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We study the max-algebraic analogue of equations involving Z-matrices
and M-matrices, with an outlook to a more general algebraic setting. We
show that these equations can be solved using the Frobenius trace-down
method in a way similar to that in nonnegative linear algebra [G.F.
Frobenius, Über Matrizen aus nicht negativen Elementen. Sitzungsber.
Kön. Preuss. Akad. Wiss., 1912, in Ges. Abh., Vol. 3, Springer, 1968,
pp. 546–557; D. Hershkowitz and H. Schneider, Solutions of Z-matrix
equations, Linear Algebra Appl. 106 (1988), pp. 25–38; H. Schneider, The
influence of the marked reduced graph of a nonnegative matrix on the Jordan
form and on related properties: A survey, Linear Algebra Appl. 84 (1986),
pp. 161–189], characterizing the solvability in terms of supports and access
relations. We give a description of the solution set as combination of the
least solution and the eigenspace of the matrix, and provide a general
algebraic setting in which this result holds.

Keywords: max-algebra; nonnegative linear algebra; idempotent semiring;
Z-matrix equations; Kleene star

AMS Subject Classifications: 15A80; 15A06; 15B48

1. Introduction

A Z-matrix is a square matrix of the form !I!A where ! is real and A is an
(elementwise) nonnegative matrix. It is called an M-matrix if !" "(A), where "(A) is
the Perron root (spectral radius) of A and it is nonsingular if and only if !> "(A).
Since their introduction by Ostrowski [28] M-matrices have been studied in many
papers and they have found many applications. The term Z-matrix was introduced
by Fiedler–Pták [11].

Results on the existence, uniqueness and nonnegativity of a solution x of the
equation (!I!A)x¼ b for a given nonnegative vector b appear in many places
(e.g. Berman-Plemmons [4] in the case of a nonsingular M-matrix or an irreducible
singular M-matrix). Using the Frobenius normal form of A and access relation

*Corresponding author. Email: p.butkovic@bham.ac.uk

ISSN 0308–1087 print/ISSN 1563–5139 online

! 2012 Taylor & Francis
http://dx.doi.org/10.1080/03081087.2012.656107
http://www.tandfonline.com

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f B

irm
in

gh
am

], 
[P

et
er

 B
ut

ko
vi

c]
 a

t 0
2:

26
 0

6 
Fe

br
ua

ry
 2

01
2 



defined by the graph of the matrix, Carlson [8] studied the existence and uniqueness
of nonnegative solutions x of this equation in the case of a reducible singular
M-matrix, and his results were generalized to all Z-matrices in Hershkowitz–
Schneider [19].

The purpose of this article is to prove corresponding results in the max-times
algebra of nonnegative matrices, unifying and comparing them with the results in the
classical nonnegative linear algebra. We also notice that the basic proof techniques
are much more general. In particular, we exploit a generalization of the Frobenius
trace-down method [12,32]. This generalization is reminiscent of the universal
algorithms developed by Litvinov et al. [24,25,27], based on the earlier works on
regular algebra applied to path-finding problems by Backhouse et al. [2,30].
Following this line allows to include other examples of idempotent semirings, such as
max–min algebra [15] and distributive lattices [34]. A more general theoretic setup is
described in Section 4. It is very close to Cohen et al. [9] and Litvinov et al. [26].

The main object of our study is Z-matrix equation

Axþ b ¼ !x ð1Þ

over semirings. In the classical nonnegative algebra and max-plus algebra, any ! 6¼ 0
is invertible, which allows to reduce (1) to

Axþ b ¼ x: ð2Þ

In max-plus algebra, this equation is sometimes referred to as discrete Bellman
equation, being related to the Bellman optimality principle and dynamic program-
ming [1,17,20]. In particular, it is very well-known that this equation has the least
solution. However (to the authors’ knowledge) a universal and complete description
of solutions of !x¼Axþ b or even x¼Axþ b, which would cover both classical
nonnegative and max-plus algebra cases, is not found (surprisingly) in the key
monographs on max-plus algebra and related semirings. Such a description is what
we try to achieve in this article, see Theorems 3.2 and 3.5. In brief, the results in the
case of max times linear algebra are similar to those in classical Z-matrix theory [19],
but they are not identical with them. Details are given in the main sections. The
situation is analogous to that for the Perron–Frobenius equation Ax¼ !x, as may be
seen by comparing the results in Butkovič [7, Sect. 4.5], for max-algebra with those in
Hershkowitz and Schneider [18, Sect. 3], for classical nonnegative algebra.

The rest of this article consists of Prerequisites (Section 2), theory of Z-matrix
equations (Section 3) and Algebraic generalization (Section 4). Prerequisites are
devoted to the general material, mostly about max-plus algebra: Kleene star,
Frobenius normal forms and spectral theory in the general (reducible) case. Theory
of Z-matrix equations over max-plus algebra stands on two main results.
Theorem 3.2 describes the solutions of (2) as combinations of the least solution
A'b and the eigenvector space. We emphasize the algebraic generality of the
argument. Theorem 3.5 exploits the Frobenius trace-down method. This method
serves both for theoretic purposes (to provide a necessary and sufficient condition for
the existence of solutions, and to characterize the support of the least solution) and
as an algorithm for calculating it. As an outcome, we get both combinatorial and
geometric description of the solutions. The results in max-times algebra are
compared with the case of nonnegative matrix algebra [19]. This article ends with
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Section 4, devoted to an abstract algebraic setting for which Theorem 3.2 holds, in
the framework of semirings, distributive lattices and lattice-ordered groups [5,16].

We use the conventional arithmetic notation aþ b and ab for the operations in
semirings, to emphasize the common features of the problem over classical
nonnegative algebra and in the idempotent semirings, viewing max-times algebra
(isomorphic to max-plus algebra) as our leading example.

We note that a complete description of solutions of x¼Axþ b was also achieved
byKrivulin [21–23], for the case ofmax-algebra and related semirings with idempotent
addition (a( a¼ a). His proof of Theorem 3.2, recalled here in a remark following that
theorem, is different from the one found by the authors. We show that Krivulin’s
proof also works both for max-algebra and nonnegative linear algebra, and admits
further algebraic generalizations. The case of reducible matrix A and general support
of b has also been investigated, see [21, Theorem 2] or [23, Theorem 3.2], which can be
seen as a corollary of Theorem 3.5 of this article with application of the max-plus
spectral theory, see Theorem 2.2.

2. Prerequisites

2.1. Kleene star and the optimal path problem

The main motivation of this article is to unite and compare the Z-equation theory in
the classical nonnegative linear algebra, and the max-times linear algebra.
Algebraically, these structures are semirings [16] (roughly speaking, ‘rings without
subtraction’, see Section 4 for a rigorous definition). Thus we are focused on:

Example 1 (Max-times algebra) Nonnegative numbers, endowed with the usual
multiplication ) and the unusual addition aþ b :¼max(a, b).

