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1. Many investigations have been concerned with a square
matrix P with non-negative coefficients (elements). It is remarkable
that many interesting properties of P are determined by the set X of
index pairs of positive (i.e. non-zero) coefficients of P, the actual
values of these coefficients being irrelevant. Thus, for example, the
number of characteristic roots equal in absolute value to the largest
non-negative characteristic root p depends on X alone, if P is irreduc-
ible. If P is reducible, then X determines the standard forms of P
(cf. §3). The multiplicity of p depends on X, and on the set S of
indices of those submatrices in the diagonal in a standard form of P
which have p as a characteristic root.. It has apparently not been
considered before whether X and S also determine the elementary
divisors associated with p. We shall show that, in general, the
elementary divisors do not depend on these sets alone, but that
necessary and sufficient conditions may be found in terms of ¥ and S
{a) for the elementary divisors associated with p to be simple, and
(b) that there is only one elementary divisor associated with p.

The square matrix 4 = [a;;] is called an M-matrix ! if (1) a;; == 0
for all ¢; (2) @; =0 wheni+j; and. (3) all non-zero characteristic
roots of 4 have positive real part. If P =[p;] is a square matrix
with non-negative coefficients and p is its greatest non-negative
characteristic root, then p = p;, for all ¢ (O. Taussky [7]). Hence
pl — P is a singular M-matrix. Conversely, if 4 is a singular
M-matrix and p = m; for all ¢, then pI — 4 is a matrix with non-
negative elements. Thus it is equivalent, and rather more convenient,
to study the elementary divisors associated with the characteristic
root 0 of a singular M-matrix.

2. We shall now explain our notation and terminology, which
differ in some respects from the usual ones. We introduce a partial
ordering on a set of conformable matrices with real coefficients by
setting 4 (= B if a; = by; for all ¢, j, where 4 = [a;] and B = [b;]-
A second partial ordering is introduced by setting A = B, if either

! The termn M-determinant was used by A. Ostrowski [4], [6]. It has been proved
[8], p. 19, that our definition is equivalent to Ostrowski’s.
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a; > b;; for all ¢, j, or A = B. Expressions such as 4 (> B,and A < B
then have their natural meanings. If 4 >0, we call 4 ¢ strictly
positive,” if A (> 0 we call 4 *“ weakly positive ’’ or just *‘ positive.”
We shall similarly call A4 negative if 4 <) 0.

The notation used by previous authors (ef. Frobenius [2], Wielandt
[8], and others) is less convenient and a little less satisfactory logically,
It obscures the fact that we are continually dealing with two partial
orderings. While A > B has the same meaning in both notations,
these authors use 4 = B in place of 4 (= B. Where we may write
“A(>0, they would have to write “4 =0 but 4.+ 0.” It is
surely unfortunate, also, that in their notation “A=B" is not
equivalent to ‘““either A > Bor 4 = B.”

We note that if A =1[a] is 1 x 1, then 4 >0 is equivalent to
A (>0, and if A4 is identified with @ then 4 > 0 has its usual meaning.

Column and row vectors may be regarded as matrices, and the
same notation will be employed there.

3. Our principal results will be enumerated in terms of the numbers
R;; (4, P) defined below. Let 4 be a square matrix® and let P be the
diagonally symmetric partition [4;;],¢,j=1,..., k. For¢,j=1,..., %k
we set

ri; (A, P)=0ifi +jand 4;; =0,

and ry(d, P)=1ifi=7j, orif 4;; + 0.
Where no confusion can arise we shall write r;; for r;; (4, P). Next
we set

.R.'j (A., P) = IMAX T Thie oo Tnjy
the maximum being taken over all sequences (3,4, ..., n, j). Again we
shall generally write R;; for B (4, P). For future reference we note that
either B;; = 0or R; =1;

R;=1fors=1,...,k;
k

% Ry Ry = R; = Ry Ry, 115k (1)
Aol
k
E Tia .th g .R‘-)' _Z_ max Tin .th if N * j. (2)
A=1Lh=§ B

1 The field of the coefticients of A is here immaterial. But in the remaining
sections we shall assume that all matrices occurring have real coeflicienta.
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If Ais a square matrix, then there exists a permutation matrix, T,
for which A*=T-1 AT can be partitioned [A’I;, 1, ,9=1,..., k such that
(1) A; =0 if 1<y, (2) Az‘f ,t=1,..., k, 18 Iirreducible. We shall
call A* a standard form of 4, and we shall say that 4*is in standard

form. In general, the standard form of A is not unique. If A%isa
standard form of A, and Agi, t=1,..., {, are the irreducible matrices

in its diagonal, then! =k, and A"m)a{j) =T:‘A;‘f T;, where o is a
permutation of (1,...,k)and 7', ..., T, are permutation matrices. Thus
there exists a one-one correspondence between the irreducible sub-
matrices in the diagonal of any two standard forms such that corres-
ponding submatrices have the same characteristic roots. In particular,
all standard forms have the same number of singular irreducible sub-
matrices in the diagonal.

