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Abstract

We examine when a matrix whose elements are differentiable functions in one vari-
able commutes with its derivative. This problem was discussed in a letter from Issai
Schur to Helmut Wielandt written in 1934, which we found in Wielandt’s Nachlass.
We present this letter and its translation into English. The topic was rediscovered
later and partial results were proved. However, there are many subtle observations
in Schur’s letter which were not obtained in later years. Using an algebraic setting,
we put these into perspective and extend them in several directions. We present in
detail the relationship between several conditions mentioned in Schur’s letter and we
focus in particular on the characterization of matrices called Type 1 by Schur. We
also present several examples that demonstrate Schur’s observations.
2000 Mathematics Subject Classification. 15A03, 15A27, 15A24, 15A16, 15A54
Key words. Differential field, triangularization, diagonalization, matrix functions,
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1 Introduction

What are the conditions that force a matrix of differentiable functions to commute with its
elementwise derivative? This problem, discussed in a letter from I. Schur to H. Wielandt
[32], has been discussed in a large number of papers [2, 3, 4, 7, 9, 11, 12, 17, 19, 21, 22,
23, 24, 27, 29, 31, 33, 34]. However, these authors were unaware of Schur’s letter and
did not find some of its principal results. A summary and a historical discussion of the
problem and several extensions thereof are presented by Evard in [14, 15], where the study
of the topic is dated back to the 1940s and 1950s, but Schur’s letter shows that it already
appeared in Schur’s lectures in the 1930s, if not earlier.

The content of the paper is as follows. In Section 2 we present a facsimile of Schur’s
letter to Wielandt and its English translation. In Section 3 we discuss Schur’s letter and we
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motivate our use of differential fields. In Section 4 we introduce our notation and reprove
Frobenius result on Wronskians. In Section 5 we discuss the results that characterize the
matrices of Type 1 in Schur’s letter and in our main Section 6 we discuss the role played by
diagonalizability and triangularizability of the matrix in the commutativity of the matrix
and its derivative. We also present several illustrative examples in Section 7 and we state
an open problem in Section 8.

2 A letter from Schur to Wielandt

Our paper deals with the following letter from Issai Schur to his PhD student Helmut
Wielandt. See the facsimile below. Translated into English, the letter reads as follows:

Lieber Herr Doktor! Berlin, 21.7.34
You are perfectly right. Already for 3 ≤ n < 6 not every solution of the equation

MM ′ = M ′M has the form

M1 =
∑
λ

fλCλ, (1)

where the Cλ are pairwise commuting constant matrices. One must also consider the type

M2 = (fαgβ), (α, β = 1, . . . n), (2)

where f1, . . . fn, g1, . . . , gn are arbitrary functions that satisfy the conditions∑
α

fαgα =
∑
α

f ′αgα = 0

and therefore also ∑
α

fαg
′
α = 0.

In this case we obtain
M2 = MM ′ = M ′M = 0.

In addition we have the type
M3 = φE +M2, (3)

with M2 of type (2). ∗ From my old notes, which I did not present correctly in my lectures, it
can be deduced that for n < 6 every solution of MM ′ = M ′M can be completely decomposed
by means of constant similarity transformations into matrices of type (1) and (3). Only
from n = 6 on there are also other cases. This seems to be correct. But I have not checked
my rather laborious computations (for n = 4 and n = 5).

I concluded in the following simple manner that one can restrict oneself to the case
where M has only one characteristic root (namely 0): If M has two different characteristic
roots, then one can determine a rational function N of M for which N2 = N but not

∗Note that E here denotes the identity matrix.
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N = φE. Also N commutes with N ′. It follows from N2 = N that 2NN ′ = N ′, thus
2N2N ′ = 2NN ′ = NN ′. This yields 2NN ′ = N ′ = 0, i.e., N is constant.

Now one can apply a constant similarity transformation to M so that instead of N one
achieves a matrix of the form [

E 0
0 0

]
.

This shows that M can be decomposed completely by means of a constant similarity trans-
formation.

