THEOREMS ON NORMAL MATRICES

By H. SCHNEIDER (Edinburgh)

[Received 12 September 1951 ; in revised form 10 December 1951]

1. As a corollary to general considerations on matrices 4, B whose
commutator AB— BA is nilpotent, Drazin, Dungey, and Gruenberg (2)
have recently obtained this theorem on normal matrices:{ ‘Let A and B
be normal matrices whose latent roots are ag, B; 0 = 1,...,n). Then 4 and
B commule if and only if the latent roots of every scalar polynomial f(4, B)
are f(a;. By) @ = 1,..., n) for some ordering o, B;.’

Using a different approach I shall show that for the commutativity
of the normal matrices 4 and B it is sufficient to make apparently
weaker assumptions. In these f(4, B) will be considerably specialized
and a condition, implied by the theorem quoted, will be imposed on the
sum of squared moduli of latent roots only. '

Every square matrix 4 has a ‘polar representation’ 4 = HU, where
H is non-negative definite Hermitian, U is unitary [Wintner and
Murnaghan (7), Williamson (6)]. The matrices H and U commute if
and only if 4 is normal. If 4, B, and 4 D are normal, it is known that
the matrices of the polar representation of A4 and B commute in pairs,
except possibly the unitary pair, provided that the latter are properly
chosen.i This suggested that, if polar representations were considered,
a similar theorem might.be obtained for normal, but not necessarily
commutative, matrices, whose product is also normal, -

To avoid repetition in'the statement of the theorems I shall assume
throughout that 4 and B are normal nXn matrices with complex
elements and latent roots oy, B; (¢ = 1,..., n) respectively. Also that

A=IHU=UH and B=KV —VK

are the polar represeritations of 4 and B, where H a,nd.tK are non-
negative definite Hermitian, ¥/ and V unitary.

1 A review of several linporbant properties of normal matrices may be found
in Drazin (1). I shall generslly use the results of that paper without giving
further references.

1 Wiegrmoann (5). The unitary polar matrix of & singular matrix is not unique.
The provisgo is necessary when the rank of either 4 or B is less than or equal
ton—2.
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2. My results rest on a property of matrices due to Schur (4):
Let C be a matrix with latent roots y; (t = 1,..., n); then

n ki3
E yil® < E |Cij|2’
=1 t,7=1

and : ' Z le2 Z Icul

if and only if C is normal.
I shall first prove a lemma. !

Lemmas. Let C be a normal nxn matriz, whose latent roots are vy,
K
(= 1,...,my 8 = 1,..., k), where > n; = n. Let C be partitioned so that
i=1
the k matrices C;; in the diagonal are square. If the sum of squared moduli

n
of latent roots of Cy; s 3. |yy|2, for all 4, then C is the direct sum
) ©oi=1

¢= 011‘}‘022‘}‘"-‘1“01:1:-

Proof. Let S; be the sum of squared moduli of elements of Cy; and let
8= 3 leyl™
=1
Using Schur’s theorem for C;; we have

j§1|7i]|2 < S’i (i = 1,.., k)'

Since C is normal,

IMa-

Ty k .
;glyy 2§£i2;6h‘

k 3 ,
But § > > 8,; unless Cﬁ = 0 (¢ # j), when S = Y §;. Ti follows that
i=1 i=1
C;; = 0 (i # j) and therefore that
C = O+ CopF it Cree

It will be convenient to denote the sum of squared moduli of latent
roots of a matrix 4 by A(4).

TuroreM 1. The matrices A and B commaute if and only if the sum of
squared modult of latent roots of every scalar polynomial f(A)D is

3 1/,

Sfor some ordering oy, B; (1 = 1,..., n).
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Proof. By a well-known theorem of IFrobenius there is an ordering
for which the latent roots of every f(4)B are f(«;)p;, provided that 4
and B commute. This ordering obviously satisfies the theorem.

Now suppose there is an ordering for which

AAB) =3 |flep

for every f(4)B.
© Since 4 is normal, there is a unitary matrix @ such that

AD =D = diagloy, o,y @],
" where equal «; are arranged consecutively. Thus
D = o\ [+oy 4. 4o I,

where o 7 o) when ¢ # j.

