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1. As a cQrQllary to. general cQnsideratiQns Qn matrices A, B whQse 
CQmmutatQr AB-BA is nilpQtent, Drazin, Dungey, and Gr~enberg (2) 
have recently Qbtained this theQrem Qn nQrmal matrices:t 'Let A and B 
be normal 'matrices whose latent 1'00ts are lXi' Pi (i = I, ... , n). Then.A and 
B commute if and only 1] the latwt roots of every scalar polynomial f(A, B) 
aref(IXi,Pi) (i = I, ... , n)for some ordering lXi' Pi.' 

Using a different apprQach I shall shQW that fQr the cQmmutativity 
Qf the nQrmal matrices A and B it is sufficient to. make apparently 
weakcr assumptiQns. In these f(A, B) will be cQnsiderably specialized 
and a cQnditiQn" implied by the theQrem qUQted, will be imposed Qn the 
sum Qf squared moduli Qf latent rQQts Qnly. 

Every square matrix A has a 'polar representatiQn' A = HU, where 
H is nQn-negative definite Hermitian, U is. unitary [Wintner and 
Murnaghan (7), Williamson (6)]. The ma~rices 11 and U CQmmute if 
and Qnly if A is nQrmal. If A, B, and AB are nQrmal, it is knQwn that 
the matrices Qf the PQlar representatiQn Qf A and B CQmmute in pairs, 
except PQssibly the unitary pair, prQvided that ~he latter are prQperly 
ehosen.t This suggested that, if PQlar representatiQns were considered, 
it similar theQrem might. be ,Qbtained fQr nQrmal, but nQt necessarily 
cQmmutative, matrices, ,,'hQse prQduct is also. normal. ' 

To. avoid repetitiQn in 'the statement Qf the theQrems I shall assume 
thrQughQut that A and Bare nQrmal n X n matrices with cQmplex 
elements and latent rQQt~ (Xi' Pi (i = I, ... , n) respectively. Also. that 

A ' 11 U = U Hand B = XV = l' K 

are the polar represelitatiQns Qf A and B, whereH and.If are nQn
negative definite Hermitian, U and V unitary.' 

t A review of several important properties of normal matrices may be fOWld 
in Drazin (1). 1 shan generally use the results of that paper without giving 
further references. . 

+ ,\-Viegmann (5). The unitary polar matrix of a singular matrix is not unique. 
The proviso is necessary when the rank of either A or B is less t.han or equal 
,to n-2. 

\ 
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2. My results rcst on a propcrty of matrices due to Schur (4·): 
Let C be a matrix with latent roots Yi (i = 1, ... , n); then 

and 

if and only if C is normal. 
I shall first prove a lemma. \ 

LEM1LL Let C be a normal n X n matrix, whose, latent roots are YiJ' 
, k 

(j = 1, ... , ni ; i = I, ... , k), where L ni = n. Let C be partitioned so that 
i=l 

the k rnatrices Cu in ~he diagonal are sqttare. If the S1tm of squared moduli n, 
of latent roots of Cu is L \YiJ\2, for all i, then C is the direct S1tm 

. . j-l . 

C = Cll+C22+",+Ckk' 

Proof. Let Si be the sum of squared moduli of elements of Cu and let 

n 
8 = L \c ii \2. 

i.j = l 

Using Schur's theorem fOl" Cu we have 

Since C is normal, 
, k n, k . 

. 8 = L L \YiJ!2 ~ L8i · 
i=l j=l i=l 

k k 

But 8 > .L 8i ; ullle~s Cij . 0 (i ::f=. j), when 8 ';- .L 8i . IL follows that 
t=l t=1 

Cil = 0 (i ::f=. j) and therefore that 

C ' Cll+C22+ ... +Cick' 

It will be convenient to denote the sum of squared moduli of latent 
roots of a matrix A by A(A). ' 

Tm]OItEM 1. The matrices A and B commute if and onZy if the sum of 
slJuared moduli of latent roots of every scalar polynomial f(A)B is 

for some ordering Cc:i, fJi (i = 1, ... , n). 