One is led to type (2) by studying the case M2 = 0, rankM = 1. Already for n = 4
also the cases M2 = 0, rankM = 2, M3 = 0 need to be considered.

Type (1) is completely characterized by the property that M,M ′,M ′′, . . . are pairwise
commuting. This is not only necessary but also sufficient. For, if among the n2 coefficients
fαβ of M exactly r are linearly independent over the domain of constants, then one can
write

M = f1C1 + · · ·+ frCr,

(Cs a constant matrix), where f1, . . . , fr satisfy no equation
∑

α const fα = 0. Then

M (ν) = f
(ν)
1 C1 + · · ·+ f (ν)

r Cr, (ν = 1, . . . , r − 1).

Since the Wronskian determinant ∣∣∣∣∣∣∣
 f1 . . . fr
f ′1 . . . f ′r

...


∣∣∣∣∣∣∣

cannot vanish identically, one obtains equations of the form

Cs =
r−1∑
σ=0

φsσM
(σ).

If M,M ′,M ′′, . . . ,M (r−1) are pairwise commuting, then the same is true also for C1, . . . Cr
and thus M is of type (1). This implies furthermore that M belongs to type (1) if Mn is the
highest† power of M that equals 0. In the case n = 3 one therefore only needs to consider
type (2).

With best regards
Yours, Schur

†We think that Schur means lowest here.
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3 Discussion of Schur’s letter

This letter was found in Helmut Wielandt’s mathematical Nachlass when it was collected
by Heinrich Wefelscheid and Hans Schneider not long after Wielandt’s death in 2001. We
may therefore safely assume that Schur’s recent student Wielandt is the ”Herr Doktor” to
whom the letter is addressed. Schur’s letter begins with a reference to a previous remark
of Wielandt’s which corrected an incorrect assertion by Schur. We can only guess at this
sequence of events, but perhaps a clue is provided by Schur’s reference to his notes which
he did not present correctly in his lectures. Could Wielandt have been in the audience and
did he subsequently point out the error? And what was this error? Very probably it was
that every matrix of functions that commutes with its derivative is given by (1) (matrices
called Type 1), for Schur now denies this and displays another type of matrix commuting
with its derivative (called Type 2). He recalls that in his notes he claimed that for matrices
of size 5 or less every such matrix is of Type 1, 2 or 3, where Type 3 is obtained from Type
2 by adding a scalar function times the identity. This is not correct because there is also
the direct sum of a size 2 matrix of Type 1 and a size 3 matrix of Type 2, we prove this
below.

We do not know why Schur was interested in the topic of matrices of functions that
commute with their derivative, but it is probably a safe guess that this question came up
in the context of solving differential equations, at least this is the motivation in many of
the subsequent papers on this topic.

As one of the main results of his letter, Schur shows that an idempotent that commutes
with its derivative is a constant matrix and, without further explanation, concludes that
one can restrict oneself to matrices with a single eigenvalue. The latter observation raises
several questions. First, Schur does not say which functions he has in mind. Second,
his argument follows from a standard decomposition of a matrix by a similarity into a
direct sum of matrices provided that the eigenvalues of the matrix are functions of the type
considered. But this is not true in general, for example the eigenvalues of a matrix of
rational functions are algebraic functions. We wonder whether Schur was aware of this
difficulty and we shall return to it at the end of this section.

Then Schur shows a matrix of size n is of Type 1 if and only if it and its first n − 1
derivatives are pairwise commutative. His proof is based on a result of Frobenius [16] that
a set of functions is linear independent over the constants if and only if their Wronskian
determinant is nonzero. Frobenius, like Schur, does not explain what functions he has
in mind. In fact, Peano [28] shows that there exist real differentiable functions that are
linearly independent over the reals whose Wronskian is 0. This is followed by Bocher [5]
who shows that Frobenius’ result holds for analytic functions and investigates necessary
and sufficient conditions in [6]. A good discussion of this topic can be found in [8].