In view of what is to follow we shall examine the connection
between the R;; (4, P) and a standard form of 4.

Lemma 1. Let P be the partition [A;), 4,5 =1,..., k of the square
mairiz A such that the A;; in the diagonal are srreducible. Then A is in
standard form if and only if R;; = 0 whenever i <j.

Proof. We must show that ¢ R;; = 0 whenever 1 <j’is equivalent
to ‘r;; =0 whenever : <j’. Clearly ¢ R;; = 0 whenever ¢ <j’ implies
‘r;= 0 whenever t <j’. To prove the converse we note that if ¢ <,
then any sequence (z, &, ..., n, j) contains two consecutive members
1, m such that I <m. The lemma follows from the definition of R,;.

TeEOREM 1. Let P be the partition [A;], ¢, j=1,..., k of A, where
the A, are irreducible, and lel A be in standard form. Letl<a, B<k.
There exists a permutation o of (1,..., k) for which A* =[4,4,¢)],
1, i=1,..., k, is in standard form and o(B) <ol{a) if and only if
Ry (4, P)=0.

Proof. Let P* be the partition [4,4,;3] of A* and put
R; = R;; (4%, P*). We ha.veR:“am =R; = R;(4,P),+,j=1,..., k.
Hence by Lemma 1, if A* is in standard form and o (8) <o (a), then
Rgo = B* (g ota) = 0.

Conversely let R, = 0. Since by (1) Ry = Ry Ry, it follows that
R, R, =0 for t=1,..., k. Hence we may partition (1, ..., k) into
three sets E,, E,, E; so that iel, if Ky =1 and R, = 0; ic B, if
Ry, = R;,=0; and teE;if R;;=0and B, =1. Let o be the permu-
tation of (1,..., k) for which o(?) <o(j)if t <j and ieE,, jeE,, with
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A << pu; while o(2) <o(j) if 1, jeE, and ¢ <j, where A =1, 2, 3. Let P*
be the partition [4,4).;)], t j=1, ..., k, of A*. Let R; = R; (4%, P¥*),
Let ick,, jek,., and suppose that o(i) <o(j). Then A= pu. If A=y,
then { <j so that by Lemma 1, Rtmm’ = Ry;= 0. If, on the other
hand, X\ <y, then either A = 1oru =3. If A=1, then By = 1, whence
R;=Ry R; < Rg; =0, since u = 2. If u=3, then Rj,=1, whence
R;=R;R;,<R, = 0,sincex < 2. We conclude that B* ; ;=R;=0
whenever a(i) <o{j). Thus, by Lemma 1, A* is in standard form.
We need now only prove that o(B) <o(z). But Rg=1, Rsz =0,
R,. = 1 imply that BeE,, acly, and the result follows.

4. We now turn to the consideration of M-matrices. If the
matrix 4 is partitioned [4,;], ¢, j,=1,.. ., k, we shall assume any column
vector z to be conformably partitioned into (z,,..., z).

LevMma 2. Let A =[4y],¢,j= 1,... , k bean M-matriz in standard
form. Let x = (zy,..., %) and lel

;=0 when R;, = 0

3
z;> 0 when R‘-a=1,J (3)
fori=1,...,h — 1, where h >a. If
y1=0 1
is! ) (4)
y=— X Aijtj,i=2,---.kj
j=1
_then =0 if R,,=0
Yp(>0 if Rp=1]" (5)

Proof. Clearly y; (= 0; and y, =0 if and only if 4,%z; = 0 for
j=1,.., h — 1, since 4;; <)0 for j = 1,..., h — 1. Hence, by the
assumptions about the z;, y;, = 0 if and only if '

Tijja,Zo,j=l,...,h—l- (6)
A—1 k
Since 7r,;=0 when h <j we have & 17, R,= Z r,;B;, and
j=1 j=1, jxh
max 7, R;, = max r;; R;,. Since h + o, it can now easily be shown

i<h ixh

from (2) that (6) holds if and only if R,, = 0. The lemma follows.