Example 2 (Usual nonnegative algebra) Nonnegative numbers, endowed with usual
arithmetics þ, ).

Some results in this article will have a higher level of generality, which we indicate
by formulating them in terms of a ‘semiring S’. Namely, this symbol ‘S’ applies to a
more general algebraic setting provided in Section 4, covering the max-times algebra
and the nonnegative algebra. Before reading the last section, it may be assumed by
the reader that S means just ‘max-times or usual nonnegative’.

The matrix algebra over a semiring S is defined in the usual way, by extending
the arithmetical operations to matrices and vectors, so that (AþB)ij¼ aijþ bij and
(AB)ik¼

P
jaijbjk for matrices A, B of appropriate sizes. The unit matrix (with 1’s on

the diagonal and 0’s off the diagonal) plays the usual role.
Denote N¼ {1, . . . , n}. For x2Sn, x> 0 means xi> 0 for every i. Similarly A> 0

for A2Sn)n. We also denote:

A' ¼ Iþ Aþ A2 þ * * * ¼ sup
k"0
ðIþ Aþ * * * þ AkÞ: ð3Þ

In (3), we have exploited the nondecreasing property of addition. A' is also called the
Kleene star, and is related to the optimal path problem in the following way.

The digraph associated with A¼ (aij)2Sn)n is DA¼ (N,E), where E¼ {(i, j);
aij> 0}. The weight of a path onDA is defined as the product of the weights of the arcs,
i.e., the corresponding matrix entries. It is easy to check (using the distributivity law)

Linear and Multilinear Algebra 3
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that (Ak)ij is the sum of the weights of all paths of length k connecting i to j. Further,
an entry (A')ij collects in a common summation (possibly divergent and formal) all
weights of the paths connecting i to j, when i 6¼ j.

Note that A'¼ (I!A)!1 in the case of the classical arithmetics, and A' solves the
optimal path problem in the case of the max-times algebra (because the summation is
maximum).

Thus the Kleene star can be described in terms of paths or access relations in DA.
For i 6¼ j, we say that i accesses j, denoted i! j, if there is a path of nonzero weight
connecting i to j, equivalently, (A')ij 6¼ 0. We also postulate that i! i. The notion of
access is extended to subsets of N, namely I! J if i! j for some i2 I and j2 J.

Both in max-plus algebra and in nonnegative algebra the Kleene star series may
diverge to infinity (in other words, be unbounded). In both cases the convergence is
strongly related to the largest eigenvalue of A (w.r.t. the eigenproblem Ax¼ !x),
which we denote by "(A). This is also called the Perron root of A. A necessary and
sufficient condition for the convergence is "(A)< 1 in the case of the ordinary
algebra, and "(A)+ 1 in the case of the max-times algebra. In the max-times algebra
(but not in the usual algebra) A' can be always truncated, meaning
A'¼ IþAþ * * * þAn!1 where n is the dimension of A, in the case of convergence.
This is due to the finiteness of DA and the optimal path interpretation, see [1,7] for
more details.

In the case of max-times algebra, "(A) is equal to the maximum geometric cycle
mean of A, namely

"ðAÞ ¼ max
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai1i2ai2i3 . . . aiki1

k
p

; i1, . . . , ik 2N, k ¼ 1, 2, . . . ,
" #

:

This quantity can be computed in O(n3) time by Karp’s algorithm, see e.g. [1,7].

2.2. Frobenius normal form

A ¼ aij
$ %
2Rn)n

þ is called irreducible if n¼ 1 or for any i, j2N there are i1¼ i,
i2, . . . , ik¼ j, such that ai1i2ai2i3 . . . aik!1ik 4 0; A is called reducible otherwise. In other
words, a matrix is called irreducible if the associated graph is strongly connected.
Note that if n> 1 and A is irreducible then A 6¼ 0. Hence the assumption ‘A
irreducible, A 6¼ 0’ merely means that A is irreducible but not the 1) 1 zero matrix.
(It is possible to extend these notions to general semirings with no zero divisors, but
we will not require these in this article.)

In order to treat the reducible case for max-times algebra and the (classical)
nonnegative linear algebra, we recall some standard notation and the Frobenius
normal form (considering it for general semirings will be of no use here). If

1 + i1 5 i2 5 * * * 5 ik + n, K ¼ fi1, . . . , ikg , N

then AKK denotes the principal submatrix

ai1i1 . . . ai1ik
. . . . . . . . .

aiki1 . . . aikik

0

B@

1

CA

of the matrix A¼ (aij) and xK denotes the subvector ðxi1 , . . . , xikÞ
T of the vector

x¼ (x1, . . . , xn)
T.

4 P. Butkovič et al.
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If D¼ (N,E) is a digraph and K,N then D(K) denotes the induced subgraph
of D, that is

DðKÞ ¼ ðK,E \ ðK) KÞÞ:

Observe that "(A)¼ 0 if and only if DA is acyclic.
Every matrix A ¼ ðaijÞ2Rn)n

þ can be transformed by simultaneous permutations
of the rows and columns in linear time to a Frobenius normal form [29]

A11 0 . . . 0
A21 A22 . . . 0
. . . . . . . . . . . .
Ar1 Ar2 . . . Arr

0

BB@

1

CCA, ð4Þ

where A11, . . . ,Arr are irreducible square submatrices of A, corresponding to the
partition N1[ * * *[Nr¼N (i.e. Aij is a shortcut for ANiNj ). The sets N1, . . . ,Nr will be
called classes (of A). It follows that each of the induced subgraphs DA(Ni)
(i¼ 1, . . . , r) is strongly connected and an arc from Ni to Nj in DA exists only if i" j.

If A is in the Frobenius normal form (4) then the reduced graph, denoted R(A), is
the digraph whose nodes are the classes N1, . . . ,Nr and the set of arcs is

fðNi,NjÞ; ð9k2NiÞð9‘2NjÞak‘4 0gÞ:

In addition we postulate that each class has a self-loop (useful if FNF contains trivial
classes consisting of one diagonal zero entry). In the max-times algebra and the
nonnegative matrix algebra, the nodes of R(A) are marked by the corresponding
greatest eigenvalues (Perron roots) "i :¼ "(Aii).

Simultaneous permutations of the rows and columns of A are equivalent to
calculating P!1AP, where P is a generalized permutation matrix. Such transforma-
tions do not change the eigenvalues, and the eigenvectors before and after such a
transformation only differ by the order of their components. So when solving the
eigenproblem, we may assume without loss of generality that A is in a Frobenius
normal form, say (4).