We conclude this section by explaining how our exposition has been influenced by some
of the observation above. As we do not know what functions Schur and Frobenius had in
mind, we follow [1] and some unpublished notes of Guralnick [18] and set Schur’s results
and ours in terms of differential fields (which include the field of rational functions and the
quotient field of analytic functions over the real or complex numbers). Since we do not
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know how Schur concludes that it is enough to consider matrices with a single eigenvalue,
we derive our results from standard matrix decomposition (our Lemma 9 below) which
does not assume that all eigenvalues lie in the differential field under consideration.

4 Notation and preliminaries

A differential field F is an (algebraic) field together with an additional operation (the
derivative), denoted by ′ that satisfies (a + b)′ = a′ + b′ and (ab)′ = ab′ + a′b for a, b ∈ F.
An element a ∈ F is called a constant if a′ = 0. It is easily shown that the set of constants
forms a subfield K of F with 1 ∈ K. Examples are provided by the rational functions over
the real or complex numbers and the meromorphic functions over the complex numbers.

In what follows we consider a (differential) field F and matrices M = [mi,j] ∈ Fn,n. The
main condition that we want to analyze is when M ∈ Fn,n commutes with its derivative,

MM ′ = M ′M. (4)

As M ∈ Fn,n, it has a minimal and a characteristic polynomial, and M is called non-
derogatory if the characteristic polynomial is equal to the minimal polynomial, otherwise
it is called derogatory. See [20].

In Schur’s letter the following three types of matrices are considered.

Definition 1 Let M ∈ Fn,n. Then M is said to be of

• Type 1 if

M =
k∑
j=1

fjCj,

where fj ∈ F, and Cj ∈ Kn,n, for j = 1, . . . , k, and the Cj are pairwise commuting;

• Type 2 if
M = fgT ,

with f, g ∈ Fn, satisfying fTg = fTg′ = 0;

• Type 3 if
M = hI + M̃,

with h ∈ F and M̃ is of Type 2.

Schur’s letter also mentions the condition that all derivatives of M commute, i.e.,

M (i)M (j) = M (j)M (i) for all nonnegative integers i, j. (5)

To characterize the relationship between all these properties, we first recall several results
from Schur’s letter and from classical algebra.
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Lemma 2 Let F be a differential field with field of constants K. Let N be an idempotent
matrix in Fn,n that commutes with N ′. Then N ∈ Kn,n.

Proof. (See Schur’s letter.) It follows from N2 = N that 2NN ′ = N ′. Thus 2NN ′ =
2N2N ′ = NN ′ and this implies that 0 = 2NN ′ = N ′.

Another important tool in our analysis will be the following result which in its original
form is due to Frobenius [16], see Section 3. We phrase and prove the result in the context
of differential fields.

Theorem 3 Consider a differential field F with field of constants K. Then y1, . . . , yr ∈ F
are linearly dependent over K if and only if the columns of the Wronski matrix

Y =


y1 y2 . . . yr
y′1 y′2 . . . y′r
...

...
. . .

...

y
(r−1)
1 y

(r−1)
2 . . . y

(r−1)
r

 ,
are linearly dependent over F.

Proof. We proceed by induction over r. The case r = 1 is trivial.
Consider the Wronski matrix Y and the lower triangular matrix

Z =


z 0 . . . 0

c2,1z
′ z . . . 0

...
...

. . .
...

cn,1z
(n−1) cn,2z

(n−2) . . . z

 ,
with ci,j appropriate binomial coefficients such that

ZY =


zy1 zy2 . . . zyr

(zy1)
′ (zy2)

′ . . . (zyr)
′

...
...

. . .
...

(zy1)
(n−1) (zy2)

(n−1) . . . (zyr)
(n−1)

 .
Since F is a differential field, we can choose z = y−11 and obtain that

ZY =


1 y−11 y2 . . . y−11 yr
0 (y−11 y2)

′ . . . (y−11 yr)
′

...
...

. . .
...

0 (y−11 y2)
(n−1) . . . (y−11 yr)

(n−1)

 .
It follows that the columns of Y are linearly dependent over F if and only if the columns
of  (y−11 y2)

′ . . . (y−11 yr)
′

...
. . .