I 
I 
[ 

. t 

. r 



THEOREMS ON NORMAL MATIUCES 243 

Proof. By a well-known theorem of Frobenius there is an ordering 
for which the latent roots of every f(A)B are f(Cii),Bi' provided that A 
and B commute. This ordering obviously satisfies the theorem. 

Now suppose there is an ordering for which 

for every f(A)B. 
Since A is normaJ, there is a, nnitary matrix tll such that 

(!)'Atll = D = ~ag[Cil> Ci2'" '' Cin ], 

where equal" Cii are arranged consecutively. Thus 

D = Ci~Il+Ci;I2+ ... +Ci~Ik' 

, where Ci~ =1= Ci; when i =1= j. 
Suppose that there are ni latent roots of A equal to Cii and denote these 

now by ~ij (j = 1, ... , ni ). Denote the corresponding roots of B in the 
enunciation of the theorem by fil

J
' Let. (j)' Btll = G, and let C be parti

tioned conformably with D. 
We may construct the polynomials fi(x) (i = 1, .. . , k) for which 

UCij) = 0, when j =1= i. 

(1) 

Also 

where the 0i are nnll-matrices, and the Ii arc unit-matrices, of order n i • 

Hence, if Gi = flD)C is partitioned conformably \yith D, then Gi •ki = 0, 
when k =1= i, while Gi.ii = Ci~' It follows that the latent roots offi(D)G 
are those of Cu together with zeros. By (1), 

11./ 

A(Cu) = A{ji(D)C} = .L 1,8;JJ2. 
J=l 

Bnt the latent roots of C = iii'BfT> a,re ,BiJ (j = 1, ... , ni; i = 1, ... , k). 
The lemma applies and we deduce that 

C = CU+C22+,,,+Ckk' 

This is sufficient for D and C to commute. Transforming by <1>, we see 
that A and B commute. 
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J' Suppose that IXi)' fJi) and IXii' fJ~ are orderings of the latent roots of 4. 
and B satisfying Frobenius's theorem. The latent roots of fi(A}B are 

. fJi) or fJ~ (j = I •...• nil. together with n-ni zeros. Hence in Frobenius's 
theorem the latent roots of B associated with a set of equal latent roots 
of A form a uniqu~ set. This is not true in the case ofour theorem. For 
suppose that IX~. fJi) and IXil' f3'i) satisfy I 

. k nl . k m 
A{f(A}B} .--.: 2 .2 If(IXi)}fJ~I2 = 2 '2 If(IXij}fJi)I2, 

. ' i-1,-1 '-1j-1 .· 

for all polynomials f(A}B. Then we 'must have 

(2) 

by putting f(A)B = f,(A)B (i = I •...• k). Conversely, if IX~, f3i) is an 
ordering satisfying Theorem I. and (2) is satisfied for some ordering 
IXi)' f3~) of the latent roots of B. then ' 

. k nl k (~ ')' 
A{f(A}B} = i~li~1If(IXi)}f3~12 = i~11f(IX~}I2 f=11~iJI,2 .. 

= itlf(lXiW~~11f3'i)I2) ='i~ i~1If(IX~},8'ijI2. 
and therefore the ordering IXii' fJ~ also satisfies the theorem. I state 
these results in a corollary. 