THEOREM 2. Let A =[A;), 4,5 =1,..., kbe a singular M-malriz in
standard form. Let S be the set of indices of singular A;. If aeS, and



112 Hans SCHNEIDER

Ry, = 0 whenever BeS, B + a, lhen there exists a posilive characteristic
column vector x of A associated with 0 satisfying (3) for i=1, ..., k.

Proof. Let x be any column vector, and let y satisfy (4). Then
Az = 0 if and only if
Aux; = y; (7)
for i =1,..., k.

Now let z; = 0 when 7z <a. The singular irreducible M-matrix
A, has a strictly positive characteristic vector x, associated with 0,
cf.[2],[4]. As 4 is in standard form, R;, = 0 when 7 < a, R, = 1, and
therefore xz, - .., x, satisfy (3).

Let us suppose inductively that z,,..., z; _;, 2 > a, satisfy (3).
If y,, ..., ¥y satisfy (4), then y, also satisfies (5) by Lemma 2. Thus
if R,, =0 then y, = 0; and so if z; = 0 then z; satisfies (7) for = = h.
If R,. =1, then y,(>0, and by assumption A4, is non-singular. It
is known that the inverse of a non-singular irreducible M-matrix is
strictly positive ([2], [4]). Hence if z; =A’;.‘y,,, then x>0, and
x), satisfies (7). We have thus constructed a vector x, satisfying (3)
and (7), for 7 = k. The theorem follows by induction.

For the sake of completeness we shall prove the well-known
Corollary 1.

CoroLLARY 1. A singular M-matrixz has a posilive characteristic
vector associated with 0.

Proof. Let a be the largest member of S. Then Rz, = 0, when-
ever BeS, B + a, and the corollary follows from Theorem 2.
It is also convenient to state Corollary 2 at this point.

CoroLLARY 2. Lel y,,..., y, be the members of S. If Ry, = 0
whenever a, BeS, a + B, then A has s linearly independent characleristic
column vectors z', ..., x® associated with 0, where z/ satisfies (3) with

a=y,-.

Proof. Theorem 2 shows the existence of the characteristic
vectors «f, j =1,...,8, satisfying (3) witha =y;, Suppose that

2‘1 A, 28 = 0. Then,fori =1, ...,k wehave X )zt =0. Let a=1y;.
h=1 h=1

Since Ry, =0 when B=1y,, h+j, it follows that zh=0 if h=+j.
Hence Az = 0; and 2/ + 0 now implies \; =0. The linear independ-

ence of x!,.. _, z* follows.



Tee ELEMENTARY DIVISORS, ASSOCIATED WITH 0, OF A SINGULAR 113
M-MATRIX

5. If = (x,,.., z,) we shall call 2; the 7th vector component
of x.

Lemma 3. Let A=[A;], 1,5 =1,..., k, be a singular M-matrix
in standard form. Let vy, ..., y,, where y; _ <v;, be the members of the
set 8 of wndices of singular A;. If there exist m linearly independent
characteristic vectors of A associated with 0, then for each integer n, n = m,
there are at least n of these vectors such that the ith veclor component is
non-zero for some 1 = yu 4 g — e

Proof. If y,,,'m=~F there is nothing to prove. So let
Ynis-m<k and suppose that z',..., 2™ are linearly independent
characteristic vectors associated with 0, such that x{ =0,fori=1, ...,
Ynis—mandj=n,...,m. If p=y,,,_, +1, the vectors (xi e @),
j=n,..,m, form n —m 4 1 linearly independent characteristic
vectors associated with O of the matrix B=1[4y], ¢,j=pu,..., £
But the multiplicity of 0 in B equals the number of singular 4;; in B,
and so equals m — n. This yields a contradiction, and the lemma
follows.

Lemma 4. Let A =[A4;],14, j=1,..., k, be a singular M-malrix
in standard form. Lety,, ...,y, where y; _| < y;, be the members of S.
If A has 8 linearly independent characteristic column vectors associaled
with 0, then there exists a sel x',. .., x° of such vectors for which
) e (8)
but zl +0 tf t = yj
forj=1,...,s.

