THEOREMS ON NORMAL MATRICES

By H. SCHNEIDER (Edinburgh)

[Received 12 September 1951; in revised form 10 December 1951]

1. As a corollary to general considerations on matrices \(A, B \) whose commutator \(AB - BA \) is nilpotent, Drazin, Dungey, and Gruenberg (2) have recently obtained this theorem on normal matrices:† 'Let \(A \) and \(B \) be normal matrices whose latent roots are \(\alpha_i, \beta_i (i = 1, \ldots, n) \). Then \(A \) and \(B \) commute if and only if the latent roots of every scalar polynomial \(f(A, B) \) are \(f(\alpha_i, \beta_i) (i = 1, \ldots, n) \) for some ordering \(\alpha_i, \beta_i. \)'

Using a different approach I shall show that for the commutativity of the normal matrices \(A \) and \(B \) it is sufficient to make apparently weaker assumptions. In these \(f(A, B) \) will be considerably specialized and a condition, implied by the theorem quoted, will be imposed on the sum of squared moduli of latent roots only.

Every square matrix \(A \) has a 'polar representation' \(A = HU \), where \(H \) is non-negative definite Hermitian, \(U \) is unitary [Wintner and Murnaghan (7), Williamson (6)]. The matrices \(H \) and \(U \) commute if and only if \(A \) is normal. If \(A, B, \) and \(AB \) are normal, it is known that the matrices of the polar representation of \(A \) and \(B \) commute in pairs, except possibly the unitary pair, provided that the latter are properly chosen.‡ This suggested that, if polar representations were considered, a similar theorem might be obtained for normal, but not necessarily commutative, matrices, whose product is also normal.

To avoid repetition in the statement of the theorems I shall assume throughout that \(A \) and \(B \) are normal \(n \times n \) matrices with complex elements and latent roots \(\alpha_i, \beta_i (i = 1, \ldots, n) \) respectively. Also that

\[
A = HU = UH \quad \text{and} \quad B = KV = VK
\]

are the polar representations of \(A \) and \(B \), where \(H \) and \(K \) are non-negative definite Hermitian, \(U \) and \(V \) unitary.

† A review of several important properties of normal matrices may be found in Drazin (1). I shall generally use the results of that paper without giving further references.

‡ Wiegnmann (5). The unitary polar matrix of a singular matrix is not unique. The proviso is necessary when the rank of either \(A \) or \(B \) is less than or equal to \(n - 2 \).

2. My results rest on a property of matrices due to Schur (4):

Let C be a matrix with latent roots γ_i ($i = 1, \ldots, n$); then

$$\sum_{i=1}^{n} |\gamma_i|^2 \leq \sum_{i,j=1}^{n} |c_{ij}|^2,$$

and

$$\sum_{i=1}^{n} |\gamma_i|^2 = \sum_{i,j=1}^{n} |c_{ij}|^2$$

if and only if C is normal.

I shall first prove a lemma.

Lemma. Let C be a normal $n \times n$ matrix, whose latent roots are γ_{ij} ($j = 1, \ldots, n_i; i = 1, \ldots, k$), where $\sum_{i=1}^{k} n_i = n$. Let C be partitioned so that the k matrices C_{ii} in the diagonal are square. If the sum of squared moduli of latent roots of C_{ii} is $\sum_{j=1}^{n_i} |\gamma_{ij}|^2$, for all i, then C is the direct sum

$$C = C_{11} + C_{22} + \ldots + C_{kk}.$$

Proof. Let S_i be the sum of squared moduli of elements of C_{ii} and let

$$S = \sum_{i,j=1}^{n} |c_{ij}|^2.$$

Using Schur's theorem for C_{ii} we have

$$\sum_{j=1}^{n} |\gamma_{ij}|^2 \leq S_i \quad (i = 1, \ldots, k).$$

Since C is normal,

$$S = \sum_{i=1}^{k} \sum_{j=1}^{n_i} |\gamma_{ij}|^2 \leq \sum_{i=1}^{k} S_i.$$

But $S > \sum_{i=1}^{k} S_i$; unless $C_{ij} = 0$ ($i \neq j$), when $S = \sum_{i=1}^{k} S_i$. It follows that $C_{ij} = 0$ ($i \neq j$) and therefore that

$$C = C_{11} + C_{22} + \ldots + C_{kk}.$$

It will be convenient to denote the sum of squared moduli of latent roots of a matrix A by $\Lambda(A)$.