...
(y−11 y2)

(n−1) . . . (y−11 yr)
(n−1)


10



are linearly dependent over F, which, by induction, holds if and only if (y−11 y2)
′, . . . , (y−11 yr)

′

are linearly dependent over K, i.e., there exist coefficients b2, . . . , br ∈ K, not all 0, such
that

b2(y
−1
1 y2)

′ + · · ·+ br(y
−1
1 yr)

′ = 0.

Integrating this identity, we obtain

b2(y
−1
1 y2) + · · ·+ br(y

−1
1 yr) = −b1

for some integration constant b1 ∈ K, or equivalently

b1y1 + · · ·+ bryr = 0.

Theorem 3 implies in particular that the columns of the Wronski matrix Y are linearly
independent over F if and only if they are linearly independent over K.

Remark 4 Theorem 3 is discussed from a formal algebraic point of view, which however
includes the cases of complex analytic functions and rational functions over a field, since
these are contained in differential fields. Necessary and sufficient conditions for Theorem 3
to hold for other functions were proved in [6] and discussed in many places, see, e.g., [8, 25]
and [26, Ch. XVIII].

5 Characterization of matrices of Type 1

In this section we discuss relationships among the various properties introduced in Schur’s
letter and in the previous section. This will give, in particular, a characterization of
matrices of Type 1.

In his letter, Schur proves the following result.

Theorem 5 Let F be a differential field. Then M ∈ Fn,n is of Type 1 if and only if it
satisfies condition (5), i.e., M (i)M (j) = M (j)M (i) for all nonnegative integers i, j.

Proof. (See Schur’s letter.) If M is of Type 1, then M =
∑k

j=1 fjCj and the Cj ∈ Kn,n are
pairwise commuting, which immediately implies (5). For the converse, Schur makes use of
Theorem 3, since if among the n2 coefficients mi,j exactly r are linearly independent over
K, then

M = f1C1 + · · ·+ frCr,

with coefficients Ci ∈ Kn,n, where f1, . . . , fr are linearly independent over K. Then

M (i) = f
(i)
1 C1 + · · ·+ f (i)

r Cr, i = 1, . . . , r − 1.

By Theorem 3, the columns of the associated Wronski matrix are linearly independent,
and hence each of the Ci can be expressed as

Ci =
r−1∑
j=0

gi,jM
(j).
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Thus, if condition (5) holds, then the Ci, i = 1, . . . , r, are pairwise commuting and thus
M is of Type 1.

Using this result we immediately have the following Theorem.

Theorem 6 Let F be a differential field with field of constants K. If M ∈ Fn,n is non-
derogatory and MM ′ = M ′M , then M is of Type 1.

Proof. If M is nonderogatory then all matrices that commute with M have the form p(M),
where p is a polynomial with coefficients in F, see [10, 20]. Thus MM ′ = M ′M implies
that M ′ is a polynomial in M . But then every derivative M (j) is a polynomial in M as
well and thus (5) holds which by Theorem 5 implies that M is of Type 1.

The following example from [4, 14] of a Type 2 matrix shows that one cannot easily
drop the condition that the matrix is nonderogatory.

Example 7 Let

f =

 1
t
t2

 , g =

 t2

−2t
1

 ,
then fTg = 0 and fTg′ = 0, hence

Ma := gfT =

 t2 t3 t4

−2t −2t2 −2t3

1 t t2

 , (6)

is of Type 2. Since Ma is nilpotent with M2
a = 0 but Ma 6= 0 and the rank is 1, it is

derogatory. One has

M ′
a =

 2t 3t2 4t3

−2 −4t −6t2

0 1 2t

 , M ′′
a =

 2 6t 12t2

0 −4 −12t
0 0 2

 ,
and thus MaM

′
a = M ′

aMa = 0. By the product rule it immediately follows that MaM
′′
a =

M ′′
aMa, but

M ′
aM

′′
a =

 4t 0 −4t3

−4 4t 12t2

0 −4 −8t

 6= M ′
aM

′′
a =

 −8t −6t2 −4t3

8 4t 0
0 2 4t

 .
Therefore, it follows from Theorem 5 that Ma is not of Type 1.

