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Abstract

Motivated by a work of Boros, Brualdi, Crama and Hoffman, we consider the
sets of (i) possible Perron roots of nonnegative matrices with prescribed row
sums and associated graph, and (ii) possible eigenvalues of complex matrices
with prescribed associated graph and row sums of the moduli of their entries.
To characterize the set of Perron roots or possible eigenvalues of matrices in
these classes we introduce, following an idea of Al’pin, Elsner and van den
Driessche, the concept of row uniform matrix, which is a nonnegative matrix
where all nonzero entries in every row are equal. Furthermore, we completely
characterize the sets of possible Perron roots of the class of nonnegative matrices
and the set of possible eigenvalues of the class of complex matrices under study.
Extending known results to the reducible case, we derive new sharp bounds
on the set of eigenvalues or Perron roots of matrices when the only information
available is the graph of the matrix and the row sums of the moduli of its entries.
In the last section of the paper a new constructive proof of the Camion-Hoffman
theorem is given.
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1. Introduction

1.1. Background and motivation

The use of the row sums of a matrix to determine nonsingularity or to bound
its spectrum has its origins in the 19th century [18, Section 2] and has led to a
vast literature associated with the name of Geršgorin and his circles [21]. One of
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the first observations, due to Frobenius, was that the Perron root ρ(A) (i.e., the
biggest nonnegative eigenvalue, or the spectral radius) of a nonnegative matrix
A ∈ Rn×n+ is bounded by

n
min
i=1

ri(A) ≤ ρ(A) ≤ n
max
i=1

ri(A) (1)

where ri denotes the ith row sum of the elements of A. If A is irreducible then
the inequalities in (1) are strict except when minni=1 ri(A) = maxni=1 ri(A).

In a recent development, Al’pin [2], Elsner and van den Driessche [11] sharp-
ened the classical bounds of Frobenius by considering a matrix B which has the
same zero-nonzero pattern as A, and whose entries are equal to the row sums of
A in the corresponding rows. We formalize this idea in the following definition.

Definition 1.1. For A ∈ Rn×n+ we define the auxiliary matrix B = Aux(A)
defined by {

bij =
∑
k aik, if aij 6= 0,

bij = 0, if aij = 0.
(2)

For a general complex matrix A ∈ Cn×n, its auxiliary matrix is defined as
Aux(|A|).

Next, recall the concepts of minimal and maximal cycle (geometric) means.
For an arbitrary matrix A ∈ Rn×n+ these quantities are defined as follows

ν(A) = min
(i1,...,i`)∈C(A)

(ai1i2 · ai2i3 · . . . · ai`i1)1/`,

µ(A) = max
(i1,...,i`)∈C(A)

(ai1i2 · ai2i3 · . . . · ai`i1)1/`,
(3)

where C(A) denotes the set of cycles of the associated graph. Recall that the
directed weighted graph, associated with an arbitrary complex matrix A ∈ Cnn,
is defined by the set of nodes N = {1, . . . , n} and set of edges E such that
(i, j) ∈ E if and only if aij 6= 0, in which case edge (i, j) is assigned the weight
aij .

According to Al’pin [2], Elsner and van den Driessche [11], we have

ν(B) ≤ ρ(A) ≤ µ(B), B = Aux(A), (4)

for any nonnegative matrix A. If A and hence B are irreducible then either
ν(B) = ρ(A) = µ(B) or (if ν(B) < µ(B)) the inequalities in (4) are strict.

Exploiting similar ideas, Boros, Brualdi, Crama and Hoffman [4] investigated
a class of complex matrices A ∈ Cn×n with prescribed off-diagonal row sums of
the moduli of their entries, prescribed associated graph, and prescribed moduli
of all diagonal entries. In the case when G(A) is strongly connected with at
least two cycles (scwaltcy), they investigated the existence of a positive vector
x satisfying

|aii|xi ≥
∑
j 6=i

|aij |xj , i = 1, . . . , n (5)
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for all matrices from the class simultaneously, and described the cases when all
inequalities in (5) are strict [4, Theorem 1.1], at least one of the inequalities
is strict [4, Theorem 1.2], or all inequalities hold with an equality [4, Theorem
1.3]. These results imply generalizations of Geršgorin’s theorem due to Brualdi
[5]. Following the statement of [4, Theorem 1.4] the authors provide a detailed
outline for the proof that Brualdi’s conditions are sharp.

In this paper we mainly deal with the two classes of matrices described in the
abstract. These classes are similar to those in [4], but we drop the requirement
that G(B) is scwaltcy. In particular we also handle the reducible (not strongly
connected) case. However we do not prescribe the moduli of diagonal entries,
and include these moduli in the row sums instead. This allows us, in particular,
to combine the problem statement of Boros, Brualdi, Crama and Hoffman [4]
with that of Al’pin [2], Elsner and van den Driessche [11] and to generalize
all above mentioned results removing the restriction that B is irreducible. The
main results of this paper characterize the Perron roots or the sets of eigenvalues
of the classes of matrices under consideration.

At the end of the paper we present a new constructive proof of the Camion-
Hoffman theorem [8] (see also [10]). This theorem characterizes regularity of
a class of complex matrices with prescribed moduli of their entries. The scal-
ing result of Section 2.3 is crucial for our new proof (which also makes use of
one of the previously mentioned characterization results). Since we are dealing
with complex rather than with nonnegative matrices here, the triangle inequlity
(implicit in Lemma 4.10) also plays a role.

Other proofs of the Camion-Hoffman theorem have been given by Levinger
and Varga [16], and Engel [12].

1.2. Contents of the paper

The rest of this paper is organized as follows. Section 1.3 is a reminder of
the Frobenius normal form of nonnegative matrices.

Section 2 is devoted to a form of diagonal similarity scaling called visu-
alization scaling [19] or Fiedler-Pták scaling [14] (see also [1]). Interest in this
scaling has been motivated by its use in max algebra, see for example [6] and [7].
Lemmas 2.4 and 2.5 can be used to generalize the simultaneous scaling results
of Boros, Brualdi, Crama and Hoffman [4, Theorems 1.1-1.3] to include the re-
ducible case. This also yields a derivation of the bounds of Al’pin, Elsner and
van den Driessche (Theorem 2.6). Theorem 2.8 establishes the existence of an
advanced visualization scaling, which is applied in the proof of the Camion-
Hoffman theorem.

In Section 3 we consider the class of nonnegative matrices with prescribed
graph and prescribed row sums. Theorem 3.7 characterizes the set of possible
Perron roots of such matrices also when B is reducible. This is one of the main
results of this paper. The proof is based on analyzing the sunflower subgraphs
of G(B), a technique well-known in max algebra [15]. As an immediate corollary
it follows from Theorem 3.7 that for irreducible B with ν(B) < µ(B) and any
r, ν(B) < r < µ(B) there exists A with Aux(A) = B such that ρ(A) = r.