2.3. Eigenvalues and eigenvectors in max-times algebra

It is intuitively clear that all eigenvalues of A are among the unique eigenvalues of
diagonal blocks. However, not all of these eigenvalues are also eigenvalues of A. The
following key result describing the set !(A) of all eigenvalues of A in max-times
algebra (i.e. set of all ! such that Ax¼ !x has a nonzero solution x in max-times
algebra) appeared for the first time independently in Gaubert’s thesis [13] and
Bapat et al. [3], see also Butkovič [7].

THEOREM 2.1 (cf. [3,7,13]) Let (4) be a Frobenius normal form of a matrix A2Rn)n
þ :

Then

!ðAÞ ¼ f"j; "j " "i for all Ni!!Njg: ð5Þ

The same result holds in the nonnegative linear algebra, with the nonstrict
inequality replaced by the strict one.

Linear and Multilinear Algebra 5
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If a diagonal block Ajj has "j2!, it still may not satisfy the condition in
Theorem 2.1 and may therefore not provide any eigenvectors. So it is necessary to
identify classes j that satisfy this condition and call them spectral. Thus "j2!(A) if Nj

is spectral, but not necessarily the other way round. We can immediately deduce that
all initial blocks are spectral, like in the nonnegative linear algebra. Also, it follows
that the number of eigenvalues does not exceed n and obviously, "(A)¼max i"i, in
accordance with "(A) being the greatest eigenvalue.

We are now going to describe, for !2!, the eigencone V(A, !) of all vectors x
such that Ax¼ !x. Denote by J! the union of all classes Ni which have access to the
spectral classes corresponding to this eigenvalue. By (5), "i+ ! for all such classes.
Now we define the critical graph CA(!)¼ (Nc,Ec) comprising all nodes and edges on
critical cycles of the submatrix AJ!J! , i.e., such cycles where ! is attained. This graph
consists of several strongly connected components, and let T(A, !) denote a set of
indices containing precisely one index from each component of CA(!). In the
following, A0(J!) will denote the n) n matrix, which has AJ!J!=! as submatrix, and
zero entries everywhere else.

THEOREM 2.2 (cf. [3,7,13]) Let A2Rn)n
þ and !2!(A). Then

(a) For any eigenvector v2V(A, !) there exists #j2Rþ such that v is the max-times
linear combination

v ¼
X

j2TðA,!Þ
#j ðA0ðJ!ÞÞ'*j: ð6Þ

(b) For any two indices j and k in the same component of CA(!), columns ðA0ðJ!ÞÞ'*j
and ðA0ðJ!ÞÞ'*k are proportional.

(c) Vectors ðA0ðJ!ÞÞ'*j for j2T(A, !) form a basis of V(A, !), that is, they generate
V(A, !) in the sense of a) and none of them can be expressed as a max-times
linear combination of the others.

Remark 1 An analogous description of V(A, !) in nonnegative matrix algebra is
called Frobenius–Victory theorem [12,35], see [32, Theorem 3.7]. Namely, to each
spectral node of R(A) with eigenvalue !, there corresponds a unique eigenvector,
with support equal to the union of classes having access to the spectral node. These
eigenvectors are the extreme rays of the cone, i.e. they form a ‘basis’ in analogy with
Theorem 2.2.

Moreover, these extreme rays are linearly independent as it may be deduced from
their supports. In parallel, it can be shown that the generators of Theorem 2.2 are
strongly regular, see [6] for definition (i.e. independent in a stronger sense).

However, extremals in the nonnegative case do not come from A'¼ (I!A)!1 and,
to the authors’ knowledge, no explicit algebraic expression for these vectors is known.

3. Theory of Z-matrix equations

3.1. General results

In the following, we describe the solution set of x¼Axþ b as combinations of the
least solution A'b and the eigenvectors of A. The results of this section hold for the
max-times algebra, nonnegative linear algebra and an abstract algebraic setup

6 P. Butkovič et al.
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(reassuring that A'b satisfies x¼Axþ b, and v ¼ infk Akx, for x such that Ax+ x,
satisfies Av¼ v), which will be provided in Section 4.

We start with a well-known fact, that

A'b :¼ sup
k
ðbþ Abþ A2bþ * * * þ Ak!1bÞ ð7Þ

is the least solution to x¼Axþ b. We will formulate it in the form of an equivalence.
Note that the supremum (7) may exist even if A' does not exist. (In this sense, A'b is
rather a symbol than a result of matrix-vector multiplication. On the other hand, one
can complete a semiring with the greatest element ‘þ1’ and regard A'b as a matrix-
vector product.)

THEOREM 3.1 (Well-known, cf. [1,17]) Let A2Sn)n, b2Sn. The following are
equivalent:

(i) x¼Axþ b has a solution,
(ii) x¼Axþ b has a least solution.
(iii) A'b converges.

If any of the equivalent statement holds, A'b is the least solution of x¼Axþ b.

Proof (i)) (iii) Let x be a solution to x¼Axþ b. Then

x ¼ Axþ b

¼ A Axþ bð Þ þ b

¼ A A Axþ bð Þ þ bð Þ þ b ¼ * * * :
Therefore for any k" 1 we have

x ¼ Akxþ Ak!1 þ Ak!2 þ * * * þ I
$ %

b: ð8Þ
This shows that the expressions in (7) are bounded from above by x, hence the
supremum exists.

(iii)) (ii) We verify that

AA'bþ b ¼ A sup
k
ðbþ Abþ * * * þ Ak!1bÞ þ b

¼ sup
k
ðbþ Abþ * * * þ AkbÞ ¼ A'b, ð9Þ

treating sup as a limit and using the continuity of the matrix-vector multiplication.
(From the algebraic point of view, we used the distributivity of (max-algebraic,

nonnegative) matrix multiplication with respect to sup’s of ascending chains, and the
distributivity of þ with respect to such sup’s. Further details on this will be given in
Section 4.)

(ii)) (i) Trivial. g

We proceed with characterizing the whole set of solutions. (See also Remark 2 for
an alternative short proof of the first part.)

THEOREM 3.2 Let A2Sn)n, b2Sn be such that x¼Axþ b has a solution. Then

(a) The set of all solutions to x¼Axþ b is {vþA'b; Av¼ v}.
(b) If for any x such that Ax+ x we have infk Akx ¼ 0, then A'b is the unique

solution to x¼Axþ b.

Linear and Multilinear Algebra 7
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Proof (a) First we need to verify that any vector of the form vþA'b, where v
satisfies Av¼ v, solves (2). Indeed,

Aðvþ A'bÞ þ b ¼ Avþ ðAA'bþ bÞ ¼ vþ A'b,

where we used that Av¼ v and that A'b is a solution of (2), see Theorem 3.1.
It remains to deduce that each solution of (2) is as defined above.