Theorem 1. The matrices A and B commute if and only if the sum of squared moduli of latent roots of every scalar polynomial $f(A)B$ is

$$\sum_{i=1}^{n} |f(\alpha_i)\beta_i|^2$$

for some ordering α_i, β_i ($i = 1, \ldots, n$).
Proof. By a well-known theorem of Frobenius there is an ordering for which the latent roots of every $f(A)B$ are $f(\alpha_i)\beta_i$, provided that A and B commute. This ordering obviously satisfies the theorem.

Now suppose there is an ordering for which

$$\Lambda\{f(A)B\} = \sum_{i=1}^{n} |f(\alpha_i)\beta_i|^2,$$

for every $f(A)B$.

Since A is normal, there is a unitary matrix Φ such that

$$\Phi^*A\Phi = D = \text{diag}[\alpha_1, \alpha_2, \ldots, \alpha_n],$$

where equal α_i are arranged consecutively. Thus

$$D = \alpha'_1 I_1 + \alpha'_2 I_2 + \ldots + \alpha'_k I_k,$$

where $\alpha'_i \neq \alpha'_j$ when $i \neq j$.

Suppose that there are n_i latent roots of A equal to α_i and denote these now by α_{ij} ($j = 1, \ldots, n_i$). Denote the corresponding roots of B in the enunciation of the theorem by β_{ij}. Let $\Phi^*B\Phi = C$, and let C be partitioned conformably with D.

We may construct the polynomials $f_i(x)$ ($i = 1, \ldots, k$) for which

$$f_i(\alpha'_i) = 1, \quad f_i(\alpha'_j) = 0, \quad \text{when } j \neq i.$$

Then $f_i(D)C = \Phi f_i(A)B\Phi$, and so, by hypothesis and by the definition of $f_i(x)$, we have

$$\Lambda\{f_i(D)C\} = \Lambda\{f_i(A)B\} = \sum_{k=1}^{k} |f_i(\alpha'_k)|^2 \left(\sum_{j=1}^{n_i} |\beta_{ij}|^2 \right) = \sum_{j=1}^{n_i} |\beta_{ij}|^2. \tag{1}$$

Also

$$f_i(D) = O_1 + \ldots + O_{i-1} + I_i + O_{i+1} + \ldots + O_k,$$

where the O_i are null-matrices, and the I_i are unit-matrices, of order n_i.

Hence, if $G_i = f_i(D)C$ is partitioned conformably with D, then $G_{i,kj} = 0$, when $k \neq i$, while $G_{i,ii} = C_{ii}$. It follows that the latent roots of $f_i(D)C$ are those of C_{ii} together with zeros. By (1),

$$\Lambda(C_{ii}) = \Lambda\{f_i(D)C\} = \sum_{j=1}^{n_i} |\beta_{ij}|^2.$$

But the latent roots of $C = \Phi^*B\Phi$ are β_{ij} ($j = 1, \ldots, n_i$; $i = 1, \ldots, k$).