For any dimension n ≥ 3, one can construct an example of Type 2 by choosing f ∈ Fn,
setting F = [f, f ′] and then choosing g in the nullspace of F T . Then fgT is of Type 2.

Actually every nilpotent matrix function M of rank one satisfying MM ′ = M ′M is of the
form M = fgT and hence of Type 2. This follows immediately because if M = fgT and
M2 = 0 then gTf = 0 and hence gTf ′ + (gT )′f = 0. Then it follows from MM ′ = M ′M
that fgT (f(gT )′ + f ′gT ) = (gTf ′)fgT = (f(gT )′ + f ′gT )fgT = (gT )′ffgT which implies
that gTf ′ = fTg′ and hence gTf ′ = fTg′ = 0.
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6 Triangularizability and Diagonalizability

In his letter Schur claims that it is sufficient to consider the case that M ∈ Fn,n is triangular
with only one eigenvalue. This follows from his argument in case the matrix has its eigen-
values in F, which could be guaranteed by assuming that this matrix is F-diagonalizable
or even F-triangularizable. Clearly a sufficient condition for this to hold is that F is alge-
braically closed, because then for every matrix in Fn,n the characteristic polynomial splits
into linear factors.

Definition 8 Let F be a differential field and let H be a subfield of F. Then M ∈ Fn,n is
called H-triangularizable (diagonalizable) if there exists a nonsingular T ∈ Hn,n such that
T−1MT is upper triangular (diagonal).

Using Lemma 2, we can obtain the following result for matrices M ∈ Fn,n that commute
with their derivative M ′, which is most likely well known but we could not find a reference.

Lemma 9 Let F be a differential field with field of constants K, and suppose that M ∈ Fn,n
satisfies MM ′ = M ′M . Then there exists an invertible matrix T ∈ Kn,n such that

T−1MT = diag(M1, . . . ,Mk), (7)

where the minimal polynomial of each Mi is a power of a polynomial that is irreducible
over F.

Proof. Let the minimal polynomial of M be µ(λ) = µ1(λ) · · ·µk(λ), where the µi(λ) are
powers of pairwise distinct polynomials that are irreducible over F. Set

pi(λ) = µ(λ)/µi(λ), i = 1, . . . , k.

Since the polynomials pi(λ) have no common factor, there exist polynomials qi(λ), i =
1, . . . , k, such that the polynomials εi(λ) = pi(λ)qi(λ), i = 1, . . . , k, satisfy

ε1(λ) + · · ·+ εk(λ) = 1. (8)

Setting Ei = εi(M), i = 1, . . . , k and using the fact that µ(M) = 0 yields that

E1 + · · ·+ Ek = I, (9)

EiEj = 0, i, j = 1, . . . , k, i 6= j, (10)

E2
i = Ei, i = 1, . . . , k. (11)

The last identity follows directly from (9) and (10). Since the Ei are polynomials in M and
MM ′ = M ′M , it follows that the Ei commute with E ′i, i = 1, . . . k. Hence, by Lemma 2,
Ei ∈ Kn,n, i = 1, . . . , k. By (9), (10), and (11), Kn is a direct sum of the ranges of the Ei
and we obtain that, for some nonsingular T ∈ Kn,n,

Ẽi := T−1EiT = diag(0, Ii, 0), i = 1, . . . , k,

13



where the Ii are identity matrices of the size equal to the dimension to the range of Ei.
This is a consequence of the fact that Ei is diagonalizable with eigenvalues 0 and 1. Since
each Ei commutes with M , we obtain that

M̃i := T−1EiMT

= T−1EiMEiT

= diag(0, Ii, 0)T−1MT diag(0, Ii, 0)

= diag(0,Mi, 0), i = 1, . . . , k.