COROLLARY. L.et the latent ,roots of A be IXi) (j = I,: ...• ni; i = I, ... , k), 
where IXt, = cxi and cxi =1= IX} when i =1= j,. and let tl~e latent ,'oots of B be fJi) 
or{1i) (j = I .... "ni; i = I, ... , k). Let A and B comm~lte. Then, if IXii' f3i) 
is an ordering satisfying Theorem I, cxij' fJ~J is another if and only if 

m m ' 
I If3ijl2 = 2 IfJ~12 (i ~ I, ... ,k). 

j-1 j=1 , 

It is easily seen from an example that there may be various groupings 
of the f3i) into k sets of n i members each, the sum of squared moduli. of 

~ : 

the ith set being 2 If3i) 1 2. 
. i-1 

3. I shall next prove a theorem concerning a unitary matrix B. It has 
no analogue for general normal B. 

THEOREM 2. Let B = V ,be ~tnitary. Then AV is normal if and only if 
n 

the sum of squared moduli of latent roots of AV is 2 IIXil2. 
i=1 
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Proof. It is well known tho,t multiplication by a unitary matrix does 
not alter the sum of squared moduli of elements of a matrix. 

Let C = AV, and let the latent roots of C be Yi (i = I, ... , n). Then 

since A is normal. By Schur's theorem 0 is .normal if and· only if 

I I • n 
aD;d the theorem follows from S =~~llail~. 

When A T! is normal the polar matrices of A and those of A V commute. 
The latent roots of the unitary matrices V and. UV are ,ofunit modulus. 
Denote the latent roots of H, U, UV, by hi' 1ti , Wi (i = I, ... , n) respec

. tively. If C = AT!, then C = II. UV is a pobr representation of C, and 
Hand UV commute. By Frobenius's theorem, . 

and 

whence 

h.i 1ti :- eti' 

htwi = Yi; 

On using Theorem 2 we obtain the nOll-trivial part of Corollary 1. 
. . n 

COROLLARY 1. The sum of squared moduli of latent roots of AV iSi~11(l(t12. 

if and only if the moduli of latent roots of A T! are letil (i = 1, ... , n). . 

Next let 11 be a non-negative definite Hermitian matrix, with ~atellt 
roots k;, (i , 1, ... , n). It is known that h.i ~ O. By Theorem 2, 

'Ii n 

~h~ = ~ IYtl 2 

i=l i=l 

ifandonlyifC = HVisnormal. ButCisnorml1lifandonl:yifHV = VlI, 
Corollary 2 [cf. ParkeI,' (3)] now follows. 

COROLLARY 2. Let H be a non-negative d~finite Hermitian, and V be 
unitary. Then H and V commute if and only if the 8um of squared moduli 
of la,tent root~ of H is equal to the S1tm of sq1lared moduli of latent root8 of lIV . 

. It will be seen that Theorem 1 is a generalization of this oorollary. 

4. In Theorems 4: and 5 we shall be considering polynomials f(A) 
whose polar representation is f(A) = g(H)W. The significance of this 
restriction is brought out by Theorem 3. 
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THEOREM 3. The POla1' representationt of f(A) isf(A) = g(H) W, where 
g(H) is non-negative definite Hermitian and W is unita1"y, if and only if 

when I CXi I = I CX;/. 

Proof. Let 

Then 

" .D = iI5' A <I> = diag[ CXl , ... , cxn]. 

D = CP' H <f> • ¢' U <I> 

is a polar representation of D. If 

11 = diag[lcxll,· .. , Icxnl], 

(3) 

there is a diagonal matrix Z = diag[zl"'" zn], IZil = 1, for which D = RZ 
is also a polar representation of D. The Hermitian polar matrix is unique, 
and therefore R = (fi'H<P. 

Suppose that f(A) = g(H) TV . 

Then f(D) = <D'f(A)<P = <D'g(H)<P.<D'TV<P = g(R).<D'W<I>. 

Also f(D) = diag[j(cxl)'''',j(cxn)], 

and g(R) = diag[g(lcxll ), ... , g(lcxnl)], 

(4) 

(5) 

while, by an argument similar to that for D and R above, it follow~ from 

f(D) = g(R) . <D' W<P 

that (6) 

By comparing (5) and (6), we deduce (3). 
Conversely, let us assume. (3). We obtain (4) and (5); by the definition' 

of D and R. Then (6) follows by (3). Thus f(D) = g(R)X -:- X g(R) is 
a polar representation" where X = diag[xv ... , xn ], IXil = L Hence 

f(A) = <Pf(D)<D' = <Pg(R)XCP' = g(H)lJ', 

for W = <l>X<D', 

and the theorem is proved. 
I shall use this theorem due to Wiegmann (5): 'Let A and B be normal. 