The lemma applies and we deduce that

$$C = C_{11} + C_{22} + \ldots + C_{kk}.$$

This is sufficient for D and C to commute. Transforming by Φ, we see that A and B commute.
Suppose that \(\alpha_{ij}, \beta_{ij} \) and \(\alpha_{ij}', \beta_{ij}' \) are orderings of the latent roots of \(A \) and \(B \) satisfying Frobenius's theorem. The latent roots of \(f_i(A)B \) are \(\beta_{ij} \) or \(\beta_{ij}' \) \((j = 1, \ldots, n_i)\), together with \(n - n_i \) zeros. Hence in Frobenius's theorem the latent roots of \(B \) associated with a set of equal latent roots of \(A \) form a unique set. This is not true in the case of our theorem. For suppose that \(\alpha_{ij}, \beta_{ij} \) and \(\alpha_{ij}', \beta_{ij}' \) satisfy

\[
\Lambda\{f(A)B\} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} |f(\alpha_{ij})\beta_{ij}|^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} |f(\alpha_{ij})\beta_{ij}'|^2,
\]

for all polynomials \(f(A)B \). Then we must have

\[
\sum_{j=1}^{n_i} |\beta_{ij}|^2 = \sum_{j=1}^{n_i} |\beta_{ij}'|^2 \quad (i = 1, \ldots, k),
\]

(2)

by putting \(f(A)B = f_i(A)B \) \((i = 1, \ldots, k)\). Conversely, if \(\alpha_{ij}, \beta_{ij} \) is an ordering satisfying Theorem 1, and (2) is satisfied for some ordering \(\alpha_{ij}, \beta_{ij} \) of the latent roots of \(B \), then

\[
\Lambda\{f(A)B\} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} |f(\alpha_{ij})\beta_{ij}|^2 = \sum_{i=1}^{k} |f(\alpha_{ij})|^2 \left(\sum_{j=1}^{n_i} |\beta_{ij}|^2 \right) = \sum_{i=1}^{k} \sum_{j=1}^{n_i} |f(\alpha_{ij})\beta_{ij}'|^2,
\]

and therefore the ordering \(\alpha_{ij}, \beta_{ij} \) also satisfies the theorem. I state these results in a corollary.

Corollary. Let the latent roots of \(A \) be \(\alpha_{ij} \) \((j = 1, \ldots, n_i; i = 1, \ldots, k)\), where \(\alpha_{ij} = \alpha_i' \) and \(\alpha_i' \neq \alpha_j' \) when \(i \neq j \); and let the latent roots of \(B \) be \(\beta_{ij} \) or \(\beta_{ij}' \) \((j = 1, \ldots, n_i; i = 1, \ldots, k)\). Let \(A \) and \(B \) commute. Then, if \(\alpha_{ij}, \beta_{ij} \) is an ordering satisfying Theorem 1, \(\alpha_{ij}, \beta_{ij}' \) is another if and only if

\[
\sum_{j=1}^{n_i} |\beta_{ij}|^2 = \sum_{j=1}^{n_i} |\beta_{ij}'|^2 \quad (i = 1, \ldots, k).
\]

It is easily seen from an example that there may be various groupings of the \(\beta_{ij} \) into \(k \) sets of \(n_i \) members each, the sum of squared moduli of the \(i \)th set being \(\sum_{j=1}^{n_i} |\beta_{ij}|^2 \).

3. I shall next prove a theorem concerning a unitary matrix \(B \). It has no analogue for general normal \(B \).

Theorem 2. Let \(B = V \) be unitary. Then \(AV \) is normal if and only if the sum of squared moduli of latent roots of \(AV \) is \(\sum_{i=1}^{n} |\alpha_i|^2 \).
THEOREMS ON NORMAL MATRICES

Proof. It is well known that multiplication by a unitary matrix does not alter the sum of squared moduli of elements of a matrix.

Let \(C = AV \), and let the latent roots of \(C \) be \(\gamma_i \) \((i = 1, \ldots, n)\). Then

\[
S = \sum_{i,j=1}^{n} |c_{ij}|^2 = \sum_{i,j=1}^{n} |a_{ij}|^2 = \sum_{i=1}^{n} |\alpha_i|^2,
\]

since \(A \) is normal. By Schur's theorem \(C \) is normal if and only if

\[
\sum_{i=1}^{n} |\gamma_i|^2 = S,
\]

and the theorem follows from \(S = \sum_{i=1}^{n} |\alpha_i|^2 \).