3



In Section 4.1 we consider the class of complex matrices with prescribed
graph and prescribed row sums of the moduli of their entries. We seek a char-
acterization of the set of nonzero eigenvalues of such matrices, starting with
the irreducible case in Theorem 4.4 . In this case we show in particular that
when B has more than one cycle, the set of possible nonzero eigenvalues of A
satisfying Aux(A) = B consists either of all s satisfying 0 < |s| < µ(B) when
ν(B) < µ(B), or 0 < |s| ≤ µ(B) if ν(B) = µ(B). Then, based on the irreducible
case the full characterization in the reducible case is given in Theorem 4.9. In
addition to this, the occurance of a 0 eigenvalue is treated in Theorem 4.2.

In Section 4.2 a new proof of the Camion-Hoffman theorem [8] is given, based
on the advanced visualization scaling of Section 2.3 and the characterization
result of Theorem 4.9.

1.3. Frobenius normal form

Let A be a square nonnegative matrix. If A is irreducible (i.e., the associated
digraph is strongly connected) then according to the Perron-Frobenius theorem
A has a unique (up to a multiple) positive eigenvector corresponding to the
Perron root ρ(A) (which is also the greatest modulus of all eigenvalues of A). If
A is reducible then by means of simultaneous permutations of rows and columns
or, equivalently, an application of P−1AP similarity where P is a permutation
matrix, A can be brought to the following form:

A1 0 0 0
∗ A2 0 0

∗ ∗
. . . 0

∗ ∗ ∗ Am

 .

where the square blocks A1, . . . , Am correspond to the maximal strongly con-
nected components of the associated graph. These diagonal blocks A1, . . . , Am
will be further referred to as classes of A. Note that each class Ai is either a
nonzero irreducible matrix, in which case it is called nontrivial, or a zero di-
agonal entry (and then it is called trivial). If some component G(Ai) of the
associated graph G(A) does not have access to any other component, which
means that there is no edge connecting one of its nodes to a node in another
component, then this component or the corresponding class Ai are called final.
Otherwise, this component or the corresponding class are called transient.

The entries denoted by 0 are actually off-diagonal blocks of zeros of ap-
propriate dimension, and ∗ denote submatrices of approriate dimensions whose
zero-nonzero pattern is unimportant.

2. Visualization scaling

2.1. Visualization of auxiliary matrices

In this section we assume that A is a nonnegative matrix such that G(A)
contains at least one cycle. Let us introduce some terminology related to max
algebra and visualization.
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Definition 2.1. For a nonnegative matrix A, the critical graph C(A) = (Nc(A), Ec(A))
is defined as the subgraph of G(A) consisting of all nodes Nc(A) and edges Ec(A)
on the cycles whose geometric mean equals µ(A). These nodes and edges are
also called critical. A node is called strictly critical if all edges emanating from
it are critical.

Similarly, by anticritical graph we mean the subgraph of G(A) consisting
of all nodes and edges on the cycles whose geometric mean equals ν(A) (also
speaking of anticritical nodes and edges). A node is called strictly anticritical if
all edges emanating from it are anticritical.

Definition 2.2. A positive vector x is called a visualizing, resp. strictly vi-
sualizing, vector of A if aijxj ≤ µ(A)xi for all (i, j) ∈ E(A), resp. if also
aijxj = µ(A) if and only if (i, j) is critical.

Existence of such vector was proved by Engel and Schneider [13, Theorem 7.2]
in the irreducible case, and was extended to reducible matrices in [19].

Definition 2.3. A positive vector x is called an antivisualizing, resp. a strictly
antivisualizing, vector of A if aijxj ≥ ν(A)xi for all (i, j) ∈ E(A), resp. if also
aijxj = ν(A) if and only if (i, j) is anticritical.

An existence of such scaling follows from the existence of visualization scaling,
applied to a matrix resulting from A after elementwise inversion of the entries.

The following lemmas are based on the results on simultaneous scaling found
in [4, Theorems 1.1-1.3]. We make arguments of [4] more precise by basing them
on the existence of strictly visualizing vectors [19].

Lemma 2.4 (cf. [4]). Let A be a nonnegative matrix and let B = Aux(A)
with µ(B) 6= 0. Let x be a strictly visualizing vector of B. Then we have
Ax ≤ µ(B)x and, more precisely, (Ax)i = µ(B)xi if i is a strictly critical node
of B and (Ax)i < µ(B)xi otherwise.

Proof: Assume that µ(B) = 1. Then

max
j

bijxj
xi
≤ 1 for all i,

max
j

bijxj
xi

= 1 for all critical i.

(6)

If i is strictly critical, we have

∀j : (i, j) ∈ E(A)
bijxj
xi

= 1, (7)

which implies that xj = xk for all j and k such that both (i, j) ∈ E(A) and
(i, k) ∈ E(A). Hence we can take any k with (i, k) ∈ E(A), and obtain∑

j aijxj

xi
=

(
∑
j aij)xk

xi
=
bikxk
xi

= 1 (8)
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If i is not strictly critical then let us denote

xk = max
j
{xj : (i, j) ∈ E(A)}. (9)

If i is not critical then∑
j aijxj

xi
≤

(
∑
j aij)xk

xi
=
bikxk
xi

< 1 (10)

If i is critical (but not strictly) then

∃l, h bilxl
xi

= 1,
bihxh
xi

< 1, (11)

which implies xl = xk > xh for these l and h. In particular, note that we have
(i, k) ∈ Ec(B). Hence∑

j aijxj

xi
<

(
∑
j aij)xk

xi
=
bikxk
xi

= 1. (12)

�

Lemma 2.5 (cf. [4]). Let A be a nonnegative matrix and let B = Aux(A)
with ν(B) 6= 0. Let x be a strictly antivisualizing vector of B. Then we have
Ax ≥ ν(B)x and, more precisely, (Ax)i = ν(B)xi if i is a strictly anticritical
node of B and (Ax)i > ν(B)xi otherwise.

2.2. Bounds of Alpin, Elsner, van den Driessche

We call a nonnegative matrix A truly substochastic, if
∑
j aij ≤ 1 for all i

and
∑
j aij < 1 for some i. In a similar way, A is called truly superstochastic if∑

j aij ≥ 1 for all i and
∑
j aij > 1 for some i.

The following known result can be now obtained from Lemmas 2.4 and 2.5.

Theorem 2.6 ([2], [11][Theorem A]). Let A be an irreducible nonnegative
matrix and let B = Aux(A).

(i) If µ(B) = ν(B), then A is diagonally similar to a stochastic matrix mul-
tiplied by µ(B). In this case, ρ(A) = µ(B) = ν(B).

(ii) If ν(B) < µ(B), then A is diagonally similar to a truly substochastic
matrix multiplied by µ(B). In this case, ν(B) < ρ(A) < µ(B).