Proof. Letz!,...,2* be linearly independent characteristic vectors
associated with 0. If z{ = 0if 7 < §; but z:,' +0if 7 = §;, then 4;; zi; =0
for + = 3&;. Hence §;S. Thus zi =0 if t<y, forj=1,...,s It
also follows from Lemma 3, with m = s, n =1, that for some j we have
2 %0, if i=y,. We may therefore assume inductively that we
havelinearly independent characteristic vectors z,...,z% 2" *1,..., 2,
associated with 0, such that (a) (8) holds for j=1, ..., n and
(®) z::=0 if t<y, for j=n+4+1, ...,s. Let a=1y, Then

A2t =A4,2 =0, j=n+1,..., s. Since an irreducible singular
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M-matrix has only one linearly independent characteristic column
vector associated with 0, it follows that 2z = Aar j=n+ 1, .8

Letzi=2 — X;2",j=n+1,...,8. Thevectorsz!, ..., z* are linearly
independent characteristic vectors associated with 0, and, for
j=n+1, ..., s xz =0 if i<y, Hence by the remark at the
beginning of the proof, 2/ =0 if i <yssy for j=n+1,...,s. It
follows from Lemma 3 that there is a j=n + 1 sueh that :rf +0,
if $=9y,,1- Suppose this j=n+ 1. Then (a) (8) holds for
j=1, ...,n+1,and (b) 9;:,' =0if t<y, 1, for j=n +2,...,8 The
lemma follows by induction.

6. The following lemma is of some interest in itself. Itis related

to a theorem of Collatz [1], and other results on positive irreducible
matrices.

LeMMa 5. Let A be an irreductble singular M-matrixz and let
Az (= 00r 0) = Ax. Then Ax = 0.

Proof. Let Az (= 0 or Az <) 0, and let ' be the strictly positive
characteristic row vector of A4, associated with 0. If either z (>0
or z <) 0, then either u'z >0 or #'z<0. Hence Az = 0.

We now come to one of our main theorems,

TrEOREM 3. Let A = [4y], %, j=1, ..., k, be a singular M-malrix
tn standard form. Let S be the set of indices of singular A;. The
elementary divisors associated with the characteristic root 0 are all linear
of and only if Ry, = 0 whenever a, 8 S and a + 8.

Proof. Let S have the s members y,, ..., y, where y; _, <4y;.
The elementary divisors associated with 0 are all linear if and only
if that characteristic root has s linearly independent characteristic
vectors associated with it.

If Ry, =0 whenever a, 8 S and a += 8 then by Corollary 2 to
Theorem 2, 0 has s linearly independent characteristic vectors
associated with it. Suppose, conversely, that 0 has the s linearly
independent characteristic vectors z!, ..., 2 associated with it.
By Lemma 3, we may assume that z%, ..., x* satisfy (8). Let us
assume that for some a, 8 S, a + B, we have Ry, =1. We shall
obtain a contradiction. We may choose a, 850 that R;,,=1,8>a
and B —a < B — o for all o, B'eS, o' + B, for which Ry, = 1. If
ey <8< B andy, 8eS then R;, =0 unless y =a and § = B. Let
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B be the matrix [d;], ¢, j =a, ..., 8—1. Let §,3,, ..., §, be the
indices of the singular 4; of B in ascending order of magnitude.
Thus &, = a = y;, say. We deduce from Corollary 2 to Theorem 2
that B has r linearly independent characteristic vectors (2* , ..., zg W
h =1, ..., r, associated with 0, where 2’ satisfies (3) (provided we
replace a by 8, there), for i =a, ..., — 1. Since the multiplicity
of 0 in B is r, any characteristic vector of B associated with 0
is a linear combination of these. Since a =1y; (z7,..., 9:; 1) is a

characteristic vector of B associated with 0. Hence :z:l?' = ZE Apzh
- A=t 7

fori=a, ..., — 1. Further, A; + 0 since 2/ + 0 but 2" =0if h =2,
. r -1

.., r. It follows that Aﬂﬂxfe = ’El /\hyg where yg = — ii Agial
h=1,..,7. On putting z"? =0 when ¢=1, ..., a — 1, we obtain
from Lemma 2 that y’; (>0 if By, =1, but yz = 01if R; =0, where
y=25,. Hence y; (> 0, but yg =0,fork=2, ...,7. Thus 4, :z:; =AY
and so either 4, :z:; (>0o0r0(>Adp :z:; . But this is not possible, by
Lemma 5. It follows that Ry, =0 whenever a, 8eSand a + 8. The

theorem is proved.
In view of Theorem 1 we obtain immediately

CoroLLARY 1. T'he elementary divisors associated with 0 are all
linear if and only if for each aeS there exists a permulation o of (1, ..., k)
such that [A4 yepls 8 J = L. .., k, 15 in slandard form, and o(B) < o(a)
for any BeS.