When \(AV \) is normal the polar matrices of \(A \) and those of \(AV \) commute. The latent roots of the unitary matrices \(V \) and \(UV \) are of unit modulus. Denote the latent roots of \(H \), \(U \), \(UV \), by \(h_i, u_i, w_i \) \((i = 1, \ldots, n)\) respectively. If \(C = AV \), then \(C = HUV \) is a polar representation of \(C \), and \(H \) and \(UV \) commute. By Frobenius's theorem,

\[
h_i w_i = \alpha_i,
\]

and

\[
h_i u_i = \gamma_i;
\]

whence

\[
|\gamma_i| = |\alpha_i|.
\]

On using Theorem 2 we obtain the non-trivial part of Corollary 1.

Corollary 1. The sum of squared moduli of latent roots of \(AV \) is \(\sum_{i=1}^{n} |\alpha_i|^2 \), if and only if the moduli of latent roots of \(AV \) are \(|\alpha_i| \) \((i = 1, \ldots, n)\).

Next let \(H \) be a non-negative definite Hermitian matrix, with latent roots \(h_i \) \((i = 1, \ldots, n)\). It is known that \(h_i \geq 0 \). By Theorem 2,

\[
\sum_{i=1}^{n} h_i^2 = \sum_{i=1}^{n} |\gamma_i|^2
\]

if and only if \(C = HV \) is normal. But \(C \) is normal if and only if \(HV = VH \), Corollary 2 [cf. Parker (3)] now follows.

Corollary 2. Let \(H \) be a non-negative definite Hermitian, and \(V \) be unitary. Then \(H \) and \(V \) commute if and only if the sum of squared moduli of latent roots of \(H \) is equal to the sum of squared moduli of latent roots of \(HV \).

It will be seen that Theorem 1 is a generalization of this corollary.

4. In Theorems 4 and 5 we shall be considering polynomials \(f(A) \) whose polar representation is \(f(A) = g(H)W \). The significance of this restriction is brought out by Theorem 3.
Theorem 3. The polar representation† of \(f(A) \) is \(f(A) = g(H)W \), where \(g(H) \) is non-negative definite Hermitian and \(W \) is unitary, if and only if
\[
|f(\alpha_i)| = |f(\alpha_j)| = g(|\alpha_i|),
\]
when \(|\alpha_i| = |\alpha_j| \).

Proof. Let
\[
D = \Phi' A \Phi = \text{diag}[\alpha_1, \ldots, \alpha_n].
\]
Then
\[
D = \Phi' H \Phi. \Phi' U \Phi
\]
is a polar representation of \(D \). If
\[
R = \text{diag}[|\alpha_1|, \ldots, |\alpha_n|],
\]
there is a diagonal matrix \(Z = \text{diag}[z_1, \ldots, z_n] \), \(|z_i| = 1 \), for which \(D = RZ \)
is also a polar representation of \(D \). The Hermitian polar matrix is unique, and therefore
\[
R = \Phi' H \Phi.
\]
Suppose that
\[
f(A) = g(H)W.
\]
Then
\[
f(D) = \Phi' f(A) \Phi = \Phi' g(H) \Phi. \Phi' W \Phi = g(R) \Phi' W \Phi.
\]
Also
\[
f(D) = \text{diag}[f(\alpha_1), \ldots, f(\alpha_n)],
\]
and
\[
g(R) = \text{diag}[g(|\alpha_1|), \ldots, g(|\alpha_n|)],
\]
while, by an argument similar to that for \(D \) and \(R \) above, it follows from
\[
f(D) = g(R) \Phi' W \Phi
\]
that
\[
g(R) = \text{diag}[|f(\alpha_1)|, \ldots, |f(\alpha_n)|].
\]
By comparing (5) and (6), we deduce (3).

Conversely, let us assume (3). We obtain (4) and (5), by the definition of \(D \) and \(R \). Then (6) follows by (3). Thus \(f(D) = g(R)X = X g(R) \) is a polar representation, where \(X = \text{diag}[x_1, \ldots, x_n] \), \(|x_i| = 1 \). Hence
\[
f(A) = \Phi f(D) \Phi' = \Phi g(R) X \Phi' = g(H)W,
\]
for
\[
W = \Phi X \Phi',
\]
and the theorem is proved.