Let x be a solution to (2), and denote y(k) :¼Akx and

zðkÞ :¼ Ak!1 þ Ak!2 þ * * * þ I
$ %

b:

We have seen in (8) that

x ¼ yðkÞ þ zðkÞ, for all k " 1: ð10Þ

Since Ax+ x it follows that the sequence y(k) is nondecreasing. The sequence of z(k) is
nonincreasing.

Both in max-times and in the nonnegative case, we conclude that v¼ limk!1 y(k)

exists and (by the continuity of A as operator) we have Av¼ v. We also obtain that
A'b¼ limk!1 z(k), and finally

x ¼ lim
k!1

yðkÞ þ lim
k!1

zðkÞ ¼ vþ A'b, ð11Þ

where v satisfies Av¼ v. The theorem is proved, both for max-times algebra and
nonnegative linear algebra.

In a more general semiring context (see Section 4), it remains to show that
x :¼ infk yðkÞ þ supk z

ðkÞ is the same as y(k)þ z(k) for all k. After showing this we are
done, since supk z

ðkÞ ¼ A'b, and also

A inf
k"0

yðkÞ ¼ A
&
inf
k"0

Akx
'
¼ inf

k"1
Akx ¼ inf

k"0
yðkÞ, ð12Þ

so that we can set v :¼ infk y
(k), it satisfies Av¼ v. (From the algebraic point of view,

we have used the distributivity of matrix multiplication with respect to inf ’s of
descending chains. Further details will be given in Section 4.)

Using the distributivity of þ with respect to inf we obtain

x ¼ inf
k

&
yðkÞ þ sup

l
zðl Þ
'
" x, ð13Þ

since this is true of any term in the brackets. Using the distributivity with respect to
sup we obtain

x ¼ sup
k
ðinf

k
yðkÞ þ zðl ÞÞ + x, ð14Þ

for analogous reason. Combining (13) and (14) we obtain

x ¼ x ¼ inf
k
yðkÞ þ sup

k
zðkÞ ¼ vþ A'b,

which yields a general proof of part (a).
For part (b), recall that y(k) :¼Akx, and that x satisfies Ax+ x. g

8 P. Butkovič et al.
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These results also apply to equations !x¼Axþ b when ! is invertible: it suffices
to divide this equation by !.

Remark 1 The solution set of x¼Axþ b is convex over S, since it contains with any
two points x, y all convex combinations !xþ$y, !þ$¼ 1. Further, both in max-
times semiring and in the nonnegative algebra, A'b is the only extreme point: it cannot
be a convex combination of two solutions different from it. The eigenvectors of A are
recessive rays, i.e., any multiple of such vectors can be added to any solution, and the
result will be a solution again. Moreover, only eigenvectors have this property.
Indeed, assume that z is a solution, zþ$v where $ 6¼ 0 satisfies

zþ $v ¼ Aðzþ $vÞ þ b,

but Av 6¼ v. In the usual algebra this is impossible. In max-times, assume that
(Av)i 6¼ vi for some i, then one of these is nonzero. As zi¼ (Az)iþ bi is finite, taking
large enough $ will make $vi or $(Av)i the only maximum on both l.h.s. and r.h.s., in
which case zþ$v will not be a solution. Thus, in both theories the eigencone of A
with eigenvalue 1 is the recessive cone of the solution set of x¼Axþ b. In the max-
times case it is generated by the fundamental eigenvectors as in Theorem 2.2. Thus
we have an example of the tropical theorem of Minkowski, representing closed max-
times convex sets in terms of extremal points and recessive rays, as proved by
Gaubert and Katz [14].

Remark 2 In this remark we recall the proof of Theorem 3.2 (a) given by Krivulin,
see [21, Lemma 7] or [23, Lemma 3.5]. We slightly change the original proof to make
it work also for nonnegative linear algebra. Let x be a solution of x¼Axþ b and
define w as the least vector w satisfying x¼ uþw where u :¼A'b. It can be defined
explicitly by

wi ¼
xi, if xi 4 ui,

0, if xi ¼ ui,

(
or wi ¼

xi ! ui, if xi 4 ui,

0, if xi ¼ ui,

(
ð15Þ

in the case of max-algebra and nonnegative linear algebra, respectively. Now notice
that if x¼ uþw then x¼ uþAw. Indeed

x ¼ Aðuþ wÞ þ b ¼ ðAuþ bÞ þ Aw ¼ uþ Aw:

Hence w+Aw. Indeed, both w :¼w and w :¼Aw satisfy x¼ uþw but w is the least
such vector. Defining v :¼ supn"1 A

nw we obtain x¼ uþ v and Av¼ v. The algebraic
generality of this argument is also quite high, it will be discussed in the last section of
this article.

3.2. Spectral condition, Frobenius trace-down method

We consider equation !x¼Axþ b in max-times algebra and nonnegative linear
algebra, starting with the case when A is irreducible. Theorem 3.5 can also be viewed
in nonnegative linear algebra, but only after some modification which will be
described. Denote A! :¼A/! and b! :¼ b/!.

The following is a max-times version of the Collatz–Wielandt identity in the
Perron–Frobenius theory.

Linear and Multilinear Algebra 9
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LEMMA 3.3 (Well-known, cf. [7,13]) Let A2Rn)n
þ ,A 6¼ 0: Then Ax+ !x has a

solution x> 0 if and only if !" "(A), !> 0.

Proof Let x> 0 be a solution, then Ax 6¼ 0 and so !> 0. If "(A)¼ 0 there is nothing
to prove, so we may suppose "(A)> 0. Let %¼ (i1, . . . , ik, ikþ1¼ i1) be any cycle with
nonzero weight. Then

ai1i2xi2 + !xi1 ,
ai2i3xi3 + !xi2 ,

. . .

aiki1xi1 + !xik :

After multiplying out and simplification we get ! " ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ai1i2ai2i3 . . . aiki1k
p

and so !" "(A).
Suppose now !" "(A), !> 0. Then "(A!)+ 1 and so A'! ¼ Iþ A! þ * * * þ Ak

!

for every k" n! 1, yielding A!A'! + A'!: Let u be any positive vector in Rn
þ: Take

x ¼ A'!u, then x> 0 because A'!u " u and

A!x ¼ A!A
'
!u + A'!u ¼ x:

g

LEMMA 3.4 (Well-known, cf. [7,28]) If A2Rn)n
þ is irreducible, b2Rn

þ, b 6¼ 0 and
!> 0 then the following are equivalent:

(i) !x¼Axþ b has a solution.
(ii) A'! converges.
(iii) !" "(A) (max-times algebra), !> "(A) (nonnegative linear algebra).