Now observe that
Ẽiµi(M̃i)Ẽi = T−1εi(M)µi(M)εi(M)T = 0,

since εi(λ)µi(λ) = µ(λ)qi(λ). Hence µi(Mi) = 0 as well. We assert that µi(λ) is the minimal
polynomial of Mi, for if r(Mi) = 0 for a proper factor r(λ) of mi(λ) then r(M)Πj 6=iµj(M) =
0, contrary to the assumption that µ(λ) is the minimal polynomial of M .

Lemma 9 has the following corollary, which has been proved in a different way in [1]
and [18].

Corollary 10 Let F be a differential field with field of constants K. If M ∈ Fn,n satisfies
MM ′ = M ′M and is F-diagonalizable, then M is K-diagonalizable.

Proof. In this case, the minimal polynomial of M is a product of distinct linear factors
and hence, the minimal polynomial of each Mi occurring in the proof of Lemma 9 is linear.
Therefore, each Mi is a scalar matrix.

We also have the following Corollary.

Corollary 11 Let F be a differential field with field of constants K. If M ∈ Fn,n satisfies
MM ′ = M ′M and is F-diagonalizable, then M is of Type 1.

Proof. By Corollary 10, M = T−1 diag(m1, . . . ,mn)T with mi ∈ F and nonsingular T ∈
Kn,n. Hence

M =
n∑
i=1

miT
−1Ei,iT

where Ei,i is a matrix that has a 1 in position (i, i) and zeros everywhere else. Since all
the matrices Ei,i commute, M is of Type 1.

Remark 12 Any M ∈ Fn,n that is of rank one, satisfies MM ′ = M ′M and is not nilpotent,
is of Type 1, since in this case M is F-diagonalizable. This follows by Corollary 11, since
the minimal polynomial has the from (λ − c)λ for some c ∈ F. This means in particular
for a rank one matrix M ∈ Fn,n to be of Type 2 and not of Type 1 it has to be nilpotent.

For matrices that are just triangularizable the situation is more subtle. We have the
following theorem.

14



Theorem 13 Let F be a differential field with an algebraically closed field of constants K.
If M ∈ Fn,n is Type 1, then M is K-triangularizable.

Proof. Any finite set of pairwise commutative matrices with elements in an algebraically
closed field may be simultaneously triangularized, see e.g., [30, Theorem 1.1.5]. Under
this assumption on K, if M is Type 1, then it follows that the matrices Ci ∈ Kn,n in the
representation of M are simultaneously triangularizable by a matrix T ∈ Kn,n. Hence T
also triangularizes M .

Theorem 13 implies that Type 1 matrices have n eigenvalues in F if K is algebraically
closed and it further immediately leads to a Corollary of Theorem 6.

Corollary 14 Let F be a differential field with field of constants K. If M ∈ Fn,n is
nonderogatory, satisfies MM ′ = M ′M and if K is algebraically closed, then M is K-
triangularizable.

Proof. By Theorem 6 it follows that M is Type 1 and thus the assertion follows from
Theorem 13.

7 Matrices of small size and examples

Example 7 again shows that it is difficult to drop some of the assumptions, since this
matrix is derogatory, not of Type 1, and not K-triangularizable.

One might be tempted to conjecture that any M ∈ Fn,n that is K-triangularizable and
satisfies (4) is of Type 1 but this is so only for small dimensions and is no longer true for
large enough n, as we will demonstrate below. Consider small dimensions first.

Proposition 15 Consider a differential field F of functions with field of constants K. Let
M = [mi,j] ∈ F2,2 be upper triangular and satisfy MM ′ = M ′M . Then M is of Type 1.

Proof. Since MM ′ = M ′M we obtain

m1,2(m
′
1,1 −m′2,2)−m′1,2(m1,1 −m2,2) = 0,

which implies that m1,2 = 0 or m1,1 −m2,2 = 0 or both are nonzero and d
dt

(m1,1−m2,2

m1,2
) = 0,

i.e., cm1,2 + (m1,1 −m2,2) = 0 for some nonzero constant c.
If m1,1 = m2,2 or m1,2 = 0, then M , being triangular, is obviously of Type 1. Otherwise

M = m1,1I +m1,2

[
0 1
0 c

]
.

and hence again of Type 1 as claimed.