Suppose that there are n, latent roots of 4 equal to «; and denote these
now by &1-4 (j = 1,..., #;). Denote the corresponding roots of I in the
enunciation of the theorem by f;. Let @' B® = C, and let C' be parti-
tioned conformably with D.

We may construct the polynomials f{z) (: = 1,..., k) for which

fild) =1, fief) =0, whenj #i.

‘Then fiD)C = ®'f,(A)B®, and so, by hypothesis and by the definition
of f,(z), we have

. k n, nt
A{fAD)C} = A{fi(4)B} =h;1|f¢<a;.)|2(]§l-lﬁh,|2) =2 B
Also fdD) = O+ 40+ L+0py 4.0y,

where the O, are null-matrices, and the I; arc unit-matrices, of order n,.
Hence, if G; = f,(D)C is partitioned conformably with D, then &, ,; = 0,
when k # 4, while G, ;; = Cy;. It follows that the latent roots of f,(D)C
are those of C;; together with zeros. By (1),

ACw) = ADICY = 3 1By

But the latent roots of ¢ = @' BD are B, (j = 1,..., ny; 1 = 1,..., k).
The lemma applies and we deduce that

C = Cy+Cpt...FChype

This is sufficient for D and C to commute. Transforming by @, we see
that 4 and B commute.
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;o=

Suppose that a,, §; and ay, § are orderings of the latent roots of 4
and B satisfying Frobenius’ s theorem. The latent roots of f,(A4)B are
"By, or B, (§ = 1,..., my), together with n—n, zeros. Hence in Frobenius’s
theorem the latent roots of B associated with a set of equal latent roots .
of 4 form a unique set. This is not true in the case of our theorem. For
suppose that ay, B, and «y, B satisly ' ‘

A{f(4), Z Z | fes)By* = Z Z | Fle BQ, 2
for a.ll polynomials f(A4)B. Then we must have
i§1|ﬁ{4|2 =:i=zliﬁ;:$|2 (7’ = 1""’ k)’ (2)

by putting f(4)B = f,(4)B (i = 1,..., k). Conversely, il «;, B, is an
ordering satisfying Theorem 1, and (2) is satisfied for some ordering
Bi, of the latent roots of B, then )

ko k , n . |
A By = 3 8 |fla)fyfr = 3 1l 3 JByf7)

aij,

— Sl 3 gl = 5 3 Iapi),

and therefore the ordering oy, B also satisfies the theorem. I state
these results in a corollary.

CororLARY. Let the latent roots of A be oy (j = 1,..., mg; 1 = 1,..., k),
where oy = o and o 7 o when i # j; and let the latent roots of B be By,
or By (§ = lyymy; @ = 1,..., k). Let A and B commute. Then, if oy, f;
is an ordering satisfying Theorem 1, oy, B is another if and only if

Sialr=5

It is easily seen from an example that there may lie various groupings
of the B, into k sets of n; members each, the sum of squared moduli of

the 1,th set being Z 84,2

(3 =1,.., k).

3. Ishall next prove a theorem concerning a umtary matrix B. Tt has
no analogue for general normal B.

Turorem 2. Let B = V be unitary. Then AV is normal if and only if
the sum of squared moduli of latent roots of AV is i |oeg |2
=
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Proof. It is well known that multiplication by a unitary matrix does
not alter the sum of squared moduli of elements of a matrix.
Let C = AV, and let the latent roots of C be y,; (1 = 1,..., n). Then

n
=3 loglt = 3 Jagl = 5l

since 4 is normal. By Schur’s theorem € is normal if and. only if
n
2, 7l =8,
i=1 -
5o, . n
and the theorem follows from § =3 |2
= R

‘When AV is normal the polar matrices of 4 and those of AT commute.
The latent roots of the unitary matrices I and UV are of unit modulus.
Denote the latent roots of H, U, UV, by h,, u;, w; (¢ = 1,..., n) respec-
tively, If C' = AV, then C = II. UV is a polar representation of C, and
IO and UV commute. By Frobenius’s theorem, '

hyw, = oy,
and how, = v,
whence | i%" = |?‘i|'

On using Theorem 2 we obtain the non-trivial part of Corollary 1.

CoroLrLARY 1. The sum of squaréd moduli of latent roots of AV is i |ovg?
=1
if and only if the moduli of latent roots of AV are |a;| (i = 1,..., n).

