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1. This note takes its origin in a remark by Brauer(1) and Perfect(s): Let 4 be
a square complex matrix of order n whose characteristic roots are a, ..., a,. If x, is
a characteristic column vector with associated root «, and k is any row vector, then
the characteristic roots of 4+x,k are a;+kxy,a,,...,«,. Recently, Goddard (2)
extended this result as follows: If x,,...,X, are linearly independent characteristic
column vectors associated with the characteristic roots ay,...,a, of the matrix 4,
whose elements lie in any algebraically closed field, then any characteristic root of
A+ KX is also a characteristic root of 4 + XK, where K is an arbitrary rx » matrix,
X =(xy,...,X,) and A = diag(a,,...,«,). We shall prove some theorems of which
these and other well-known results are special cases.

2. Let F be an arbitrary field. By f(x,y) we shall denote a polynomial, with
coefficients in F', in two non-commutative indeterminates x and y, and we shall set
Jol®) = f(z, 0). By F, we shall mean the ring of square matrices of order n with elements
in F. In order to avoid exceptional cases, we adopt the convention that the characteristic
polynomial of the empty matrix (the 0 x 0 matrix) is unity.

Let 4 and B be matrices in F, and F,, respectively. By a commautator from A to B
we shall mean an n x m matrix X, with elements in F, satisfying AX = XB. If X is
a commutator from 4 to B then X also satisfies f(4, XK)X = Xf(B, KX), where
K is any m x n matrix with elements in . We shall prove the following theorem.

TeEOREM 1. Let A and B be matrices in F, and F,, respectively and let X be a com-
mutator from A to B of rank r. Then, for any polynomial f(z, y) and any m x n matriz K,

with elements in F, | AL —f(4, XK) | = 6(2) p(A),
| AL, ~f(B, KX)| = 6(2) (),

where (i) 8(A), p(A),q(A) are polynomials in F[A] of degrees r,n—r,m —r, respectively,
(i) p(A), q(A), are independent of K and are therefore factors of the characteristic poly-
nomials of fo(A4) and f,(B) respectively.

Proof. If r = 0 the result is trivial. If 7 = min (n, m) then either p(A) or ¢(A) is unity,
and it is easily seen that the proof given below for the case 0 << min (n,m) is still
valid, provided that some of the submatrices of the partitioned matrices which occur
are omitted.

Let P and @ be non-singular matrices in ¥, and F,, respectively for which

P;\EQ-1= ({)' g) = Y, say.
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Property P, is then property P (cf. McCoy (3)). Theorem 1 implies that the pairs of
matrices A, XK and B, KX have properties F,_, and F,_, respectively. In addition
we have this theorem. :

TraeorEM 3. If, under the conditions of Theorem 1, the pair of matrices A, XK has
property P (or property L, ¢f. Motzkin and Taussky (4)), then so has the pair B, KX,
and conversely.

Proof. We need only remark that with the hypothesis of Theorem 3 we have

r
6(A) = II (A—f(e;,;)) for any polynomial f(z,y) (or, in the case of property L, for
i=1 r

f(z,y) = px +vy), where A 1'[1 (A—1;) is the characteristic polynomial of XX.
=

4. In this section we shall show how various known results are obtained from our
theorems. Let f(x,y) = z. Then Theorem 1 reduces to the result that AX = XB
implies that the characteristic polynomials of 4 and B have a common factor of
degree r, where 7 is the rank of X. Next, set f(z,y) = y. Then f,(4) and f(B) are zero,
o that our theorem furnishes yet another proof that the characteristic polynomials of
XK and KX differ by the factor A»—™. It is easy to see that the same is true for any
polynomial f(z, y), each of whose terms contain y. Finally, let # = m and let X consist
of characteristic column vectors of 4. Then B is diagonal, in Theorem 2, (£,.1, -+, )
is empty, and the result of Goddard (2) quoted in §1 follows in a slightly stronger form
on putting f(z,y) = z+y in Theorem 2. If m = »and B = 0, so that AX = 0, and if
f(z,y) is a polynomial without constant term, then the corollary to Theorem 1
becomes, with K = I,

Iun—f(A:X) | An = | Mn_f(A’ 0) | | /\In—f(O,X) |,
which is a result proved elsewhere by Schneider (6).

Note added in proof. We have noticed that Theorem 1 of a paper just published
by Miss Hazel Perfect (Duke math. J. 22 (1955), 305-11) is a special case of the
corollary to Theorem 1 above, namely, where A = 0, f(z,y) = x—y and X is of full
rank.
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