Proposition 15 implies that 2×2 K-triangularizable matrices satisfying (4) are of Type 1.

Proposition 16 Consider a differential field F with an algebraically closed field of con-
stants K. Let M = [mi,j] ∈ F2,2 satisfy MM ′ = M ′M . Then M is of Type 1.
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Proof. If M is F-diagonalizable, then the result follows by Corollary 11. If M is not
F-diagonalizable, then it is nonderogatory and the result follows by Corollary 14.

Example 17 In the 2 × 2 case, any Type 2 or Type 3 matrix is also of Type 1 but not
every Type 1 matrix is Type 3.

Let M = φI2 + fgT with

φ ∈ F, f =

[
f1
f2

]
, g =

[
g1
g2

]
∈ F2

be of Type 3, i.e., fTg = f ′Tg = fTg′ = 0.
If f2 = 0, then M is upper triangular and hence by Proposition 15, M is of Type 1. If

f2 6= 0, then with

T =

[
1 −f1/f2
0 1

]
.

we have

TMT−1 = φI2 +

[
0 0
f2g1 0

]
= φI2 + f2g1

[
0 0
1 0

]
,

since f1g1 + f2g2 = 0, and hence M is of Type 1.
However, if we consider

M = φI2 + f

[
0 c
0 d

]
with φ, f nonzero functions and c, d nonzero constants, then M is Type 1 but not Type 3.

Proposition 18 Consider a differential field F of functions with field of constants K. Let
M = [mi,j] ∈ F3,3 be K-triangularizable and satisfy MM ′ = M ′M . Then M is of Type 1.

Proof. Since M is K-triangularizable, we may assume that it is upper triangular already
and consider different cases for the diagonal elements. If M has three distinct diagonal
elements, then it is K-diagonalizable and the result follows by Corollary 11. If M has
exactly two distinct diagonal elements, then it can be transformed to a direct sum of
a 2 × 2 and 1 × 1 matrix and hence the result follows by Proposition 15. If all diagonal
elements are equal, then, letting Ei,j be the matrix that is zero except for the position (i, j),

where it is 1, we have M = m1,1I + m1,3E1,3 + M̃ , where M̃ = m1,2E1,2 + m2,3E2,3 also
satisfies (4). Then it follows that m1,2m

′
2,3 = m′1,2m2,3. If either m1,2 = 0 or m2,3 = 0, then

we immediately have again Type 1, since M̃ is a direct sum of a 2×2 and a 1×1 problem.
If both are nonzero, then M̃ is nonderogatory and the result follows by Theorem 6. In
fact, in this case m1,2 = cm2,3 for some c ∈ K and therefore

M = m1,1I +m1,3E1,3 +m2,3

 0 c 0
0 0 1
0 0 0

 ,
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which is clearly of Type 1.

In the 4 × 4 case, if the matrix is K-triangularizable, then we either have at least
two different eigenvalues, in which case we have reduced the problem again to the case
of dimensions smaller than 4, or there is only one eigenvalue, and thus without loss of
generality M is nilpotent. If M is nonderogatory then we again have Type 1. If M is
derogatory then it is the direct sum of blocks of smaller dimension. If these dimensions
are smaller than 3, then we are again in the Type 1 case. So it remains to study the case
of a block of size 3 and a block of size 1. Since M is nilpotent, the block of size 3 is either
Type 1 or Type 2. In both cases the complete matrix is also Type 1 or Type 2, respectively.

The following example shows that K-triangularizability is not enough to imply that the
matrix is Type 1.

Example 19 Consider the 9× 9 block matrix

M̂ =

 0 Ma 0
0 0 Ma

0 0 0

 ,
where Ma is the Type 2 matrix from Example 7. Then M̂ is nilpotent upper triangular
and not of Type 1, 2, or 3, the latter two facts due to its F-rank being 2.

Already in the 5× 5 case, we can find examples that are none of the (proper) types.