I shall use this theorem due to Wiegmann (5): 'Let \(A \) and \(B \) be normal. Then \(AB \) is normal if and only if \(H \) and \(B, A \) and \(V \), commute.' A version of this theorem has already been quoted in the introductory remarks.

Theorem 4. Let \(A, B \) and \(AB \) be normal. Then, if the Hermitian polar matrices of \(f(A), l(B) \) are functions of the Hermitian polar matrices of \(A, B \) respectively, \(f(A)l(B) \) is normal.

† Since the unitary matrix \(W \) is here left unrestricted we may say 'the polar representation' meaning 'all polar representations'.
Theorem 5. Let $f(A) = g(H)W$, $l(B) = m(K)X$.

By Wiegmann's theorem, H and B, A and K commute. Hence $g(H)$ and $l(B)$, $f(A)$ and $m(K)$ commute. Using Wiegmann's theorem in the reverse direction, we see that $f(A)l(B)$ is normal.

If $f(A)l(B)$ is normal, it is easily seen that the Hermitian polar matrices of $f(A)$, $l(B)$ may not be functions of H and K.

Theorem 5. If $f(A)l(B)$ is normal, the moduli of its latent roots are $|f(\alpha_i)l(\beta_i)|$ $(i = 1, \ldots, n)$, for some ordering α_i, β_i.

Proof. Let $f(A) = GW$, $l(B) = MX$ be polar representations; $f(A)$ and $l(B)$ are normal. As in Theorem 3, we may prove that the latent roots of G, M are $|f(\alpha_i)|$, $|l(\beta_i)|$ $(i = 1, \ldots, n)$ respectively. Now $f(A)l(B)$ is normal and therefore G and M, W and X commute, provided that W and X are suitably chosen, by the version of Wiegmann's theorem quoted in the introduction. Hence

$$f(A)l(B) = GWMX = GMWX = WXGM.$$

By Frobenius' theorem the latent roots of GM are $|f(\alpha_i)l(\beta_i)|$ for some ordering, and the latent roots of $f(A)l(B)$ are $|f(\alpha_i)l(\beta_i)|y_i$, where the $y_i (|y_i| = 1)$ are the latent roots of WX. The theorem follows.

5. The matrix AB is normal when $AB = BA$. Hence, by Theorem 1, if

$$\Lambda\{f(A)B\} = \sum_{i=1}^{n} |f(\alpha_i)\beta_i|^2$$

for every $f(A)$, then AB is certainly normal. In Theorem 6, I shall prove that it is sufficient to assume rather less for the normality of AB.

Theorem 6. The matrix AB is normal if and only if, for some ordering α_i, β_i $(i = 1, \ldots, n)$, $\sum_{i=1}^{n} |f(\alpha_i)\beta_i|^2$ equals the sum of squared moduli of latent roots of every scalar polynomial $f(A)B$ for which the Hermitian polar matrix of $f(A)$ is a polynomial in the Hermitian polar matrix of A.

Proof. Suppose that AB is normal. Then, if $f(A) = g(H)W$ and $B = KV$ are polar representations, we may use Theorem 4 with $l(B) = B$. It follows that $f(A)B$ is normal. By Theorem 5 the moduli of latent roots of $f(A)B$ are thus $|f(\alpha_i)\beta_i|$ $(i = 1, \ldots, n)$, for some ordering α_i, β_i. Hence

$$\Lambda\{f(A)B\} = \sum_{i=1}^{n} |f(\alpha_i)\beta_i|^2.$$

† When $f(A)l(B)$ is normal, then $f(A)l(B) = GMWX$ for all polar matrices W and X. This is easily proved.
Suppose now that there is an ordering α_i, β_i for which (7) is satisfied for every $f(A)$ that has a polar representation $f(A) = g(H)W$. We have already proved that, if