The square matrix 4 = [a;] is called Méinkowskian if (1) a; =0
for all ¢, (2) a; =<0, when ¢+ j, and (3) z;ai,-go for all 7. A

3
Minkowskian matrix is an M-matrix: cf. [4], [6].

CoBOLLARY 2. Let A be a singular Minkowskian malriz. The
elementary divisors associaled with 0 are all linear.

Proof. We may assume that 4 =[4;], 4, j=1, ..., %, is in
standard form. Let S be as above. If C=[c;] is an irreducible
Minkowskian matrix, then C is singular if and only if Zc; =0 for

all i, [4]- Hence if acS, then 4, = 0, provided that j + a. It follows
that R,;=0, if j + a. The corollary now follows from Theorem 2.
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In the case when Za; = 0 for all 7, this result has already been

]
proved by Ledermann [3].

7. Results similar to those we have found for characteristic
column vectors may be stated for characteristic row vectors. Let
4 =1[4y],%,j=1, ..., k,be instandard form. The transposed matrix
A'=[4"4], %, j,=1, ..., k (where A’; = (A4;)’) is not necessarily in
standard form. However, if o is the permutation for which
o()=k+1—14,1=1, ...,k then B=[A",hopls %, =1, ..., k, i8
in standard form. Let P, P’, and @ be the partition described
above of A, A’ and B respectively. Then R,y (B, Q)=
R;j(4A', P’y =R (A4, P). Toany characteristic row vector (u'y, ..., u";)
of A4, associated with 0, there corresponds the characteristic column
vector (U, . Uyp) of B associated with 0. We may deduce Theorem 2a
and Corollary 2a, from Theorem 2 and Corollary 2.

TrEOREM 2a. Let A =[Ay],t,j=1, ..., k, be a singular M-matriz
in standard form. Let 8 be the set of indices of singular Ay, If aeS and
R,z = 0 whenever BeS and B + a, then there exists a positive character-
istic row vector w' = (w,’, ..., u’;) associated with 0, satisfying

u; =0 when Ry = 0} ©)
u; > 0 when B ; =1
Jori=1, ..., k.

CorOLLARY 2a. Let yy, ..., v, be the members of 8. If R,; =0
whenever a, feS and a + 8 then A has s linearly independent character-
" istic row wectors w'l, ..., u'* associated with 0, where 7 satisfies (9)
with a = Vi

THEOREM 4. Let A be a singular M-matriz. If the elementary
divisors associaled with the characteristic root 0 are all linear, then the
principal idempotent element associated with 0 is posttive.

Proof. Let C be a matrix whose characteristic root w, of multi-
plicity s, has only linear elementary divisors associated with it. There
exist linearly independent characteristic column vectors z!, . .., z* and
linearly independent characteristic row vectors %!, ..., u* associated
with w, such that w2z = §,;, h,j= 1, ..., s, the Kronecker delta. The

L4
principal idempotent element associated with w is the matrix T azhu’,
A=1
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Let P* be the partition 4* = [A; i, 5=1, ..., k, of a standard

form of the singular M-matrix 4 with only linear elementary divisors
associated with 0, and let S = (y,, ..., y,) be the set of indices of

singular 4r . By Theorem 3, R; = R, (A*, P*) =0, when
a, BeS, a + . Hence by Corollary 2 to Theorem 2 there exist linearly
independent characteristic column vectors z!, ..., 2 associated with 0

such that z7 satisfies (3) with a = ;. Similarly, by Corollary 2a to
Theorem 2a there exist linearly independent characteristic row vectors
u't, ..., u", associated with 0, such that u' satisfies (9) with a = y;.
k
Let a =y;and B = y;. Since u?zi= T u'* ziand ' 2/ = 0'if and
i=1 1 T 1 T

only if R;_ R; = 0 it follows that #’%2i> 0, and that 2/ =0 if

and only if X R; R; =0. But we may deduce from (1) that

§ o]

3
pX R; BR* =0 if and only if R;: =0. Hence w2/ = 0 if & + j, but.
i=1 /.

w'zi> 0, for b, j=1, ..., s. We may clearly assume that u?, ..., u’,

have been multipled by positive factors so that w’"zi = §;;. Then
the idempotent element of A* associated with 0 is E* = E‘ ',
Thus E* (= 0. If E is partitioned conformably WithJZ: then
E; = 2'1 xi’ u':} ,2=1, ..., k. Since u’f; > 0, and zi > 0, but u': =0,
and x:h;lo, when A + j, it follows that E*m=z": u'2>0. Hence £* (> 0.