All solutions of !x¼Axþ b (if any) are positive.

Proof In the case of nonnegative matrix algebra, this lemma follows from the
results of Ostrowski’s famous paper [28] (where matrices appear as determinants),
see also [31, Lemma 5]. For the equivalence between (ii) and (iii) in max-times
algebra, refer e.g. [1,7,17]. (Both in max-times algebra and in the nonnegative linear
algebra, such equivalence holds also for reducible matrices.) For the reader’s
convenience we show the equivalence between (i) and (iii) in max-times algebra.

(iii)) (i): If !" "(A) then 1" "(A!), hence A'! and A'!b! converge. In this case, A'!b!
is the least solution by Theorem 3.1.
(i)) (iii): If Axþ b¼ !x then !> 0 and x 6¼ 0 since b 6¼ 0. We need to show that
x> 0, to apply Lemma 3.3.

If n¼ 1 then the result holds. Suppose now n> 1, thus "(A)> 0. Let
B¼ ("(A))!1A and $¼ ("(A))!1!. Then B has "(B)¼ 1, it is irreducible and
Bx+$x. Therefore B'> 0, thus B'x> 0. But B'x+$x and hence x> 0. By
Lemma 3.3 we obtain that !" "(A). g

Remark 3 Note that also for general (reducible) A, if b> 0 then for any solution x
of !x¼Axþ b we have x> 0, and hence !" "(A) by Lemma 3.4. However, this
condition is not necessary for the existence of a solution to Axþ b¼ !x, when b has
at least one zero component, see Theorem 3.5. If !< "(A) then some entries of A'! are
þ1 and it is not obvious from Theorem 3.2 whether a finite solution exists since the

10 P. Butkovič et al.
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product A'!b! may in general (if ! is too low) contain þ1. However if 0.(þ1) is
defined as 0 and the condition of Theorem 3.5 (iv) holds, then the þ1 entries of A'!
in A'!b! will always be matched with zero components of b!, and consequently A'!b!
will be a finite nonnegative vector.

Now we consider the general (reducible) case. The next result appears as the main
result of this article, describing the solution sets to Z-equations in max-times algebra
and nonnegative linear algebra.

THEOREM 3.5 Let A2Rn)n
þ be in FNF with classes Nj, j¼ 1, . . . , s. Let b2Rn

þ, ! " 0.
Denote J¼ { j;Nj! supp(b)} and " ¼ maxj2J "j (for the case when b¼ 0 and J¼ ;
assume that max ;¼ 0). The following are equivalent:

(i) System !x¼Axþ b has a solution.
(ii) System !x¼Axþ b has the least solution.
(iii) xð0Þ ¼ A'!b! converges.
(iv) If j2 J then ðAjjÞ'! converges.
(v) " + ! (max-times), or "5 ! (nonnegative linear algebra).

If any of the equivalent statements hold, then

(a) x0 is the least solution of !x¼Axþ b. For this solution, x0Ni
6¼ 0 when i2 J

and x0Ni
¼ 0 when i =2 J. The solution x0 is unique if and only if ! is not an

eigenvalue of A.
(b) Any solution x of (1) can be expressed as x¼ x0þ v where v satisfies Av¼ !v.

Proof We first treat the trivial case, when b¼ 0. In this case x0¼ 0 is a solution,
J ¼ ;, " ¼ 0 + ! and thus all the equivalent statements (i)–(iv) are true; (a) and (b)
hold trivially with x0¼ 0.

We now suppose b 6¼ 0. Consequently, !> 0, and assume w.l.o.g. that !¼ 1. The
equivalence of (i)–(iii) was manifested in Theorem 3.1, and part b) was proved in
Theorem 3.2. The equivalence of (iv) and (v) follows from Lemma 3.4. It remains to
show the equivalence of (i) and (iv), that the minimal solution has a prescribed
support, and the spectral criterion for uniqueness.

We show that (i) implies (iv). For simplicity we use the same symbol ‘J’ for the set
of indices in the classes of J. Denote I :¼ {1, . . . , n}nJ. We have

xI

xJ

) *
¼

AII 0

AJI AJJ

) *
xI

xJ

) *
þ

0

bJ

) *
, ð16Þ

and hence xI is a solution of AIIxI¼xI, and xJ is a solution of
xJ¼AJJxJþAJIxIþ bJ. Further, denote bJ :¼ AJIxI þ bJ and let J consist of the
classes N1, . . . ,Nt(t+ s). Then

AðJÞ ¼

A11 0 0 0

A21 A22 0 0

* * * * * * . .
.

0

At1 At2 * * * Att

0

BBBB@

1

CCCCA
:

We now proceed by an inductive argument, showing that (Ajj)
' converges for all

j¼ 1, . . . , t, and that all components in xN1 , . . . , xNt are positive. This argument is a
max-algebraic version of the Frobenius trace-down method.

Linear and Multilinear Algebra 11
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As the base of induction, we have xN1 ¼ A11xN1 þ bN1 . In this case, the class N1 is
final, so bN1 and hence bN1 should have some positive components. Using Lemma
3.4, we conclude that (A11)

' converges and xN1 is positive.

Induction step Suppose that for some l, all components of ðxN1 , . . . , xNlÞ solving

xN1 ¼ A11xN1 þ bN1 ,

xN2 ¼ A21xN1 þ A22xN2 þ bN2 ,

* * * ¼ * * *
xNl
¼ Al1xN1 þ * * * þ AllxNl

þ bNl

ð17Þ

are positive. We show that the same holds if we add the next equation

xNlþ1 ¼ Alþ1,1xN1 þ * * * þ Alþ1,lþ1xNlþ1 þ bNlþ1 , ð18Þ

and that (Alþ1,lþ1)
' converges. We have two cases: either bNlþ1 has nonzero

components so that Nlþ1 intersects with supp(b), or if not, Nlþ1 should access a class
which intersects with supp(b). In this case, one of the submatrices Alþ1,1, . . . ,Alþ1,l is
not identically 0. As all components of xN1 , . . . , xNl

are positive, this shows that the
sum on the r.h.s. of (18) excluding Alþ1,lþ1xNlþ1 has some positive components in any
case. Using Lemma 3.4, we conclude that (Alþ1,lþ1)

' converges and xNlþ1 is positive.
Now we show that (iv) implies (i), and moreover, that there is a solution with

prescribed support structure. To do so, we let xI¼ 0 in (16). Then it is reduced to
xJ¼AJJxJþ bJ, and we have to show the existence of a positive solution xJ. The
proof of this follows the lines of the Frobenius trace-down method described above,
making the inductive assumption that (17) has a positive solution ðxN1 , . . . , xNlÞ and
using Lemma 3.4 to show that (18) can be solved with a positive xNlþ1 . Strictly
speaking, in this case we have b instead of b in (17) and (18), but this does not make
any change in the argument.