Proof:
(i): As B is irreducible and µ(B) = ν(B), all nodes of G(B) are strictly

critical. Taking any visualization2 x of B we have Ax = µ(B)x, which implies

2not necessarily strict
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ρ(A) = µ(B) = ν(B). We also have that X−1AX, with X = diag(x), is a
stochastic matrix multiplied by ρ(A) = µ(B) = ν(B)

(ii): As µ(B) > ν(B), not all nodes of G(B) are strictly critical. Taking any
strictly visualizing vector x of B we have Ax ≤ µ(B)x where (Ax)i < µ(B)xi for
some i. We also have that X−1AX with X = diag(x), is a truly substochastic
matrix multiplied by µ(B), as claimed. As X−1AX is also irreducible, it follows
that ρ(A) = ρ(X−1AX) < µ(B). The inequality ρ(A) < µ(B) can be also
obtained (following an argument found, for instance in [11]) by multiplying the
system Ax ≤ µ(B)x, where at least one of the inequalities is strict, from the left
by a row vector z such that zA = ρ(A)z (which does not have 0 components if
A is irreducible).

Not all nodes of G(B) are strictly anticritical, either. Taking any strictly an-
tivisualizing vector y of B = Aux(A) we have Ay ≥ ν(B)y where (Ay)i > ν(B)yi
for some i. We also have that Y −1AY with Y = diag(y), is a truly superstochas-
tic matrix multiplied by µ(B), as claimed. As Y −1AY is also irreducible, it
follows that ρ(A) = ρ(Y −1AY ) > ν(B). The inequality ρ(A) > ν(B) can be
also obtained by multiplying the system Ay ≥ µ(B)y, where at least one of
the inequalities is strict, from the left by a row vector z such that zA = ρ(A)z
(which does not have 0 components if A is irreducible). �

2.3. Sum visualization

Definition 2.7. For A ∈ Rn×n+ and a > 0, a vector x ∈ Rn+ is called an a-sum
visualizing vector of A, if the entries of C = X−1AX with X = diag(x) satisfy
cij ≤ a for all i, j and

∑
j cij ≥ a for all i. In this case C is called an a-sum

visualization of A.

Recall that we have µ(A) ≤ ρ(A) for any nonnegative matrix. Indeed, since
for any positive x and any cycle (i1, . . . i`) we have that

(
ai1i2

xi2
xi1
· ai2i3

xi3
xi2
· . . . · ai`i1

xi`
xi1

)1/`

≤

 ∏
k∈{i1,...,i`}

∑
j

akj
xj
xk

1/`

,

it follows by taking x satisfying Ax = ρ(A)x, that µ(A) ≤ ρ(A).

Theorem 2.8. Let A ∈ Rn×n+ be irreducible, and define α(A) as the set of
positive numbers a for which an a-sum visualization of A exists. Then α(A) =
[µ(A), ρ(A)].

Proof: 1. α(A) ⊆ [µ(A), ρ(A)]:

Let a ∈ α(A) and let C = X−1AX (for some diagonal X) be such that cij ≤ a
for all i, j and

∑
j cij ≥ a for all i. Then µ(C) ≤ a and ρ(C) ≥ a, and as

µ(A) = µ(C) and ρ(A) = ρ(C) we obtain that a ∈ [µ(A), ρ(A)].
2. [µ(A), ρ(A)] ⊆ α(A):
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Let µ(A) ≤ a ≤ ρ(A). We can assume without loss of generality (dividing A by
a if necessary) that a = 1 and µ(A) ≤ 1 ≤ ρ(A).

As µ(A) ≤ 1, there exists a non singular diagonal matrix X such that all
entries gij of G := X−1AX satisfy 0 ≤ gij ≤ 1. Since G is diagonally similar to
A, ρ(A) is also the spectral radius of G and hence the exists a vector z whose
entries zi satisfy 1 = maxi zi and

∑
j gij

zj
zi
≥ 1 for all i .

We will now construct an entrywise nonincreasing sequence of vectors {y(s)}s≥0

bounded from below by z. Such a sequence obviously converges, and as we will
argue, the limit denoted by y satisfies gij

yj
yi
≤ 1 for all i, j, and

∑
j gij

yj
yi
≥ 1

for all i (and, obviously, y ≥ z).
Let us define a continuous mapping f : (R+\{0})n → (R+\{0})n, by its

components

fi(x) = min(xi,
∑
j

gijxj), i = 1, . . . , n. (13)

Now let y(0) = (1, 1 . . . 1) and consider a sequence {y(s)}s≥0 defined by
y(s+1) := f(y(s)) (that is, the orbit of y(0) under f).

Observe that y(s+1) ≤ y(s), as f(x) ≤ x for all x ∈ (R+\{0})n.
It follows by induction that y(s) ≥ z for all s. The case s = 0 is the basis

of induction (since zi ≤ 1 for all i). We have to show that y(s+1) ≥ z knowing

that y(s) ≥ z. It amounts to verify that y
(s+1)
k ≥ zk for the indices k where

y
(s+1)
k < y

(s)
k . For such indices we have

y
(s+1)
k =

∑
j

gkjy
(s)
j ≥

∑
j

gkjz
(s)
j ≥ zk.

As the sequence {y(s)}s≥0 is nonincreasing and bounded from below, it has
a limit which we denote by y. As f is continuous, this limit satisfies f(y) = y,
which by the definition of f implies that

∑
j gij

yj
yi
≥ 1 for all i.

We now show by induction that gij
y
(s)
j

y
(s)
i

≤ 1, for all i 6= j and s. Denote by

Is the set of indices i where
∑
j gijy

(s)
j < y

(s)
i . Thus y

(s+1)
i =

∑
j gijy

(s)
j and

y
(s+1)
i < y

(s)
i for i ∈ Is, while y

(s+1)
i = y

(s)
i for i /∈ Is.

Observe that s = 0 is the basis of induction, so we assume that the claim
holds for s and we have to prove it for s + 1. For i, j /∈ Is the inequality

gij
y
(s+1)
j

y
(s+1)
i

≤ 1 holds trivially. If i ∈ Is then

gij
y

(s+1)
j

y
(s+1)
i

≤ gij
y

(s)
j

y
(s+1)
i

= gijy
(s)
j (
∑
k

giky
(s)
k )−1 ≤ 1

(where the last inequality follows since gijy
(s)
j is just one of the nonnegative

terms of the sum in the denominator).

Finally if i /∈ Is and j ∈ Is: then we have gij
y
(s+1)
j

y
(s+1)
i

< gij
y
(s)
j

y
(s+1)
i

= gik
y
(s)
j

y
(s)
i

≤ 1.
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Thus the inequalities gij
y
(s)
j

y
(s)
i

≤ 1 hold for all i 6= j and s, and this implies

that for the limit point y, all the inequalities gij
yj
yi
≤ 1 hold as well. The case

i = j is trivial since the inequality gii
yi
yi

= gii ≤ 1 holds for all i.
Let D be the diagonal matrix with dii = yixi for all i. For the entries cij of

C = D−1AD we have cij ≤ 1 for all i, j and
∑
j cij ≥ 1 for all i so the theorem

is proved. �

Denote by A[−1] = (a
[−1]
ij ) the Hadamard inverse of A ∈ Rn×n+ :

a
[−1]
ij =

{
1
aij
, if aij > 0,

0, if aij = 0.