The principal idempotent element E of A associated with 0 is
obtained from that of 4* by means of a transformation by a per-

mutation matrix. Hence E, too, is positive.

8. We have already remarked that the elementary divisors of a
matrix A, associated with the characteristic root 0 of multiplicity s,
are all linear if and only if there are s linearly independent character-
istic vectors associated with 0. In the next two sections we shall
discuss the other extreme case when there is only one elementary
divisor associated with the characteristic root 0 of a singular M-matrix.
Equivalent conditions are (a) that 0 has only one linearly independent
characteristic vector associated with it; or (b) that there exists a set
z!, ..., 2* of column vectors such that

Ax)=2/+1,j=1,...,8—1; A2z* =0, and 2* + 0, (10)

where s is again the multiplicity of 0.
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LeMMA 6. Let 4 = [As), 05 =1, ..., k, be a singular M-matriz in
standard form. Let 8 = (yy, ..., v,), where y; _, < v;, be the set of indices
of singular A;. If zl, ...; a" is a sel of column vectors satisfying (10),
then 27, j =1, ..., s, satisfies (8).

Proof. Forj=1, ..., s, let xf =0if i <8, but 2/ +0 if ¢+ = B;.
Since Az* = 0, it follows, as in the proof of Lemma 4, that §,eS.
Let us assume inductively that (@) 8¢S for j=h, ..., s; and that (b)
85_1'<8,~ for j=h+1, ..., s. These assumptions hold for kb =s.
1f y] satisfies (4), when z; = 27 , then 4z’ = 23+ ! if and only if

.A,“x‘: =yi+x:+1, (11)
for i=1,.., % Let §=38, Then y}=0; and we may deduce
from (b) that z}+1 = 0. Hence (11) holds for i=p andj=rh
if and only if Aﬂﬂxg = 0. Hence either 2% >0 or xg < 0. But
Aﬂﬂxg‘l = yz -1 :z:z . It follows by Lemma 5 that (a) and (b) imply
that yg-laeo. Thus 8, _; < 83 =38;. We deduce that if « = 8, _; then
2t =yh-1=0. Hence by (11) A,z?-1'=0, and so §,_,eS. By

induction we obtain that 3;eS,j=1, ..., s, and that 8, _ ;<8;,j=2, ..., s.
Hence 8, =1y;, j=1, ..., s and the lemma is proved.

9. LEmma 7. Let A be an trreducible M-matriz. Let z and y, where
y (> 0, be column vectors conformable with A. Then there exist a real A
and a column vector x such that 4x = Ay 4 z.

Proof. 1f A4 is non-singular, then there exists such an x for any A.
Suppose A4 singular. Since 0 is a simple characteristic root of A4,
the nullity of 4 is 1. By Lemma 5, y is linearly independent of the
columns of 4. Hence any column vector is a linear combination of
the columns of 4 and y. The lemma follows.

THEOREM 5. Let A =[A], 1, j =1, ..., k, be a singular M-matriz in
standard form. Let S be the set of indices of singular Ay.  There igonly
one elementary divisor associated with the characteristic root 0 of A if and
only if Rg, = 1, whenever a, BeS and > a.