Then A B is normal if and only if Hand B, A and V,. commute.' A version 
of this theorem has already been quoted in the introductory remarks. 

THEOREM 4. Let A, Band AB be nonnal. Then, if the Hermitian polar 
matrices of f(.11), l(B) are functions of the Hermitian polar matrices of A, B 
respectively, f(A)l(B) is normal, 

1" Since the unitary matrix W is here left unrestricted we may say 'the polar 
representation' meoning 'all polar representations'. 
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Proof. Let· f(A) = g(H)W, l(11) = r.n(I()ll. " 

By Wiegmann's theorem, Hand B, A and ]( commute. Hence g(H) 
and l(B),f(A) and r.n(K) commute. Using Wiegmann's theorem in the 
reverse direction, we see that f(A)l(B) is normal. 

Iff(A )l(B) is normal, it is easily seen that the Hermitian polar matrices 
off(A), l(B) may not be functions of Hand K. 

THEOREM 5. If f(A)l(B) ~s normal, the r.noduli of its latent roots are 
If(ai)l(,8ill (i = I, ... , n),jor s,or.ne ordering ai' ,8i' 

Proof. Let f(A) = GW, l(B) = 1I1X be polar representations; f(A) 
and l(B) are normal. As in Theorem 3, we may prove'that the latent 
roots of G, 111 are If(ai)l, Il(,81;)1 (i , 1, ... , n) respectively. Now f(A)l(B) 
is normal and therefore G and.1l1, Wand 111, G and 1l commute, provided 
that Wand 1l are suitably chosen, by the version of Wiegmann's 
theorem quoted in the introduction. Hencet 

j(A)l(B) = GWlIlll = G.lI1WX = WXGlII. 

By Frobenius's theorem the latent roots of GlIl are If(ai)l(,8i) 1 for some 
ordering, and the latent roots of f(A)l(B) are If(ai)l(,8i)IYi' where the 
Yi (IYil = 1) are the latent roots of WX. The theorem follows. 

5. The matrix AB is normal when AB = BA. Hence, by Theorem 1, 
if 

for every j(A), then AB is certainly normal. In Theorem 6, I shall prove 
that ~t is sufficient to assume rather less for the normality of AB. 

THEOREM 6. The r.natrix AB is norr.nal if and only if,for sor.ne ordering 
n 

ai' ,8i (i = 1, ... , n), L If(ai),8iI 2 equals the sur.n oj squared r.noduli of latent· 
i=l 

roots oj every scalar polynor.nial f(A)B for which the H err.nitian polar r.natrix 
of f(A) is a polynor.nial in the Iier~itian polar matrix of A. . 

Proof. Suppose that AB is normal. Then, if f(A) = g(H) TV and 
B = KVarepolarrepresentatiQns, wemayuseTheorem4withl(B) = B. 
It follows that f(A)B is normal. By Theorem 5 the moduli oflatellt roots 
off(A)B are thus If(ai),8il (i = I, .. :, n), for some ordering ai' f3i' Hence 

(7) 

t When f(A)l(B) is normal, then f(A)l(B) = GllfTVX for all polar matrices 
TV a.nd X. This is-easily proved. ' 
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Suppose now that there is an ordering CXi' fJi for which (7) is satisfied 
for every f(A) that has a polar representationf(A) = g(H)W. We have 
already proved that, if 

(i5'A<I> = D = diag[cxl"'" cxnJ, 

. then ' (i5'H<D = R = diag[lcx11,· .. , IcxnlJ. 