Observe that µ(A[−1]) = (ν(A))−1 (however, there is no such inversion for the
Perron root), and let us formulate the following corollary of Theorem 2.8.

Corollary 2.9. Let A ∈ Rn×n+ be irreducible. The following are equivalent:

(i) 1
a ∈ [ 1

ν(A) , ρ(A[−1])];

(ii) ∃x > 0 such that for C = X−1AX with X = diag(x) we have that cij ≥ a
for all i, j. and

∑
j
a
cij
≥ 1 for all i.

Proof: The corollary follows by elementwise inversion of the nonzero entries
and applying Theorem 2.8. �

3. Nonnegative reducible matrices

Here we characterize Perron roots of nonnegative matrices with prescribed
row sums and prescribed graph. Section 3.1 is devoted to sunflower graphs,
which will be used in the proof of the main result. Section 3.2 contains the
main result and example.

3.1. Sunflowers

We introduce the following definition, inspired by description of the Howard
algorithm in [9] and [15, Chapter 6].

Definition 3.1. Let G be a weighted graph. A subgraph G̃ of G is called a
sunflower subgraph of G if the following conditions hold:

(i) If a node in G has an outgoing edge then it has a unique outgoing edge in
G̃;

(ii) Every edge in G̃ has the same weight as the corresponding edge in G.

9



It is easy to see ([15]) that such a digraph can be decomposed into several
isolated components, each of them either acyclic or consisting of a unique cycle
and some walks leading to it. A sunflower subgraph G̃ of G is called a simple
γ-sunflower subgraph of G, if γ is the unique cycle of G̃. The set of all sunflower
subgraphs of the weighted digraph G(B), with full node set 1, . . . , n, will be
denoted by S(B).

Denoting by µ(G) the maximal cycle mean of a subgraph G ⊆ G(B), we
introduce the following parameters:

M(B) := max
G∈S(B)

µ(G), m(B) := min
G∈S(B)

µ(G). (14)

Lemma 3.2. Let G be a strongly connected graph. Then, for any cycle γ of G
there exists a simple γ-sunflower subgraph of G.

Proof: Let {1, . . . , n} be the nodes of G. Suppose that {1, . . . , k} are the nodes
in γ, and k + 1, ..., n are the rest of the nodes.

Observe first that we can construct a simple γ-sunflower on nodes 1, . . . , k:
this is just the cycle γ itself.

The proof is by contradiction. Assume that a simple γ-sunflower G̃ can be
constructed for a subgraph induced by the set of nodes M , which contains the
nodes 1, . . . , k and is a proper subset of {1, . . . , n}, and that M is a maximal
such set. However, since G is connected, there is a walk W from {1, . . . , n}\M
to M , and we can pick the last edge of that walk and its last node before
it enters M . Adding that node and that edge to G̃ we increase it while it
remains a simple γ-sunflower (of a subgraph induced by a larger node set). The
contradiction shows that we can construct a simple γ-sunflower of G. �

Let us also recall the following.

Lemma 3.3. Let A be a nonnegative square matrix such that the digraph asso-
ciated with A is a sunflower graph. Then ρ(A) = µ(A).

Proof: Clearly, the cycles of G(A) are exactly the nontrivial classes of the
Frobenius Normal Form. Hence it suffices to observe that ρ(A) = µ(A) if G(A)
is a Hamiltonian cycle γ. Indeed, we can set xi = 1 for any i ∈ γ and then
calculating all the rest of coordinates from the equalities aijxj = µ(A)xi for
aij 6= 0. This computation does not lead to contradiction, since µ(A) is the
cycle mean of γ. �

The following proposition expresses m(B) and M(B) in terms associated
with the Frobenius normal form.

Proposition 3.4. Let B be a nonnegative matrix. Then

M(B) = µ(B), m(B) = max
Niis final

ν(Bi). (15)
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Proof:

M(B): It is obvious from (14) that M(B) ≤ µ(B). The reverse inequality
M(B) ≥ µ(B) follows since we can take a cycle α of G(B) whose cycle mean
equals to µ(B) and construct a sunflower subgraph of G(B) that contains α as
one of its cycles.

m(B): It is obvious from (14) that m(B) ≥ max
Niis final

ν(Bi), since any sunflower

subgraph of B contains a cycle in every nontrivial final class. So we show that
m(B) ≤ max

Niis final
ν(Bi). For this, in each submatrix Bi corresponding to a final

class we take a cycle αi whose mean value is ν(Bi) and using Lemma 3.2 build
a simple αi sunflower of the strongly connected component associated with
Bi. Unite all these sunflowers. If Bi is not final then it has access to another
class from some node ki. In this case build a spanning tree on the nodes of
Bi, directed to ki, and for ki choose an edge going to another class. Finally,
for each trivial node of Bi we choose an arbitrary outgoing edge if it exists.
Adjoin these spanning trees and outgoing edges to the above union of simple
sunflowers. This leads to a sunflower subgraph G of G(B), for which we have
µ(G) = max

Niis final
ν(Bi), hence m(B) ≤ max

Niis final
ν(Bi) and the required equality

follows. �

Remark 3.5. Observe that m(B) = 0 if and only if all final classes of B are
trivial.

A sunflower subgraph which has cycles only in the final classes of G(B)
will be called thin. In the proof of Proposition 3.4 we actually established the
following result.

Lemma 3.6. Let G be a graph where each node has an outgoing edge and let
Gi for i = 1, . . . , q be the nontrivial final components of G.
For each collection of cycles αi ∈ Gi for i = 1, . . . , q, there is a (thin) sunflower
subgraph of G whose cycles are α1, . . . , αq.
If all final components of G are trivial then there exists an acyclic sunflower
subgraph of G (i.e., a directed forest).

3.2. Range of the Perron root

For a row uniform nonnegative matrix B, denote

η(B) := {ρ(A) : A ∈ Rn×n+ , Aux(A) = B}. (16)

We are going to extend Theorem 2.6 to include the reducible case and de-
scribe η(B) for a general row uniform nonnegative matrix B.

Theorem 3.7. Let B be a nonnegative row uniform matrix.

(i) η(B) ⊆ [m(B),M(B)].
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(ii) M(B) ∈ η(B) if and only if there is at least one final class Bi with µ(Bi) =
ν(Bi) = M(B).

(iii) If m(B) > 0 then m(B) ∈ η(B) if and only if µ(Bi) = ν(Bi) = m(B)
for all final (nontrivial) classes Ni attaining the maximum in (15). If
m(B) = 0 then m(B) ∈ η(B) of and only if G(B) is acyclic, in which case
η(B) = {0}.

(iv) If M(B) = m(B) then η(B) = {m(B)}.

(v) If M(B) > m(B) then (m(B),M(B)) ⊆ η(B).

