Reprinted from the American Mathematical Monthly Vol. LXII, No. 4, April, 1955

A PAIR OF MATRICES WITH PROPERTY P

HANS SCHNEIDER, Queen's University, Belfast

A set A_1, \dots, A_s of $n \times n$ matrices with coefficients in an algebraically closed field is said to have property P if there exists an ordering $\alpha_i^{(1)}, \cdots, \alpha_i^{(s)}$ $i=1, \cdots, n$, of the characteristic roots of A_1, \cdots, A_s for which the characteristic roots of any polynomial $p(A_1, \dots, A_s)$ are $p(\alpha_i^{(1)}, \dots, \alpha_i^{(s)})$, $i=1, \dots, n$. In 1936 McCoy [3] proved that the set A_1, \dots, A_s has property P if and only if every matrix of the form $(A_iA_j - A_jA_i)R$, where R is a polynomial in the A_i , is nilpotent (for an elementary proof see Drazin, Dungey and Gruenberg [2]). More recently two very special cases of this theorem have been proved separately. Thus in 1950 Parker [5] showed that if $AB = B^2 = 0$, then the characteristic roots of A + B are the same as those of A. (The characteristic roots of B are all zero.) In 1953 Perfect [6], completing a theorem of A. Brauer [1], showed that if $(C-\lambda I)v=0$, and B is a matrix of rank 1 all of whose columns are multiples of the column vector v, then the characteristic roots of C+B are obtained from those of C by replacing one λ by λ +trace B. (One characteristic root of B is trace B, the rest are zero, and AB = 0 if $A = (C - \lambda I)$.) We shall give a very simple proof of a special case of McCoy's theorem which includes the two results quoted above.

In order to make our theorem applicable to $n \times n$ matrices with coefficients in a field which is not necessarily algebraically closed we shall state the result in terms of the characteristic polynomial |xI-A| of a square matrix A.

LEMMA. Let A_1, \dots, A_s be a set of $n \times n$ matrices with coefficients in k. If $(\sum_{i=1}^{j} A_i)A_{j+1}=0$, for $j=1, \dots, s-1$, then the characteristic polynomial of $\sum_{j=1}^{s} A_j$ is $(\prod_{j=1}^{s} |xI-A_j|)/x^{(s-1)n}$.

$$\begin{aligned} |xI - A_1| & |xI - A_2| = |x^2 - x(A_1 + A_2) + A_1A_2| \\ &= |x(xI - (A_1 + A_2))| = x^n |xI - (A_1 + A_2)|. \end{aligned}$$

The result follows if s = 2. The lemma is now obtained by induction on s.

6 O'

. .

THEOREM. Let A and B be $n \times n$ matrices with coefficients in k. If AB = 0, then the characteristic polynomial of the polynomial p(A, B) without constant term is

$$|xI - p(A, 0)| \cdot |xI - p(0, B)| / x^{n}$$
.

Proof. Since AB = 0, we have $p(A, B) = A_1 + A_2 + A_3$, where $A_1 = p(A, 0)$,

 $A_3 = p(0, B)$ and A_2 is of form Bq(A, B)A. Clearly $A_2^2 = 0$, and so the characteristic polynomial of A_2 is x^n . As $A_1A_2 = (A_1 + A_2)A_3 = 0$, it follows by the lemma that

$$|xI - p(A, B)| = |xI - A_1| |xI - A_2| |xI - A_3| / x^{2n}$$

= |xI - p(A, 0)| |xI - p(0, B)| / x^n.

COROLLARY. If k is algebraically closed, then the pair of matrices A, B has property P.

Proof. If α_i , β_i , $i=1, \dots, n$, are the characteristic roots of A and B respectively then $x^n |xI - (A+B)| = |xI - A| |xI - B| = \prod_{i=1}^n (x - \alpha_i)(x - \beta_i)$. We may easily show from this that there is an ordering α_i , β_i , $i=1, \dots, n$, for which $\alpha_i\beta_i=0$, $i=1, \dots, n$. It is enough to prove that with this ordering the characteristic roots of p(A, B) are $p(\alpha_i, \beta_i)$, $i=1, \dots, n$, for any polynomial p(A, B) without constant term.

For such a polynomial, $p(\alpha_i, \beta_i) = p(\alpha_i, 0) + p(0, \beta_i)$ and $p(\alpha_i, 0)p(0, \beta_i) = 0$, $i = 1, \dots, n$.

By the theorem,

$$\begin{aligned} x^{n} \mid xI - p(A, B) \mid &= |xI - p(A, 0)| \mid xI - p(0, B)| \\ &= \prod_{i=1}^{n} (x - p(\alpha_{i}, 0))(x - p(0, \beta_{i})) \\ &= x^{n} \prod_{i=1}^{n} (x - p(\alpha_{i}, \beta_{i})). \end{aligned}$$

The corollary is proved.

We remark that if AB = 0 then $((AB - BA)R)^2 = 0$, where R is any polynomial in A and B. Thus we have indeed proved a special case of McCoy's theorem. A slight extension of the arguments used in the theorem and corollary leads to the following results: Let A_1, \dots, A_s be a set of $n \times n$ matrices with coefficients in k such that $A_iA_j = 0$ if i < j. If $p(A_1, \dots, A_s)$ is a polynomial without constant term, then the characteristic polynomial of $p(A_1, \dots, A_s)$ is

$$\left(\prod_{j=1}^{s} |xI - p_{j}(A_{j})|\right) / x^{(s-1)n},$$

where $p_1(A_1) = p(A_1, 0, \dots, 0)$, etc. If in addition, k is algebraically closed, then the set A_1, \dots, A_s has property P. It may also be shown that if A_1, \dots, A_s satisfy the conditions of the lemma and k is algebraically closed, then the characteristic roots of $\sum_{j=1}^{s} A_j$ are $\sum_{j=1}^{s} \alpha_i^{(j)}$, $i=1, \dots, n$, for an ordering $\alpha_i^{(1)}, \dots, \alpha_i^{(s)}$, $i=1, \dots, n$, of the characteristic roots of A_1, \dots, A_s . This is a property weaker than property L (cf. Motzkin and Taussky [4]).

I am indebted to a referee for materially simplifying the proof of the lemma.

248

References

1. A. Brauer, Limits for the characteristic roots of a matrix, IV. Duke Math. J., vol. 19, 1952, pp. 75-91.

2. M. P. Drazin, J. W. Dungey and K. W. Gruenberg, Some theorems on commutative matrices, J. London Math. Soc., vol. 26, 1951, pp. 221-228.

3. N. H. McCoy, On the characteristic roots of matrix polynomials, Bull. American Math. Soc., vol. 42, 1936, pp. 592-600.

4. T. S. Motzkin and O. Taussky, Pairs of matrices with property L. Trans. American Math Soc., vol. 73, 1952, pp. 108-114.

5. W. V. Parker, On matrices whose characteristic equations are identical. Proc. American Math. Soc., vol. 1, 1950, pp. 464-466.

6. H. Perfect, Method of constructing certain stochastic matrices. Duke Math. J., vol. 20, 1953, pp. 395-404.

1