Let the conditions (i)–(v) be satisfied. Since letting xI¼ 0 in (16) produces a
solution (see above), the support of the least solution is contained in J. However, the
support of any solution should contain J by the argument in the proof of (i)) (iv).

Evidently, solution x0 is unique if ! is not an eigenvalue of A. To show the
converse (in max-times algebra), note that for any nonzero v there is a large enough #
such that some component #vi is greater than x0i , hence x0þ #v 6¼x0. (Note that the
converse would be evident in the usual nonnegative algebra.)

The proof is complete. g

Remark 4 (cf. [2,25]) The Frobenius trace-down method of Theorem 3.5 can also be
viewed as a generalized block-triangular elimination algorithm for obtaining the least
solution A'b (assumed w.l.o.g. that !¼ 1). Namely, if ðxN1 . . . xNlÞ is the least solution
of (17), then computing

xNlþ1 :¼ ðAlþ1,lþ1Þ'ðAlþ1,1xN1 þ * * * þ Alþ1,lxNl þ bNlþ1Þ ð19Þ

yields the least solution ðxN1 , . . . , xNl , xNlþ1Þ of the enlarged system (17) and (18) with
b instead of ~b. Indeed, if we suppose that there is another solution ðx0N1

, . . . , x0Nlþ1
Þ,

then x0Ni
" xNi , and it follows from (19) that x0Nlþ1

" xNlþ1 . As an algorithm for
finding the least solution of x¼Axþ b, it is valid even for more general semirings
than the setting of Section 4, provided that a solution to x¼Axþ b exists.

12 P. Butkovič et al.
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Remark 5 The description of the support of x0 as in Theorem 3.5 (a) can be
obtained directly from the path interpretation of A', using that x0¼A'b (when this is
finite). Indeed, write b¼

P
k2supp(b) &kek where ek is the kth unit vector and &k are all

positive. Hence x0 ¼ A'b ¼
P

k2 suppðbÞ &kA
'
*k. It can be now deduced from the path

interpretation of A' that x0l 4 0 whenever l accesses k from supp(b). This argument
also shows that the description of the support of x0¼A'b is valid over any semiring
with no zero divisors. With zero divisors, the access condition for x0l 4 0 may be no
longer sufficient.

We have represented any solution x of x¼Axþ b in the form x0þ v, where
x0¼A'b and v¼ infkA

kx. Below we give an explicit formula for v in the case of max-
times algebra, see, e.g., Dhingra and Gaubert [10].

Let C be the set of critical nodes (i.e., nodes of the critical graph) corresponding
to the eigenvalue 1 (see Section 2.3). For any critical cycle (i1, . . . , ik) we either obtain
xil ¼ 0 for all l¼ 1, . . . , k, or both xil 6¼ 0 and aililþ1xilþ1 ¼ xil for all l (after
multiplying all inequalities aililþ1xilþ1+ xil and cancelling xi1 . . . xik it turns out that
any strict inequality causes ai1i2 . . . aiki1 5 1). This implies (Ax)C¼ xC, for the critical
subvectors of Ax and x. Applying A to x(k)¼A(k)x which also satisfies Ax(k)+ x(k) we
obtain that (Akx)C¼xC for any k, and hence also vC¼ xC.

It remains to determine the noncritical part of v. For this we expand the
non-critical part of Av¼ v as vN¼ANCvCþANNvN. Forming ANN corresponds to
eliminating all spectral nodes of eigenvalue 1 from the reduced graph R(A). The
nonspectral nodes with eigenvalue 1 will remain nonspectral, hence ANN does not
have eigenvalue 1, and (ANN)

'ANCvC is the only solution. Combining with the
previous argument we conclude that

vC ¼ xC, vN ¼ ðANNÞ'ANCxC: ð20Þ

3.3. Max-times algebra and nonnegative linear algebra

We can make further comparison with the survey of Schneider [32, Sect. 4], and with
the work of Hershkowitz and Schneider [19] describing solutions of Z-matrix
equations in nonnegative linear algebra. It can be seen that:

(1) In the nonnegative linear algebra, Theorem 3.5 extends the statements of
[32, Theorem 4.3] and [32, Theorem 4.12] (due to Victory [35]). In particular,
it gives an explicit formula for the least solution.

(2) Frobenius trace-downmethod is also used in the proof of [19, Proposition 3.6],
and condition (v) of Theorem 3.5 (with the strict inequality) is equivalent to
[19 condition (3.12)].

(3) As observed in [19, Theorem 3.16], in the case of nonnegative algebra, x0 is
the only vector with support J, because supp(b) cannot be accessed by the
spectral classes of R(A) in the case of solvability. However, this is not the case
in the max-times algebra, making it possible that all spectral classes of R(A)
access supp(b). This condition is necessary and sufficient for all solutions of
!x¼Axþ b to have the same support as A'b.

Linear and Multilinear Algebra 13
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(4) It can be observed that geometric and combinatorial descriptions of the
solution set in the usual nonnegative algebra, as provided by [19, Theorem 3.20
and Corollary 3.21], can be deduced from Theorem 3.5, with an application of
Frobenius–Victory theorem, see remark after Theorem 2.2. Max-times
analogues of these results of [19] can also be easily formulated.

We next give an example illustrating similarity and difference between the two
theories. Let A be the matrix

1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 1 0 0 0

0 0 0 0 1 0 2

0

BBBBBBBBBBB@

1

CCCCCCCCCCCA

:

We note that this matrix is essentially the same as in [19, Example 3.22], that is, we
have replaced I!A by A and its (reduced) graph R(A), given below on Figure 1,
differs from the one in that Example 3.22 only by the markings of the nodes.

Let b2R7
þ. It follows from Theorem 3.5 (iv) that there exists a solution x to the

max-times equation Axþ b¼ x if and only if supp(b), {1, 3, 4, 6}. In the usual
nonnegative algebra, the condition is more restrictive: supp(b), {4, 6}.

We choose

b ¼ 0 0 0 1 0 0 0
$ %T

as in [19, Example 3.22]. Then supp(b)¼ {4} and the minimal solution x0 of
Axþ b¼ x has support {4, 6} and equals

x0 ¼ 0 0 0 1 0 1 0
$ %T

in both theories.

1
1

1
3

1
2

0
6

0
4

0
5

2
7

Figure 1. The marked (reduced) graph of matrix A. Circles correspond to the nodes with the
greatest Perron root 1, the darker ones being spectral. Each node is marked by its Perron root
(inside) and by its number (outside).