Proof: Throughout the proof, let A be such that Aux(A) = B. Let Ai and
Bi for i = 1, . . . ,m be the classes of the Frobenius normal form of A and B
respectively, and let Ni be the corresponding node sets (or classes).

(i): We have to show that ρ(A) ∈ [m(B),M(B)]. Note that for any class Ai of
A we have Aux(Ai) ≤ Bi, and Theorem 2.6 implies that ρ(Ai) ≤ µ(Bi), but we
do not have ρ(Ai) ≥ ν(Bi) in general. However, Aux(Ai) = Bi holds for a final
class, and hence ν(Bi) ≤ ρ(Ai) ≤ µ(Bi) for any final class.

With above considerations, the inequality ρ(A) ≤M(B) follows sinceM(B) =
µ(B) and ρ(Ai) ≤ µ(Bi) for all classes. To show that ρ(A) ≥ m(B) we first de-
fine matrix Ã formed from A by zeroing out all the entries except for the entries
in final classes, and we similarly define B̃ = Aux(Ã). Then we have ρ(A) ≥ ρ(Ã)
by monotonicity of the spectral radius. Since m(B) = max

Niis final
ν(Bi) by (15)

and ρ(Ai) = ρ(Ãi) ≥ ν(B̃i) = ν(Bi) for each final class we obtain that ρ(A) ≥
ρ(Ã) ≥ m(B), hence the claim.

(ii): When G(B) is acyclic the proof of (ii) is trivial. If G(B) is not acyclic then
M(B) = µ(B) > 0 and if ρ(Ai) = µ(B) then Ai must be nontrivial. We first
argue that ρ(Ai) = M(B) is impossible if Ai has access to other classes. Indeed,
if there is such access then we only have Aux(Ai) ≤ Bi with strict inequalities
in some rows. This implies that we can find A′i such that Aux(A′i) = Bi and
A′i ≥ Ai, with strict inequalities in the same rows. But then we have ρ(Ai) <
ρ(A′i) ≤ µ(Bi) so ρ(Ai) = µ(B) is impossible. Thus ρ(Ai) = µ(B) can be
attained only in a final class, which happens if and only if ρ(Ai) = µ(Bi), and
by Theorem 2.6, if and only if µ(Bi) = ν(Bi) = µ(B) for one such class.

(iii): In the case when m(B) = 0 but B has at least one nontrivial class Bi, we
have ρ(Ai) > 0 and hence ρ(A) > 0 for any A such that Aux(A) = B. Therefore
in this case m(B) = 0 ∈ η(B) if and only if all classes of B are trivial (i.e., G(B)
is acyclic).

If m(B) > 0, we first show that the given condition is necessary: if ν(Bi) <
µ(Bi) for at least one of these final classes then we have ν(Bi) < ρ(Ai) < µ(Bi)
by Theorem 2.6, hence m(B) < ρ(Ai) ≤ ρ(A), so m(B) = ρ(A) does not
hold. Following the proof of Proposition 3.4, we can construct a thin sunflower
subgraph of G(B) with the cycles attaining ν(Bi) in all final classes. Denote
the matrix associated with this subgraph by C and the submatrices extracted
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from the node sets Ni by Ci. For each submatrix Ci with Ni not final, we
have ρ(Ci) = 0. By the continuity of Perron root we can find a small enough
ε such that ρ((1 − ε)Ci + εAi) is smaller than m(B) for all classes that are
not final and for all classes that are final but have ν(Bi) < m(B). This is
while Aux((1 − ε)C + εA) = B and, by Theorem 2.6, ρ((1 − ε)Ci + εAi) =
m(B) for all classes where the maximum in (15) is attained. This implies that
ρ((1− ε)C + εA) = m(B), hence the claim.

(iv): By part (i), ρ(A) can be only equal to m(B) = M(B). However, the set of
A such that Aux(A) = B is nonempty for any row uniform B, hence the claim.

(v): Let us first observe that by definition of m(B) and M(B) (14), there
exist matrices A and A whose associated graphs are the sunflower subgraphs of
G(B) attaining the maximum and the minimum value of µ(G) over all possible
sunflower subgraphs of G(B). By Lemma 3.3 we have that ρ(A) = m(B) and
ρ(A) = M(B).

Now we argue that there exists A0 with Aux(A0) = B and ρ(A0) arbitrarily
close to m(B) = ρ(A). Indeed, let D be any matrix with Aux(D) = B, and
consider the family of matrices Cε = (1 − ε)A + εD for ε > 0. Then (for any
ε > 0) we have Aux(Cε) = B and since ρ(Cε) is a continuous function of ε it
follows that limε→0 ρ(Cε) = ρ(A). Similarly, there exists A1 with Aux(A1) = B
and ρ(A1) arbitrarily close to M(B) = ρ(A).

Thus for each ε we have some A0 and A1 with Aux(A0) = Aux(A1) = B
and ρ(A0) < m(B) + ε and ρ(A1) > M(B) − ε. For λ, where 0 < λ < 1, let
Aλ := λA1 + (1−λ)A0 interpolate between A0 and A1. Since Aux(Aλ) = B for
each λ and ρ(Aλ) is continuous in λ, the claim follows. �

As an immediate corollary we obtain the following result in the irreducible
case.

Corollary 3.8. Let B be an irreducible nonnegative row uniform matrix. Then

(i) If ν(B) < µ(B) then η(B) = (ν(B), µ(B)) .

(ii) If ν(B) = µ(B) then {ν(B)} = η(B) = {µ(B)}.

Example. Given an irreducible row uniform matrix B ∈ Rn×n+ and a con-
stant ρ ∈ (ν(B);µ(B)) = (m(B);M(B)), we describe a method for constructing
a matrix A such that Aux(A) = B and ρ(A) = ρ. Take two simple γ - sun-
flowers: one where γ has cycle mean equal to µ(B), and the other where γ
has cycle mean equal to ν(B). Denote by A1 the matrix associated with the
first sunflower, and by A2 the matrix associated with the second sunflower. We
have ρ(A1) = µ(B) and ρ(A2) = ν(B). For the convex combinations of these
matrices, we have that ρ(Aλ), where Aλ := (1−λ)A1 +λA2 and 0 ≤ λ ≤ 1, will
assume all values between ν(B) and µ(B). This follows from the continuity of
spectral radius as a function of λ(as in the more general construction above).
The value of λ for which ρ(Aλ) = ρ, can be found from the system A(λ)x = ρx,
which has n+ 1 variables (n components of x and the parameter λ). However,
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since x can be multiplied by any scalar, one of the coordinates of x can be cho-
sen equal to 1. Then, for at least one of such choices, the existence of solution
is guaranteed.