Next let I be a non-negative definite Hermitian matrix, with latent
rools k; (1 = 1,..., n}. It is known that 2, > 0. By Theorem 2,

Zh” EIVP

1fa,nd onlyif C = HV isnormal. ‘But Cisnormalifand onlyif IV = VH
Corollary 2 [cf. Parker (3)] now follows.

CoROLLARY 2. Let H be @ non-negative défmite Hermitian, and V be
unitary. Then H and V commute if and only if the sum of squared moduli
of latent roots of H is equal to the sum of squared moduli of latent roots of IV .

Tt will be seen that Theorem 1 is a generalization of this corollary.

4. In Theorems 4 and 5 we shall be consideriﬁg polynomials f(4)
whose polar representation is f(4) = g(H{)W. The significance of this
restriction is brought out by Theorem 3.
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THEOREM 3. T'he polar representationt of f(4) is f(A H)W, where
g(H) is non-negative definite Hermition and W is umtmy, zf and only if
|f(°‘~;)| = |f(°‘j)| = g(|°‘i|), (3)
when |o| = |oy].
Proof. Let "D = ®'AD = diagay,..., ). ‘
Then D=®HO.OUD

is a polar representation of D. If
R = diag[|oy],..., |an]],

thereisa diagonal matrix Z = diag[zy,...,2,], |2;] = 1,forwhich D = RZ
is also a polar representation of D. The Hermitian polar matrix is unique,

and therefore R— 3HO.

Suppose that f(4) = g(H)W.

Then  f(D) = ®'f(4)D = g(H)(D P'VD = g(R). D' WO,

Also f(D) = diag[f(),-.., f(e)], | (4
and ( ) la'g guali a-") g |a'n.‘ ]: ' (5)

while, by an argument similar to that for D and R above, it follows from
f(D) = g(R). D' Wd ‘
that g(R) = diag[|f(e)[ow0, [flea)[] (6)

By comparing (5) and (6), we deduce (3).
Conversely, let us assume (3). We obtain (4) and ( ); by the definition’

of D and R. Then (6) follows by (3). Thus f(D g(R)X = X g(R) is

a polar representation, where X = diag[z,,..., 2,], |:v1| = 1. Hence
f(4) = of(D)P’ = Og(R)XP' = g(H)W,

for ' W= 0oX,

and the theorem is proved.

I shall use this theorem due to Wiegmann (5): ‘Let A and B be normal.
Then A B is normal if and only if H and B, A and V, commute.” A version
of this theorem has alrecady been quoted in the int:roductory remarks.

THEOREM 4. Let A, B and A B be normal. Then, if the Hermaitian polar
matrices of f(4), U B) are functions of the Hermitian polar matrices of A, B
respectively, f(A)l(B) is normal.

1 Since the unitary matrix 1V is here left unrestricted we may say ‘the polar
representation’ meaning ‘all polar representations’.
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Proof. Let - f(A) = g(H)¥, iB) = m(K)X.
By Wiegmann’s theorem, H and B, 4 and K commute. Hence g(H)
and I(B), f(4) and m(K) commute. Using Wiegmann’s theorem in the
reverse direction, we see that f(4)/(B) is normal,

Iff(A)l(B)is normal, it is easily seen that the TIermitian polar matrices
of f(4), I(B) may not be functions of H and K.

TurorEM 5. If f(A)N(DB) is normal, the moduli of its latent roots are

fe)UBy)| (8 = 1,..., m), for some ordering o, B;.

Proof. Let f(Ad) = GW, {B) = MX be polar representations; f(4)
and [(B) are normal. As in Theorem 3, we may prove that the latent
roots of G, M are |f(a,)], lU(B,)| (¢ = 1,..., n) respectively. Now f(4)l(B)
is normal and therefore G and M, ¥ and 2, G and X commute, provided
that ¥ and X are suitably chosen, by the version of Wiegmann’s
theorem quoted in the introduction. IHencef

fAUB) = GWMX = GMWX = TVXGI.

By Frobeniug’s theorem the latent roots of G are | f(x,)l(B;)| for some
ordering, and the latent roots of f(A4)I(B) are |f(x;)l(B;)|y;, where the
y; (Jys) = 1) are the latent roots of W.X. The theorem follows.