Proof. Suppose that there is only one elementary divisor associated
with 0. Let 23, ..., z* be a set of column vectors satisfying (10). By
Lemma 6, 7 satisfies (8), j=1, ..., 3. Let a=19,_q1, B=y;. The



Tae ELEMENTARY DIVISORS, ASSOCIATED WITH 0, OF A SINGULAR 119
M-MATRIX

conditions (a) and () of the proof of Lemma 6 are clearly satisfied, and

-1 g—1
soyi-l=— % Quah-1=— T Au"~1+0. But (z"~}, ... zh
B i=1 i iwa i a g

is the one linearly independent characteristic column vector associated
with 0 of B=[4,],1, j=a, ..., — 1, since 2! = 0, fori=a, ..., f—1.
It therefore follows from Theorem 2 that x:’ ,i=a, ..., B—1,satisfies (3),
provided that 2!, ..., z* have been multiplied by —1 if necessary.
Therefore :z;i,’ ,t=1,..., 8—1, satisfy (3). Hence, by Lemma 2, it
follows from yE“* 0 that R, =1, when a=19y3-1, B =7y, This is
a particular case of the required result. To deduce the general case,
let @ =1v;, 8 =vy,, where 2 >j3. Then R; > R*h*h—x . ..R,H_ 5= 1.
Hence Ry, = 1, whenever a, BeS and 8> a.

Conversely, let us suppose that Rz; =1 whenever a, BeS and
B>.a. ByTheorem 2, Corollary 1, there exists a characteristic column
vector z?, associated with 0, which satisfies (8). Let us suppose that
there exist column vectors 7 satisfying (8), j = &, ..., s, such that

Ari =+ j=h,. .., s—1, Az* =0, 2* + 0. (12)

We shall construct a vector x* ~1! satisfying (8) and Aazh ~! = zh.
Let a=y;_,;, B=1y, Let x?“:O, t=1, ..., a—1, and let
(ah - LI a:g N i) be the one linearly independent characteristic vector,
associated with 0, of B =[4,],%,j=a, ..., 8— 1. Then x:} =1,
..., B — 1, satisfies (3) provided that the x:’ —1 have all been multiplied
by — 1, if necessary. If, for7=1,...,8, y‘f'“l is chosen to satisfy (4)

with x replaced there by a2%-!, then it follows by Lemma 2 that
y;—1(> 0. Hence by Lemma 7, there exist a A and an xg‘l such

that Aﬁﬁzg‘l =/\yg“+ xg . Wenow writez?“‘ for ,\xf‘l, 1=1, ...,
g—1, ,\yf“ for yf“l, i=1, ..., B, and leave xg“l unchanged. Since
x4 = 0, when ¢ < 8, a:?“‘, i=1, ..., 8 satisfies (11) withj = — 1.

‘ Let us assume inductively that xf‘ “Li=1,...1—1,satisfies (11),
where I > 8. We must consider two cases: I£S and leS. If1¢4S,then (11)
is satisfied when 2} =1 = A1 (y? ~1+ah). If leS, say I =ys1, (where
clearly m > 0) then there exist, by Lemma 7, a A and an z} =1 for which
A,,:z:;“' 1— yf -1 :z:f + ,\z:”"", gince either ;z;’l’+”‘> 0 or x’l”"" < 0.
We now replace z’ by 27+ Ax' * ™, j =k, ..., s, where, by convention,
+m=0if j+ m>s Then 2% ..., 2* again satisfy (12) and since
the original x:”"" =0 when ¢ <, it follows that m’;"l, ey :z::' -1
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satisfy (11) with j=h — 1. By induction we obtain a vector
gh=1= (231, ..., 22 ~1) satisfying (11) with j=<=h —1. Thus in
addition to (12) we have Axz" —! = z*, where 2* ~! satisfies (8). Using
induction again we obtain a set of vectors satisfying (10) and the
theorem is proved.

In virtue of Theorem 1 we obtain the following corollary.

CoroLLARY. Let y be the largest member of S. There is only one
elementary divisor associated with the characteristic root 0 of A if and
only if for any permutation o of (1, . .., k) for which [A o) 6, 5=1, ..., k,
is in standard form, we have o(y) = o(a) whenever aeS.

An argument along the lines of the second half of the proof of
Theorem 5 would lead to the following result, which we shall enunciate
as a theorem, though we shall omit the proof. First we should have
to generalise Lemma 2.

THEOREM 6. Let 4 =[A4;),4,5=1, ..., k, be a singular M-matriz
in standard form. Let S ={(yy, ..., vs), vi -1 < v; be the set of indices
of singular A,;. If there is only one elementary divisor associated with 0
-then there exist positive column vectors z*, . .., z% such that x*, . .., 2® satisfy
(10) tf 2z = (— 1Y 23,5 =1, ...,s. In fact
2" = 0 when 28 R, =0,

j=b 7

1

and 2% > 0 when EB R, >0.
i j=h f] .