For example, consider

B =


0 8 8 0 8
2 0 0 2 2
2 0 0 0 0
0 3 0 3 3
0 3 0 0 0

 (17)

We see that the cycle (1, 2) is critical, with the cycle mean µ(B) = 4, and
the cycle (2, 5) is anticritical with the cycle mean ν(B) =

√
6. For the matrices

A1 and A2 assiciated with the corresponding sunflower graphs, we can take

A1 =


0 8 0 0 0
2 0 0 0 0
2 0 0 0 0
0 3 0 0 0
0 3 0 0 0

 , A2 =


0 8 0 0 0
0 0 0 0 2
2 0 0 0 0
0 3 0 0 0
0 3 0 0 0

 (18)

Equation Aλx = ρx, where we put x1 = 1, can be written as
0 8 0 0 0

2− y 0 0 0 y
2 0 0 0 0
0 3 0 0 0
0 3 0 0 0




1
x2

x3

x4

x5

 = ρ


1
x2

x3

x4

x5

 , (19)

where y ∈ [0, 2] (so that y = 2λ). Observe that Aλ is irreducible, so the existence
of a solution with x1 = 1 (as well as a solution with any other component set
to 1) is guaranteed.

System (19) can be solved explicitly. Indeed, from the first equation of this
system we have 8x2 = ρ so x2 = ρ/8, from the third equation we have 2 = ρx3

so x3 = 2/ρ, from the fourth and the fifth equation we have 3x2 = 3ρ/8 =
ρx4 = ρx5 so x4 = 3/8 = x5. Using the second equation of the system, we

obtain 2− y + (3/8)y = ρx2 = (ρ2)/8. Thus y = 16−ρ2
5 .

4. Complex matrices

In Section 4.1 we characterize the set of eigenvalues of complex matrices
with prescribed graph and prescribed row sums of the moduli of their entries.

In Section 4.2, a new proof of the Camion-Hoffman theorem is presented.

4.1. Complex matrices with prescribed row sums of moduli

Definition 4.1. For B a row uniform nonnegative matrix, let σ(B) denote the
set
σ(B) =

{
λ : ∃A ∈ Cn×n, Aux(|A|) = B, det(A− λI) = 0

}
.
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Here |A| denotes the matrix whose entries are the moduli of (complex) entries
of A.

We first consider the conditions when 0 ∈ σ(B). In what follows, the imag-
inary number “i” is denoted by =. By a generalized diagonal product of B we
mean a product of the form

∏n
i=1 biσ(i) where σ is an arbitrary permutation of

{1, . . . , n}.

Theorem 4.2. Let B be a row uniform nonnegative matrix. Then the following
are equivalent:

(i) 0 ∈ σ(B).

(ii) The number of generalized nonzero diagonal products of B is not 1.

Proof: Suppose the number of generalized nonzero diagonal products of B is
one. Let A be such that Aux(A) = B. The determinant of A equals the signed
sum of the nonzero generalized diagonal products of A. Since all but one of
the generalized diagonal products of A are zero, we have det(A) 6= 0. Thus
0 /∈ σ(B).

Suppose that B has no generalized nonzero diagonal products and let A be
such that Aux(A) = B. Since all the generalized diagonal products of A are
zero, we have det(A) = 0 and 0 ∈ σ(B).

Suppose that B has two or more non zero generalized diagonal products.
Let us permute the columns of B in order to put one of the generalized diagonal
products on the (main) diagonal. In other words, consider BP where P is
a permutation matrix and all diagonal entries of BP are nonzero. We have
Aux(A) = B if and only if Aux(AP ) = BP , and det(A) = det(AP ), therefore
0 ∈ σ(B) if and only if 0 ∈ σ(BP ). As BP has at least one nonzero diagonal
product different from the main diagonal, the Frobenius normal form of BP has
a nontrivial diagonal block of dimension greater than 1.

Denote the index set of that block by M , and let us take any row uniform
nonnegative matrix D = (dkl) such that Aux(D) = BP . For each k ∈M , denote
by nk the number of outgoing edges of the kth node in M in the associated
digraph of BP that go to the nodes in M . As the block is irreducible and has
all diagonal entries nonzero, we have nk > 1. Let tk be a bijection between the
outgoing edges of k and {1, 2, . . . nk}, and define matrix C = (ckl) by

ckl =

{
dkl exp(= tk(l)2π

nk
), if k, l ∈M and dkl 6= 0

dkl, otherwise.
(20)

Then Aux(|C|) = BP . In addition CMMv = 0 where CMM is the principal
submatrix of C extracted from rows and columns with indices in M , and v is the
vector with all components equal to 1. This implies that det(C) = det(CMM ) =
0 so 0 ∈ σ(BP ) and 0 ∈ σ(B).

�

We now describe σ(B)\{0} starting from the irreducible case.
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Definition 4.3. An irreducible matrix B is called unicyclic if G(B) consists of
a single Hamiltonian cycle, and multicyclic otherwise.

Theorem 4.4. Let B be a row uniform nonnegative irreducible matrix.

(i) If B is unicyclic then σ(B) = {s : |s| = µ(B)};

(ii) If B is multicyclic and ν(B) < µ(B) then
σ(B) \ {0} = {s : 0 < |s| < µ(B)};

(iii) If B is multicyclic and ν(B) = µ(B) then
σ(B) \ {0} = {s : 0 < |s| ≤ µ(B)}.

Proof: (i): In this case, all complex matrices A satisfying Aux(|A|) = B are
formed by multiplying the entries of B (that is, the entries of its only cycle) by
some complex numbers of modulus 1. The claim follows.

(ii), (iii): We first show that σ(B) is contained in the above mentioned
intervals. For that we first recall a known result of Frobenius (see e.g. [3], p.31,
Theorem 2.14) that for any square complex matrix A, we have

ρ(A) := max{|λ| > 0: det(A− λI) = 0} ≤ ρ(|A|). (21)

As Aux(|A|) = B, Theorem 3.7 implies that ρ(|A|) ≤ µ(B) if µ(B) ∈ η(B) and
ρ(|A|) < µ(B) if µ(B) /∈ η(B). Combining these inequalities with (21), we have
the desired inclusion.

We are left to show that each number in the intervals can be realized as an
eigenvalue of a complex matrix A with Aux(|A|) = B. Select λ ∈ (0, µ(B)) if
µ(B) /∈ η(B) or λ ∈ (0, µ(B)] if µ(B) ∈ η(B).

If λ ∈ η(B) where η(B) = {µ(B)} if ν(B) = µ(B) or η(B) an interval whose
interior is (ν(B), µ(B)), then there is an irreducible nonnegative matrix E such
that Aux(E) = B with λ = ρ(A).

In the remaining case λ ≤ ν(B) we will construct a row uniform matrix H
so that ν(H) ≤ λ ≤ µ(H). Since B has at least two cycles and it is irreducible,
there exists a row with index belonging to one of those cycles and with at least
two nonzero elements one of which must be on that cycle. Let t be the index
of such row. Consider a cycle α going through that row, with cycle mean c and
length `. If we have c ≤ λ, it follows that ν(B) ≤ λ ≤ µ(B) and we select
H = B. If c > λ then we multiply all entries of row t by z such that c ·z1/` = λ.
Let H be the resulting matrix, so we have 0 < ν(H) ≤ λ ≤ µ(H).