14 P. Butkovič et al.

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f B

irm
in

gh
am

], 
[P

et
er

 B
ut

ko
vi

c]
 a

t 0
2:

26
 0

6 
Fe

br
ua

ry
 2

01
2 



In max-times algebra, {1} and {3} are spectral nodes, and the eigenvector cone
for the eigenvalue 1 is generated by

v1 ¼ 1 0 1 0 0 1 0
$ %T

and

v2 ¼ 0 0 1 0 0 1 0
$ %T

,

see Theorems 2.1 and 2.2. In the usual nonnegative algebra, {3} is the only spectral
node and any eigenvector is a multiple of v2.

In max-times algebra, the maximal support of a solution is {1, 3, 4, 6}. For
example take

y1 ¼ 2 0 3 1 0 3 0
$ %T

,

the max-times ‘sum’ of x0, 2v1 and 3v2. In the usual nonnegative algebra, the
maximal support is {3, 4, 6}, take

y2 ¼ x0 þ v2 ¼ 0 0 1 1 0 2 0
$ %T

,

as in [19]. Note that neither y1 is a solution in the usual sense, nor y2 is a solution in
the max-times sense.

Observe that for given A, b, if the usual Perron roots of all blocks in FNF are the
same as the max-times roots (as in the example above), the existence of a solution in
nonnegative algebra implies the existence in max-algebra (but not conversely).
Examples of vectors for which a solution exists with A as above in max-algebra but
not in nonnegative algebra are given by v1 and v2.

In the case of existence, minimal solutions have the same support in both
theories.

4. Algebraic generalizations

Here we describe general setting in which Theorems 3.1 and 3.2 of Section 3.1 hold.
Recall that a set S is called a semiring if it is equipped with operations of addition

þ and multiplication * satisfying the following laws:

(a) Addition is commutative aþ b¼ bþ a 8a, b2S.
(b) Multiplication distributes over addition a(bþ c)¼ abþ ac 8a, b, c2S.
(c) Both addition and multiplication are associative: aþ (bþ c)¼ (aþ b)þ c,

a(bc)¼ (ab)c 8a, b, c2S.
(d) There are elements 0 and 1 such that aþ 0¼ a, a1¼ 1 a¼ a, and a0¼ 0 a¼ 0

for all a2S.

The max-times algebra and the usual nonnegative algebra are semirings (also note
that any ring and any field is a semiring), see also other examples below. We consider
a semiring S endowed with a partial order+ , i.e. binary relation+ such that (1) a+ b,
b+ c imply a+ c, (2) a+ b, b+ a imply a¼ b, (3) a+ a. In the case of idempotent
addition (aþ a¼ a), one defines a canonical order by a+ b, aþ b¼ b.

Linear and Multilinear Algebra 15
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To model both max-times algebra and the usual nonnegative algebra, we may
assume that the following axioms are satisfied.

(A1) Any countable ascending chain (i.e., linearly ordered subset) in S bounded
from above has supremum, and any countable descending chain has infimum.

(A2) Addition is nondecreasing: aþ b" a and aþ b" b.
(A3) Both operations distribute over any supremum or infimum of any such chain

in S, i.e.
aþ sup

$
b$ ¼ sup

$
ðaþ b$Þ, a0 * sup

$
b$ ¼ sup

$
ða0 * b$Þ,

cþ inf
$
d$ ¼ inf

$
ðcþ d$Þ, c0 * inf

$
d$ ¼ inf

$
ðc0 * d$Þ,

ð21Þ

for any countable bounded ascending chain {b$},S, countable descending
chain {d$},S, elements a, c, a0, c0 2 S.

Axiom A2 implies that the semiring is nonnegative: a" 0 for all a, and
antinegative: aþ b¼ 0 implies a¼ b¼ 0. Axiom A3 implies that both arithmetic
operations are monotone.

The operations of S extend to matrices and vectors in the usual way. Moreover
we can compute matrix powers Ak for k" 0, where we assume A0¼ I, the identity
matrix, where all diagonal entries equal to 1 and all off-diagonal entries equal to 0.
The extension of notions of associated digraph and access relations is also evident,
provided that there are no zero divisors.

Note that partial order in S is extended to Sn and Sm)n (matrices with m rows
and n columns over S) componentwise. The monotonicity of addition and
multiplication is preserved. Moreover, distributivity (21) also extends to matrices
and vectors:

Aþ sup
$

B$ ¼ sup
$
ðAþ B$Þ, A0 * sup

$
B$ ¼ sup

$
ðA0 * B$Þ,

Cþ inf
$
D$ ¼ inf

$
ðCþD$Þ, C0 * inf

$
D$ ¼ inf

$
ðC0 *D$Þ:

ð22Þ

Here {B$}, {D$} are chains of matrices (ascending and descending, respectively),
where {B$} is bounded from above.

Indeed, the distributivity of addition is verified componentwise. Let us verify the
sup-distributivity for multiplication. Let n be the number of columns of C0. We have:

ðC0 * sup
$2N

D$Þik ¼
Xn

j¼1
c0ijð sup

$2N
d$jkÞ ¼ sup

'

Xn

j¼1
c0ijd

'ð j Þ
jk , ð23Þ

where N denotes a countable set and the last supremum is taken over all mappings '
from {1, . . . , n} to the natural numbers. The last equality is due to the scalar sup-
distributivity. Now denote ( :¼ maxnj¼1 'ð j Þ and observe that

Xn

j¼1
c0ijd

'ð j Þ
jk +

Xn

j¼1
c0ijd

(
jk, ð24Þ

since d (jk are ascending chains. This implies that in the last supremum of (23) we can
restrict maps ' to identity, obtaining that

sup
'

Xn

j¼1
c0ijd

'ð j Þ
jk ¼ sup

(

Xn

j¼1
c0ijd

(
jk ¼ sup

(
ðC0DÞik: ð25Þ

16 P. Butkovič et al.
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Thus the matrix sup-distributivity also holds. The inf-distributivity can be checked
along the same lines replacing infimum by supremum, and ascending chains by
descending chains.

It can be checked that axioms A1–A3 and matrix distributivity (22) provide
sufficient ground for the proofs of Theorems 3.1 and 3.2.

For the alternative proof of Theorem 3.2 given in Remark 2 the system A1–A3
has to be modified. Note that the main part of the proof after (15) does not need
anything but the existence of sups of bounded ascending chains and the distributivity
of addition over such sups. It is only the starting representation x¼ uþw, where
u¼A'b and w is the least vector w satisfying x¼ uþw, which may need more
than that.

We impose A1, A2 and the part of A3 asserting the distributivity of addition and
multiplication with respect to sup’s of ascending chains, which is needed for
Theorem 3.1, that is, for u¼A'b to be the least solution of x¼Axþ b. We also require
that there is at least one vector w satisfying x¼ uþw. This will hold if we impose the
following axiom.