$$\overline{\Phi}A\Phi = D = \text{diag}[\alpha_1, \ldots, \alpha_n],$$

then

$$\overline{\Phi}H\Phi = R = \text{diag}[|\alpha_1|, \ldots, |\alpha_n|].$$

On constructing the polynomial $\psi(x)$ satisfying $\psi(\alpha_i) = |\alpha_i|$ ($i = 1, \ldots, n$); it follows that

$$\psi(D) = R,$$

and

$$\psi(A) = \Phi \psi(D)\overline{\Phi} = \Phi R \overline{\Phi} = H.$$

Since H is a polynomial in A, any polynomial in H is also a polynomial in A. Now let

$$f(A) = g(H)W.$$

We may suppose that $g(H) = \phi(A)$, and this implies $g(R) = \phi(D)$. From this equation and from Theorem 3 it follows that

$$\phi(\alpha_i) = g(|\alpha_i|) = |f(\alpha_i)| \quad (i = 1, \ldots, n).$$

Since, of course, $\phi(A) = g(H)$ is its own Hermitian polar matrix,

$$\Lambda\{g(H)B\} = \Lambda\{\phi(A)B\} = \sum_{i=1}^{n} |\phi(\alpha_i)|^2 = \sum_{i=1}^{n} |g(|\alpha_i|)|^2; \quad (8)$$

by hypothesis. We have proved (8) only for any non-negative Hermitian $g(H)$. From an inspection of the proof of Theorem 1 it is immediately clear that H and B commute if (8) is assumed only for the polynomials $g_i(H)$ defined for H in the same way as $f_i(A)$ is defined for A. These polynomials $f_i(A)$ used in the proof of Theorem 1 are non-negative definite Hermitian, being normal matrices with non-negative latent roots. Hence the corresponding $g_i(H)$ are also non-negative definite Hermitian; (8) holds for them and the commutativity of H and B follows.

If $\psi(A) = H$, we have the polar representations $\psi(A) = HI$ and $A = HU$. Hence, by the hypothesis,

$$\Lambda(HB) = \sum_{i=1}^{n} |\alpha_i|\beta_i|^2$$

and

$$\Lambda(AB) = \sum_{i=1}^{n} |\alpha_i|\beta_i|^2.$$

We deduce that $\Lambda(AB) = \Lambda(HB)$, where HB is normal, since H and B commute. On using Theorem 2 we see that AB is normal. The theorem is thus proved.

A corollary may be obtained by an argument similar to that which led to the corollary of Theorem 1.
COROLLARY. Let the latent roots of A be $\alpha_{ij} (j = 1, \ldots, m_i; i = 1, \ldots, r)$, where $|\alpha_{ij}| = |\alpha_{ik}|$ and $|\alpha_{ij}| \neq |\alpha_{ik}|$ when $i \neq j$; and let the latent roots of B be $\beta_{ij} (j = 1, \ldots, m_i; i = 1, \ldots, r)$. Let AB be normal. Then, if α_{ij}, β_{ij} is an ordering satisfying Theorem 6, α_{ij}, β_{ij} is another if and only if

$$\sum_{j=1}^{m_i} |\beta_{ij}|^2 = \sum_{j=1}^{m_i} |\beta_{ij}'|^2 \quad (i = 1, \ldots, r).$$

6. We may remark in conclusion, without proof, that the polynomials $f_i(A)$ and $g_i(H)$ are the principal idempotent elements of A and H respectively [cf. Drazin (1)].

In this connexion, as some work in the proof of Theorem 6 indicates, the condition

$$\lambda_i f_i(A)B = \sum_{j=1}^{m_i} |\beta_{ij}|^2 \quad (i = 1, \ldots, k)$$

is a sufficient guarantee of the commutativity of A and B. Analogously, the normality of AB is ensured by the condition

$$\lambda_i g_i(H)UB = \sum_{j=1}^{m_i} |\beta_{ij}'|^2 \quad (i = 1, \ldots, r),$$

for some polar representation $A = HU$, though this requires much fuller amplification.

REFERENCES