If ν(H) < µ(H) ≤ ν(B) < µ(B) and λ = µ(H) then µ(H) is the new mean
value of the cycle α, which previously had c > λ. In this case, the corresponding
factor z < 1 can be slightly increased so that ν(H) < λ < µ(H) is satisfied. If
ν(H) < µ(H) and λ = ν(H), then multiplying the row t by a value 1 − ε for
small enough ε we can also ensure that ν(H) < λ < µ(H).

Thus we can assume that ν(H) = λ = µ(H) or ν(H) < λ < µ(H), where H
is obtained from B by multiplying the row t with at least two nonzero entries
by a nonnegative scalar z ≤ 1. Then by Theorem 3.7, there is a nonnegative
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matrix E with an eigenvector v such that Ev = λv and Aux(E) = H, where
row t has at least two nonzero entries that we denote by etk and etl. Since E
is irreducible, all components of v are positive. We now modify row t of E to
form a matrix C such that Aux(C) = B and Cv = λv. Let x be such that∑

s 6=k,l

ets +
√
e2
tk + (x/vk)2 +

√
e2
tl + (x/vl)2 = btk. (22)

It can be observed that this equation can be explicitly resolved with respect to
x.

crs =


etk −=(x/vk), if r = t, s = k;

etl + =(x/vl), if r = t, s = l;

ers, otherwise.

Then Aux(|C|) = B and Cv = λv, so λ is an eigenvalue of C. The claim
follows.

�

We call a class of complex matrices regular if all matrices in the class are
nonsingular.

Corollary 4.5. Let B be an irreducible row uniform nonnegative multicyclic
matrix with all diagonal elements equal to 0. Let Γ(B) consist of all complex
matrices I −A with Aux(|A|) = B.

(i) If µ(B) < 1 then Γ(B) contains only regular matrices.

(ii) If µ(B) = 1 then Γ(B) contains only regular matrices
if and only if ν(B) < 1.

(iii If µ(B) > 1 then Γ(B) contains a singular matrix.

Proof: Γ(B) contains a singular matrix if and only if 1 ∈ σ(B). By Theo-
rem 4.4 this happens if and only if either µ(B) > 1 or µ(B) = 1 = ν(B). This
establishes all the claims. �

Remark 4.6. As noted in the abstract and introduction of [4], the theorems in
that paper imply Brualdi’s [5] conditions for the non-singularlty of matrices and
show that they are sharp. There is no essential difference or simplification in
assuming that the main diagonal of the matrices considered there is the identity,
and in that case the spectral content of [4] Theorems 1.1 – 1.4 is recaptured by
Corollary 4.5 via standard Geršgorin theory, e.g.[20]. More precisely, Corollary
4.5(i) corresponds to Theorem 1.1 of [4], 4.5(ii) corresponds to Theorems 1.2
and 1.3, and 4.5(iii) corresponds to Theorem 1.4.

For A ∈ Rn×n+ , index set K and row uniform matrix B we write Aux(A) �K
B when the following conditions hold.

(a) For Aux(A) = B̃ = (b̃ij) we have b̃ij = 0⇔ bij = 0 for all i, j.
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(b) For all i ∈ K we have b̃ij < bij for all j where bij > 0.

(c) For all i /∈ K and all j we have b̃ij = bij .

We will also need the following variation of Definition 4.1.

Definition 4.7. For B a row uniform matrix, let σ̃K(B) denote the set σ̃K(B) ={
λ : ∃A ∈ Cn×n, Aux(|A|) �K B, det(A− λI) = 0

}
.

The following corollary of Theorem 4.4 is immediate.

Corollary 4.8. Let B be a row uniform nonnegative irreducible matrix. Then
for any non-empty index set K,
σ̃K(B)\{0} = {s : 0 < |s| < µ(B)}.

Proof: Let us analyze the following three cases.
Case 1: µ(B) > ν(B). There exists an A such that µ(Aux(|A|) is arbitrarily

close to µ(B) and ν(Aux(|A|) < µ(Aux(|A|), and for each A with Aux(|A|) �K
B we have ν(Aux(|A|) < µ(B).

Case 2: µ(B) = ν(B) and each cycle contains an index from K. In this case
µ(Aux(|A|), where Aux(|A|) �K B, assumes all values in (0, µ(B)).

Case 3: µ(B) = ν(B) and there is a cycle avoiding the nodes with indices
in K. In this case µ(Aux(|A|)) = µ(B) for all A with Aux(A) �K B, but
ν(Aux(|A|)) < µ(Aux(|A|)) for all such matrices.

In all three cases we obtain the claim by applying Theorem 4.4 to all Aux(|A|)
satisfying Aux(|A|) �K B. �

We are now ready to deal with the general reducible case.

Theorem 4.9. Let B be a row uniform nonnegative matrix, and let

M̃(B) := max{µ(Bi) where

Bi is a transient class or a final multicyclic class of B}.
(23)

Then

(i) If M̃(B) is attained at some final multicyclic class Bs with ν(Bs) = µ(Bs)
then

σ(B)\{0} = {s : 0 < |s| ≤ M̃(B)}∪
∪i {s : |s| = µ(Bi), Bi is a final unicyclic class and µ(Bi) > M̃(B)}.

(24)

(ii) Otherwise,

σ(B)\{0} = {s : 0 < |s| < M̃(B)}∪
∪i {s : |s| = µ(Bi), Bi is a final unicyclic class and µ(Bi) ≥ M̃(B)}.

(25)
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Proof: It is known that λ is an eigenvalue of a matrix A ∈ Cn×n if and only
if det(A − λI) = 0, which implies that the spectrum of A ∈ Cn×n (i.e., the
set of eigenvalues of A) is the union of spectra of its nontrivial classes in the
Frobenius normal form. Furthermore, if a principal submatrix As corresponds to
a transient class then it can be any matrix satisfying Aux(|As|) �Ks Bs, where
Ks is the (non-empty) set of indices of all nodes in this transient class that
have a connection to another class. Observe that the entries in different rows of
matrices with the same Aux(|A|) vary independently and hence the same is true
about the sets of rows belonging to different classes. Therefore σ(B)\{0} can
be found as union of σ(Bi)\{0} over all final classes Bi and σ̃Ks

(Bs)\{0} over
all transient classes Bs, for some non-empty index sets Ks. Using Theorem 4.4
and Corollary 4.8 and taking the above mentioned union, it can be verified that
σ(B)\{0} is as claimed. �

Example. To illustrate the last theorem, let us consider the following row
uniform matrices:

B =


5 0 0 0 0
4 0 4 0 0
0 4 0 0 0
3 0 0 3 3
0 3 0 3 3

 , C =


5 0 0 0 0
0 0 4 0 0
0 4 0 0 0
0 0 0 3 3
0 0 0 3 3


That is, C is formed from B by cutting all connections between the classes.