5. The matrix 4 B is normal when 4B = BA. Hence, by Theof‘em 1,

if N .
A{f(A)B} =igllf(ai)ﬂi|2

for every f(A), then A B is certainly normal. In Theorem 6, I shall prove
that it is sufficient to assume rather less for the normality of 4 B.

THEOREM 6. The matrix AB is normal if and only if, for some ordering
ap By (8= 1,..., n), i | f(o;)B;]? equals the sum of squared moduli of latent -
i=1

roots of every scalar polynomial f(A)B for which the Hermitian polar matriz
of f(4) is a polynomial in the Hermitian polar matriz of A.

Proof. Suppose that AB is normal. Then, if f(4) = g(H)¥ and
B = KV are polar representations, we may use Theorem 4 with{(B) = B.
It follows that f(A4) B is normal. By Theorem 5 the moduli of latent roots
of f(4)B are thus |f(«;)B;] (¢ = 1,..., n), for some ordering o;, f;. Hence

AMf(A)BY = 3 | F()Bil* (7)

1=1

+ When f(4)(B) is normal, then f(A4){(B) = GATWWX for all polar matrices
1V and X. This is-easily proved. '
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Suppose now that there is an ordering «,, B; for which (7) is satisfied
for every f(A) that has a polar representation f(4) = g(H)TV. We have
already proved that, if

O’AD = D = diag[oy,..., 2],

* then © O'HO = R = diag|oy|,..., |ag]]-
On constructing the polynomlalx/; ) satisfying (o) = |oy| (¢ = 1,...,m);
it follows that WD) = R, | '
and P(A) = OYD)P = DRD = H. -
Since H is a polynomial in 4, any polynomial in A is also a polynomial
in A. Now let F(A) = g(H)T.

We may suppose that g(H) = ¢(A), and this implies g(E) = ¢(D). From
this equation and from Theorem 3 it follows that

$lor) = g(lof) = [fle)] (@ = 1,..., m).

Since, of course, ¢(4) = g(H) is its own Hermitian polar matrix,

Ag(H)B} = A{p(4)B} =§1l¢(ai)ﬁilz =i§1|g('lail)ﬁilz; (8)

by hypothesis. We have proved (8) only for any non-negative I{ermitian
g(H). From an inspection of the proof of Theorem 1 it is immediately
clear that H and B commute if (8) is assumed only for the polynomials
g,(H) defined for H in the same way as f;(A) is defined for A. These
polynomials f,(A4) used in the proof of Theorem 1 are non-negative
definite Hermitian, being normal matrices with non-negative latent roots.
Hence the corresponding g,(H) are also non-negative definite Hermitian;
(8) holds for them and the commutatiyity of H and B follows.

If J(4) = H, we have the polar representa,tlons Y(A) = HI and
A=H U Hence, by the hypothesis,

AHB) =,g o Bel?

and AAB) = ‘0‘13 |2

We deduce that A(AB) = A(HB), where H B is normal, since H and B
commute. On using Theorem 2 we see that A B is normal. The theorem
is thus proved.

A corollary may be obtained by an argument similar to that which
led to the corollary of Theorem 1.
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CoroLLARY. Let the latent roots of A be «, (] = 1,.,m;t=1,.,7),
where |y | = |oj| and |oj| # |og| when i # j; " and et the latent roots of B
be B; 0r By (j = 1,.., my; ¢ = 1,..., 7). Let AB be normal. Then, if oy, By
18 an ordering satzsfymg Theorem 6, oy, Bi, is another if and only if

Z 1B:|* = SIBE = 1un).
j=1 i=1

6. We m:';y remark in conclusion, without proof, that the pplynomials
fi(4) and ‘g, (H) are the principal idempotent elements of 4 and H
respectlvely [cf. Drazin (1)]. a

In this connexion, as some work in the proof of Theorem 6 indicates,

the condition n . .
' A(A)By = 3 [Byf* = B)

is a sufficient guarantee of the commutativity of 4 and B. Analogously,
the normality of AB is ensured by the condition

Alg(H)UB} =§1|ﬁ5’|2 (=1,..,7),

for some polar representation 4 = HU, though this requires much fuller
amplification.
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