On construct.ing the polynomial t/J(x) satisfying t/J(cxi) = ICXil (i = I, ... , n); 
it follows that ' !f(D) = R, , 

and t/J(A) = <Dt/J(D)(i5' = llR~" H., 

Since H is a polynomial in A, any polynomial in H is also Ii. polynomial 

in A. Now let f(A) = g(H)W. ' 

We may suppose that g(H) = 4>(A), and this, implies g(R) ;= 4>(D). From 
this equation a~d from Theorem 3 it follows that 

4>(cxi) = g(ICXil) = If(CXi) I (i = 1, ... , n). 
Since, of course, 4>(A) = g(H) is its own Hermitian polar ~atrix, 

by hypothesis. We have proved (8) only for any non-negative Hermitian 
g(H). From an inspection of the proof of Theorem 1 it is immediately 
clear that Hand B commute if (8) is assumed only for the polynomials 
gi(H) defined for H in the same way as fi(A) is defined for A. These 
polynomials fi(A) used in the proof of Theorem 1 are non-negative 
definite Hermitian, being normal matrices with non-negative latent roots. 
Hence the corresponding gi(H) are also non-negative definite Hermitian; 
(8) holds for them and the commutativity of Hand B follows. 

If t/J(A) = H, we have the polar representations t/J(A) = HI and 
A = HU. Hence, by the hypothesis, . . 

and 

We deduce that A(AB) = A(HB), where HB is normal, since Hand B 
commute. On using Theorem 2 we see that AB is normai. The theorem 
is thus proved. 

A corollary may be obtained by an argument similar to that which 
led to the corollary of Theorem 1. 
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COROLLARY. Let the latent roots of A be rxi) (j = 1, ... , m,,; i = 1, ... , r), 
where I rxiJI = I rx; I and I rxi I =1= I rxil when i =I=.j; and let the latent roots of B 
be f3i, or try (j = 1, ... , mi; i = 1,. .. , r). Let AB be normal. Then, if rxy' f3i) 
is an ordering satisfying Theorem 6, rxi" /1.;, is another if and . only if 

m, m, 
L lf3iJl2 = 2: 1/1.;,1 2 (i = 1, ... , r). 
;=1, j=1' 

6. We may remark in conclusion, without proof, that the pplynomials 
fi(A) and' g'i(H) are the principal idempotent ele1llents of A and I1 
respectively [cf. Drazin (1)J. 

In this connexion, as some work in the proof of Theorem 6 indicates, 
the condition 

is a sllfficient guarantee of the commutativity of A and B. Analogously, 
the normality of AB is ensured by the condition 

m, 
A{gi(ll)U B} = 2: 1f3. 12 (i = 1, ... , r), 

j=1 ' 

for some polar representation A = llU, though this requires much fuller 
amplification. 

REFERE~OES 

1. M. P. Drazin, ,'On diagonable and normal matrices', Quart. J. of :Math. 
(Oxford) (2), 2 (1951), 189-98. 

2. M. 'P"Drazin, J. ' W. Dungey, and K~ W. Gruenberg, 'Some theorems on 
oommutative matrices', J. of London Math. Soc. 26 (1951), 221-8. 

3. VI. V. Parker, 'The characteristic roots of matrices', Duke :Math. J. 12 (1945), 
519-26. 

4. I. 'Schur, 'Ober die charakterischen Wurzeln einer linearen Substitution mit 
einer Anwendung auf die Theorie der Integralgleichungen', Math. Annalen, 
66 (1909), 488-510. 

5. N. A"Wiegmann, 'Normal products of matrices', Duke :Math. J. 15 (19·18), 
633-8. 

6. J. Williamson, 'Note on a principal-axis transformation of non-Hermitian 
matrices', Bull. American Math. Soc. 45 (1939), 920-2. 

7. A. Wintner and F. D. Murnaghan, 'On a polar representation ofnon-si\'1gular 
matrices', Proc. National Academy Sciences, U.S.A. 17 (1931), 676-8. 