The moduli of the eigenvalues in σ(B) assume all the values in (0, 4) ∪ {5}.
Note that M̃(B) = max{3, 4}, but 4 /∈ σ(B) because the class extracted from
rows and columns 2 and 3 is transient (b12 > 0). Therefore condition (ii) of the
Theorem 4.9 is used in computing σ(B).

The moduli of eigenvalues in σ(C) assume all values in (0, 3] ∪ {4} ∪ {5}.
Here M̃(C) = 3, which is the maximum cycle mean of the only final class which
is multicyclic. As the means of all cycles in that class are equal to each other,
the value of M̃(C) belongs to σ(C).

4.2. Camion-Hoffman theorem

We now will apply Theorem 2.8 and Theorem 4.9 to provide a new proof for
a theorem of Camion and Hoffman [8].

Let us first recall the following known facts and a definition:

Lemma 4.10 ([8]). Let a1, . . . an be nonnegative numbers such that each num-
ber does not exceed the sum of other numbers. Then there exist complex numbers
c1, . . . , cn such that |ci| = ai for i = 1, . . . , n and c1 + . . .+ cn = 0.

Corollary 4.11 ([8]). Let the entries of A = (aij) ∈ Rn×n+ satisfy aii = 1,∑
j 6=i aij ≥ 1 for all i and aij ≤ 1 for all i, j. Then there exists a complex

matrix C with |C| = A and det(C) = 0.
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Proof: Since the condition of Lemma 4.10 are satisfied for ai1, . . . , ain for all
i, there exists a complex matrix C with |C| = A such that

∑
j cij = 0 for all i.

This implies det(C) = 0. �

Definition 4.12. A matrix A = (aij) ∈ Rn×n+ is called strictly diagonally dom-
inant if aii >

∑
j 6=i aij for all i.

We will investigate the following matrix class:

Definition 4.13. For A ∈ Rn×n+ define Ω(A) = {E : |eij | = aij 1 ≤ i, j ≤ n}.

Theorem 4.14 (Camion-Hoffman). For A ∈ Rn×n+ the following are equiv-
alent:

(i) Ω(A) does not contain a singular matrix;

(ii) There exists a permutation matrix P and a diagonal matrix D such that
PAD is strictly diagonally dominant;

(iii) There exists a permutation matrix P and nonsingular diagonal matri-
ces D1, D2 such that all diagonal entries of D1PAD2 are equal to 1 and
µ(Aux(D1PAD2 − I)) < 1.

Proof: (i)⇒ (ii): Assume that Ω(A) is regular. Let P be a permutation matrix
such that the diagonal product of PA is greater then or equal to any generalized
diagonal product of A. Since A is nonsingular the diagonal elements of E = PA
are nonzero. Let D be the diagonal matrix with entries equal to the inverse of
the corresponding diagonal elements of PA. Since all diagonal entries of PAD
are equal to 1, for any cycle α we can find a generalized diagonal product of
PAD equal to the product of the entries of α. Since any generalized diagonal
product of PAD is less than or equal to 1, it follows that µ(PAD) = 1.

We will now establish that ρ(PAD − I) < 1. The proof is by contradiction.
Assume that ρ(PAD−I) ≥ 1. Then PAD−I has a class B such that ρ(B) > 1
and for all i we have bii = 0. Since µ(PAD − I) ≤ 1 we also have µ(B) ≤ 1.
Applying Theorem 2.8 to B, we obtain a diagonal nonnegative matrix Y such
that matrix E := Y −1(B + I)Y has entries satisfying 0 ≤ eij ≤ 1 and eii = 1
for all i, j, and

∑
k 6=i eik ≥ 1 for all i. By Corollary 4.11 there is a matrix

H = (hij) with complex entries satisfying |H| = E and det(H) = 0. Replacing
the class B + I in F by Y HY −1 we obtain a matrix G with det(G) = 0 and
|G| ∈ Ω(PAD). As P is a permutation matrix and D diagonal, there is a
bijective correspondence between Ω(PAD) and Ω(A) in which the singularity
and nonsingularity are preserved. This contradicts that Ω(A) does not contain
a singular matrix and hence ρ(PAD − I) < 1.

Since ρ(PAD−I) < 1, there exists a diagonal matrix Z such that Z−1(PAD−
I)Z has all row sums strictly less than 1, see [3, Chapter 6] or [17] for a detailed
argument. (Such a diagonal matrix Z can be constructed using Perron eigen-
vectors of nontrivial classes.) As all row sums in the matrix Z−1(PAD− I)Z =
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Z−1PADZ − I are strictly less than 1, it follows that the matrix PADZ is
strictly diagonally dominant, with P a permutation matrix and DZ a diagonal
matrix, as required.

(ii)⇒ (iii) If PAD is strictly diagonally dominant then there is a digonal
matrix D1 such that the diagonal entries of D1PAD are equal to 1 and the row
sums of D1PAD−I are strictly less than 1. As each entry in Aux(D1PAD−I)
is strictly less than 1, we also have µ(Aux(D1PAD − I)) < 1 as claimed.

(iii)⇒ (i): The proof is by contradiction. Assume that (iii) holds but (i)
does not hold. That is, assume that there exists a permutation matrix P and
nonsingular diagonal matrices D1, D2 such that µ(Aux(D1PAD2−I)) < 1, and
that (in contradiction with (i)) there exists C ∈ Ω(A) with det(C) = 0. Then
µ(Aux(D1P |C|D2 − I)) = µ(Aux(D1PAD2 − I)) < 1, and by Theorem 4.9 we
have 1 /∈ σ(Aux(D1PAD2 − I)). However, we have det(D1PCD2) = 0, and
we can multiply the rows of D1PCD2 by some complex numbers with moduli
1 to obtain a matrix with zero determinant and with all diagonal entries equal
to −1. Adding the identity matrix to this matrix we obtain a matrix in the
class Ω(D1PAD2 − I), for which 1 is an eigenvalue. The set of eigenvalues
of matrices in Ω(D1PAD2 − I) is a subset of σ(Aux(D1PAD2 − I)), so 1 ∈
σ(Aux(D1PAD2 − I)), a contradiction. �

Let us also reformulate the Camion-Hoffman theorem in terms of M -matrices
and comparison matrices. Recall that a real matrix B is a nonsingular M -matrix
ifB = ρI−C where C is a nonnegative matrix and the Perron root of C is strictly
less than ρ (see [3] for many other equivalent definitions). For a nonnegative
matrix A ∈ Rn×n+ , its comparison matrix E = comp(A) has entries eii = aii for
i = 1, . . . , n and eij = −aij for i 6= j.

Theorem 4.15. For a nonnegative matrix A, the following are equivalent:

(i) Ω(A) does not contain a singular matrix,

(ii) For P a permutation matrix corresponding to the greatest generalized di-
agonal product of A, the matrix comp(PA) is a nonsingular M -matrix.
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