The standard forms of 4 depend only on the set X of index
pairs of non-zero coefficients of 4. It is clearly decided by X and §
whether (a) Rz = 0, whenever a, BeS, and a + 8; or (b) R, =1,
whenever a, BeS and B>a. Let P be a positive matrix, with
largest characteristic root p. The degrees of the elementary divisors
of P associated with p are the same as those of the elementary
divisors, associated with 0, of the M-matrix p/ — P. Hence Theorems
3 and 5 fulfil the claims of § 1.

10. Let 4 =[4;], %, j=1, ..., k, be a singular M-matrix in
standard form. Let S = (y,, ..., ¥,), ¥j-1 <y be as usual, the set
of indices of singular 4;. If s=1, then there is clearly only one
elementary divisor, associated with 0, and it is linear. If &= 2,
then there are two elementary divisors of degree 1, or one of degree 2,
associated with 0, according as Rp, = 0 or Ry, =1, where a = y,, and
B = y,. Suppose that 8 =3 and let y; = a, y3 =8 and y, =y. Since
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R,; =R, , = Ry, =0, and since R, = Ry, = 1 implies that R, =1, we
may consider seven cases according as R, R, Rp, are 1 or 0. The
cases R,y,=R, = Rp =0, and R,y;= R, = Ry = 1, are covered by
Theorems 3 and 5. We deduce that in the five other cases 0 must -
have associated with it one elementary divisor of degree 1 and one of
degree 2. This means that A has two linearly independent column
vectors z!, z? associated with 0, and that there exists a vector =z
satisfying either Az = z! or Az = z%. By considering each of the
five cases separately it is possible to demonstrate the existence of
these vectors without any appeal to Theorems 3 and 5.

As an example'we shall consider the case R ;=R =1, Rg, = 0.
Though we shall use the theorems proved previously it would be
possible to use special cases of these results which could be proved
more simply. It follows from Theorem 5, applied to [4;],%,j=8, - .., &,
that 4 has a characteristic vector 23, associated with 0, for which
2} =0 when i<y, and that there exists an z?satisfying Az2? = 23,

Let (z’l' . zi_l),j = 1, 2, be the two linearly independent charac-

teristic column vectors, associated with 0, of [44],¢,j =1, ...,y — 1.
The existence of these vectors is shown by Theorem 3. By Theorem 1,
Corollary 2, we may assume that 2/ = 0 if R;yjz 0 and z{ > 0if R"vj =1,

. -1
forj=1,2. Hence, by Lemma 2, wj(>0,j= 1,2,where w’y =— YZ Avrzi .

A=1 &
By Lemma 7, there exist & A and an :1:1y satisfying
) Qu— 1 2
szy wy+/\wy_ (13)
Let 2! =2! + X%, i=1, ..., y— 1. Then (z:,..., xz' ) is non-
[4 H 1 ' Y

1

zero and, for ¢t =1,..., y, x, satisfies (7) provided y‘,l is chosen to

satisfy (4). Since 4 is non-singular if ¢ > y, it is easy to establish the
existence of a vector zl= (x: ye ooy :1:11c ) where 2} satisfies (7) fori=1, ..., k.

Thus z! and 23 are characteristic column vectors associated with 0,
which are linearly independent as 2} =2} + az? —z! >0, while2® =0;
and A4x? = 28,

It follows from Lemma 5 that A < 0 in (13). Hence x; =z; +AZ =
Az: <0, but 'x: >0, ag already noted. Hence z! is neither positive

nor negative. Itis easily established that this property is shared by
one of any two linearly independent characteristic vectors, associated
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with 0, of the matrix 4 we have been considering. It is due to this
that S and X do not necessarily completely determine the elementary
divisors associated with 0 of a singular M-matrix when s > 3. Thus,
in both Band C below, k =4,8 = (1,2, 3,4),s =4and B, =1, =0,
Ry, = Ry = By = By = 1.

r. . .. L

B= C =
-1 -1 . . —1 —1 . . .

-1 -1 . __Ci\/_l

But Bis of rank 1, C of rank 2. Hence the elementary divisors
associated with 0 differ for the two matrices. We also note that the
principal idempotent element, associabed with 0, of both B and C
is the unit matrix, which is, of course, positive. It follows that the
converse of Theorem 4 does not hold.

Most of the results of this paper are contained in my 1952 Ph.D.
thesis, which was written under the supervision of Professor
A. C. Aitken. My thanks are due to Professor Aitken for his great
encouragement.
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