forms of A depend only on the set ~ of index 
pairs of non-zero coefficients of A. It is clearly decided by ~ and 8 
whether (a) Rfla = 0, whenever a, {JES, and a '*' {J; or (b) RfJo. = I, 
whenever a, {JES and {J> a. Let P be a positive matrix, with 
largest characteristic root p. The degrees of the elementary divisors 
of P a880ciated with p are the same as those of the elementary 
divisors, associated with 0, of the M-matrix pI - P. Hence Theorems 
3 and 5 fulfil the claims of § 1. 

10. Let A = [Aii], i, j = I, .•. , k, be a singular M-matrix in 
s.tandard form. Let S = (Yl' ••• , y,), Yj _ 1 < Y;, be as usual, the set 
of indices of singular A ii• If s = I, then there is clearly only one 
elementary divisor, associated with 0, and it is linear. If 8 = 2, 
then there are two elementary divisors of degree I, or one of degree 2, 
associated with 0, according as R(Jo = 0 or·R(Jo = I, where a = Yto and 
f3 = Y.· Suppose that s = 3 and let Yl = a, Ys = {J and Ya = y. Since 

I 

" 



THE ELEMENTARY DIVISORS, ASSOCIATED WITH 0, OF A SINGULAR 121 
M-MATRIX 

Rap = Ray = RfJy = 0, and since R yp = Rpa = 1 implies that RY" = 1, we 
may consider seven cases according as R yfJ , Ry .. , RfJa are 1 or O. The 
cases R yfJ = RY" = Rpa = 0, and R yfJ = Ry .. = RfJ .. = 1, are covered by 
Theorems 3 and 5. We deduce that in the five other cases 0 must
have associated with it one elementary divisor of degree 1 and one of 
degree 2. This means that A has two linearly independent column 
vectors Zl, Z2 associated with 0, and that there exists a vector x 
satisfying either Ax = Zl or Ax = Z2. By considering each of the 
five cases separately it is possible to demonstrate the existence of 
these vectors without any appeal to Theorems 3 and 5. 

As an example we shall consider the case R yfJ = RY" = 1, Rpa = O. 

Though we shall use the theorems proved previously it would be 
possible to use special cases of these results which could be proved 
more simply. It follows from Theorem 5, applied to [Aii]' i,j=/3, ... , k, 
that A has a characteristic vector x 3 , associated with 0, for which 
x~ = 0 when i < y, and that there exists an X2 satisfying Ax2 = x 3• 

I 

Let (zi , •.. , zi ), j = 1, 2, be the two linearly independent charac-
I y-l 

teristic column vectors, associated with 0, of [Aij], i, j = 1, . ' ." y - 1. 
The existence of these vectors is shown by Theorem 3. By Theorem 1, 
Corollary 2, we may assume that zt = 0 if Riy.= 0 and z~ > 0 if Riy . = 1, 

1 • 1 
. y-l 

forj=I,2. Hence, byLemma2,w.1(>0,j=I,2,where wi =- :I: Ayhzi • 
y y h-l h 

By Lemma 7, there exist a A and an Xl satisfying 
y 

( 13) 

Let x~ = z~ + Az~, i = I, ... , y - 1. Then (Xl, ••• , Xl ) is non-
I • I , I y 

zero and, for i = 1, ••. , y, x~ satisfies (7) provided y~ is chosen to 
, I 

satisfy (4). Since Au is non-singular if i > y, it is easy to establish the 
existence of a vector Xl= (Xl, ... , Xl) where x~ satisfies (7) for i=I, .. . ,k. 

] I: I 

Thus Xl and x3 are characteristic column vectors associated with 0, 
which are linearly independent as Xl = Zl + AZ2 = Zl > 0, while x3 =0; 

4 « «~ 4 

and Ax2 = x 3• 

It follows from Lemma 5 that A < 0 in (13). Hence Xl =Zl +AZ2 = 
II II P 

.\z2 < 0, but ·xl > 0, as already noted. Hence Xl is neither positive 
II & 

nor negative. It is easily established that this property is shared by 
one of any two linearly ip.dependent characteristic vectors, aasociated 
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with 0, of the matrix A we have been considering. It is due to this 
that S and ~ do not necessarily completely determine the elementary 
divisors associated with 0 of a singular M-matrix when s> 3. Thus, 
in both Band C below, k =4, S = (1, 2, ~, 4), s = 4 and Rn = R21 = 0, 
R42 = R41 = R32 = R3} = 1. 

B='l' . 
-1 -1 

_-1 -1 

C-[
-

-1 -1 

/-::~ - 1 - ·L/ 
But B is of rank I, C of rank 2. Henoe the elementary divisors 

associated with 0 differ for the two matrices. We also note that the 
principal idempotent element, associated with 0, of both Band G 
is the unit matrix, which is, of course, positive. It follows that the 
converse of Theorem 4 does not hold. 

Most of the results of this paper are contained in my 1952 Ph.D. 
thesis, which was written under the supervision of Professor 
A. C. Aitken. My thanks are due to Professor Aitken for his great 
encouragement. 
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