(A4) For all a, c2S such that a+ c there is b2S such that aþ b¼ c.

In addition, in order to get the least w satisfying x¼ uþw, we impose the
distributivity of þ with respect to arbitrary inf ’s. Notice that in the case of an
idempotent semiring we define the order canonically (a+ b, aþ b¼ b), and the
axioms A2 and A4 are satisfied automatically.

Now we consider some examples of semirings where Theorems 3.1 and 3.2 are
valid. In particular, axioms A1–A3 are satisfied for these examples.

Examples 1,2 Max-times algebra, classical nonnegative algebra (see Prerequisites).

Example 3 (Max-min algebra) Interval [0, 1] equipped with a b :¼min(a, b) and
aþ b :¼max(a, b).

Example 4 (Lukasiewicz algebra) Interval [0, 1] equipped ab :¼max(0, aþ b! 1)
and aþ b :¼max(a, b).

Example 5 (Distributive lattices) Recall that a lattice is a partially ordered set [5]
where any two elements a, b have the least upper bound a_ b :¼ sup(a, b) and the
greatest lower bound a6 b :¼ inf(a, b). A lattice is called distributive if the following
laws hold:

a _ ðb ^ cÞ ¼ ða _ bÞ ^ ða _ cÞ, a ^ ðb _ cÞ ¼ ða ^ bÞ _ ða ^ cÞ: ð26Þ

When a lattice also has the lowest element ) and the greatest element >, it can be
turned into a semiring by setting ab :¼ a6 b, aþ b :¼ a m b, 0¼ ) and 1¼>. To
ensure that the axioms A1 and A3 hold, we require that the lattice is complete, i.e.,
that _#a# and 6&b& exist for all subsets {a#} and {b&} of the lattice, and that the
distributivity can be extended:

a _ ^&b& ¼ ^&ða _ b&Þ, b ^ _#a# ¼ _#ðb ^ a#Þ: ð27Þ

Max-min algebra is a special case of this example.

Example 6 (Idempotent interval analysis) Suppose that a1, a22S where S satisfies
A1–A3, and consider the semiring of ordered pairs (a1, a2), where a1+ a2 and the

Linear and Multilinear Algebra 17
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operations of S are extended componentwise. This semiring, satisfying A1–A3, is the
basis of idempotent interval analysis as introduced in [27].

Example 7 (Extended order complete vector lattices) We can consider a semiring of
all sequences (a1, a2, . . .) where ai2S and S satisfies A1–A3, with the operations
extended componentwise. A generalization of Example 6 is then a semiring of all
ordered sequences a1+ a2+ . . . where ai2S.

Example 8 (Semirings of functions) Further extension of Example 7 to functions on
a continuous domain is also evident (following [9,26]). As an example of a
subsemiring of functions satisfying A1–A3, one may consider convex functions on
the real line, equipped with the operations of componentwise max (as addition) and
componentwise addition (as multiplication). In the spirit of max-plus semiring, we
allow a function to take !1 values (which are absorbing). To verify A1–A3, recall
that a function f is convex if the set {(x, t) j t" f(x)} is convex (providing connection
to the well-known properties of convex sets). In particular, the addition corresponds
to the intersection of convex sets, and the multiplication corresponds to the
Minkowski sum of convex sets. Note that the inf of descending chain of convex
functions is also computed componentwise. As another example, we can consider a
semiring, where an element is a class of functions on a continuous domain different
only on a countable subset. Then, all countable sups or infs are well-defined, since
any two members of the class corresponding to such sup or inf will differ only on a
countable subset, and axioms A1–A4 are verified componentwise, as above.

Note that the Kleene star (3) always converges in Examples 3–5. Moreover, it can
be truncated for k" n, for an n) n matrix, so that A'¼ IþAþ * * * þAn!1, which
follows from the optimal path interpretation, the finiteness of associated digraph,
and because the matrix entries do not exceed 1. Hence A'b is well-defined for any A,
b, and x¼Axþ b is always solvable, with the solution set described by Theorem 3.2.
In Examples 6–8 the convergence of Kleene star should hold for the matrices
corresponding to each component of the semiring (for the last ‘subexample’,
excluding a countable subset of components).

Finally we observe that theorems formally like Theorems 3.1 and 3.2 of the
present article also hold in the case a linear operator leaving invariant a proper cone
in Rn, see [33, Theorem 3.1], where an analogue of Theorem 3.5 is also proved.
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[2] R.C. Backhouse and B.A. Carré, Regular algebra applied to path-finding problems, J. Inst.
Math. Appl. 15 (1975), pp. 161–186.

[3] R.B. Bapat, D. Stanford, and P. van den Driessche, The eigenproblem in max-algebra,
Technical Rep. DMS-631-IR, 1993.

18 P. Butkovič et al.
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[6] P. Butkovič, Max-algebra: The linear algebra of combinatorics? Linear Algebra Appl. 367

(2003), pp. 313–335.
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[28] A. Ostrowski, Über die Determinanten mit überwiegender Hauptdiagonale, Comment.
Math. Helv. 10 (1937), pp. 69–96.

Linear and Multilinear Algebra 19

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ity

 o
f B

irm
in

gh
am

], 
[P

et
er

 B
ut

ko
vi

c]
 a

t 0
2:

26
 0

6 
Fe

br
ua

ry
 2

01
2 



[29] K.H. Rosen, J.G. Michaels, J.L. Gross, J.W. Grossman, and D.R. Shier, Handbook of
Discrete and Combinatorial Mathematics, CRC Press, Taylor & Francis, Boca Raton,
2000.

[30] G. Rote, A systolic array algorithm for the algebraic path problem, Computing 34 (1985),
pp. 191–219.

[31] H. Schneider, The elementary divisors associated with 0 of a singular m-matrix, Proc.
Edinb. Math. Soc. 2 (1956), pp. 108–122.

[32] H. Schneider, The influence of the marked reduced graph of a nonnegative matrix on the
Jordan form and on related properties: A survey, Linear Algebra Appl. 84 (1986),
pp. 161–189.

[33] B.-S. Tam and H. Schneider, Linear equations over cones and Collatz–Wielandt numbers,
Linear Algebra Appl. 363 (2003), pp. 295–332.

[34] Y.-J. Tan, Eigenvalues and eigenvectors for matrices over distributive lattices, Linear
Algebra Appl. 283 (1998), pp. 257–272.

[35] H.D. Victory Jr, On nonnegative solutions to matrix equations, SIAM J. Algebraic Discrete
Methods 6 (1985), pp. 406–412.

20 P. Butkovič et al.
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