Example 20 Consider M = T−1 diag(M1,M2)T with T ∈ Kn,n, M1 ∈ F3,3 of Type 2 (e.g.,

take M1 = Ma as in Example 7) and M2 =

[
0 1
0 0

]
. Then clearly M is not of Type 1 and

it is not of Type 2, since it has an F-rank larger than 1. By definition it is not of Type 3
either. Clearly examples of any size can be constructed by building direct sums of smaller
blocks.

Schur’s letter states that for n ≥ 6 there are other types. The following example
demonstrates this.

Example 21 Let Ma be the Type 2 matrix in Example 7 and form the block matrix

A =

[
Ma I
0 Ma

]
.

Direct computation shows AA′ = A′A but A′A′′ 6= A′′A. Furthermore A3 = 0 and A
has F-rank 3. Thus A is neither Type 1, Type 2 nor Type 3 (the last case need not be
considered, since A is nilpotent). We also note that rank(A′′) = 6. We now assume that
K is algebraically closed and we show that A is not K-similar to the direct sum of Type 1
or Type 2 matrices.

To obtain a contradiction we assume that (after a K-similarity) A = diag(A1, A2) where
A1 is the direct sum of Type 1 matrices (and hence Type 1) and A2 is the direct sum of
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Type 2 matrices that are not Type 1. Since A is not Type 1, A2 cannot be the empty
matrix. Since the minimum size of a Type 2 matrix that is not Type 1 is 3 and its rank
is 1 it follows that A cannot be the sum of Type 2 matrices that are not Type 1. Hence
the size of A1 must be larger or equal to 1 and, since A1 is nilpotent, it follows that
rank(A1) < size(A1). Since A1 is K-similar to a strictly triangular matrix, it follows that
rank(A′′1) < size(A1). Hence rank(A′′) = rank(A′′1) + rank(A′′2) < 6, a contradiction.

Example 22 If the matrix M =
∑r

i=0Cit
i ∈ Fn,n is a polynomial with coefficients Ci ∈

Kn,n, then from (4) we obtain a specific set of conditions on sums of commutators that
have to be satisfied. For this we just compare coefficients of powers of t and obtain a set of
quadratic equations in the Ci, which has a clear pattern. For example, in the case r = 2,
we obtain the three conditions C0C1−C1C0 = 0, C0C2−C2C0 = 0 and C1C2−C2C1 = 0,
which shows that M is of Type 1. For r = 3 we obtain the first nontrivial condition
3(C0C3 − C3C0) + (C1C2 − C2C1) = 0.

We have implemented a Matlab routine for Newton’s method to solve the set of
quadratic matrix equations in the case r = 3 and ran it for many different random starting
coefficients Ci of different dimensions n. Whenever Newton’s method converged (which it
did in most of the cases) it converged to a matrix of Type 1. Even in the neighborhood
of a Type 2 matrix it converged to a Type 1 matrix. This suggests that the matrices of
Type 1 are generic in the set of matrices satisfying (4). A copy of the Matlab routine is
available from the authors upon request.

8 Conclusion

We have presented a letter of Schur’s that contains a major contribution to the question
when a matrix with elements that are functions in one variable commutes with its deriva-
tive. Schur’s letter precedes many partial results on this question, which is still partially
open. We have put Schur’s result in perspective with later results and extended it in an
algebraic context to matrices over a differential field. In particular, we have presented
several results that characterize Schur’s matrices of Type 1. We have given examples of
matrices that commute with their derivative which are of none of the Types 1, 2 or 3.We
have shown that matrices of Type 1 may be triangularized over the constant field (which
implies that their eigenvalues lie in the differential field) but we are left with an open
problem already mentioned in Section 3.

Open Problem 23 LetM be a matrix in a differential field F, with an algebraically closed
field of constants, that satisfies MM ′ = M ′M . Must the eigenvalues of M be elements of
the field F?

For example, if M is a polynomial matrix over the complex numbers must the eigenvalues
be rational functions? We have found no counterexample.
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