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Abstract
A max-plus matrix A is called weakly stable if the sequence (orbit)

x;A
 x;A2 
 x; :::

does not reach an eigenvector of A for any x unless x is an eigenvector.
This is in contrast to previously studied strongly stable (robust) matrices
for which the orbit reaches an eigenvector with any non-trivial starting
vector. Max-plus matrices are used to describe multiprocessor interac-
tive systems for which reachability of a steady regime is equivalent to
reachability of an eigenvector by a matrix orbit.

We prove that an irreducible matrix is weakly stable if and only if its
critical graph is a Hamiltonian cycle in the associated graph. We extend
this condition to reducible matrices. These criteria can be checked in
polynomial time.

AMS classi�cation: 15A18, 15A80, 93C55
Keywords: Steady regime; Reachability; Eigenspace; Stability

1 Introduction

Consider the system in which processors P1; :::; Pn work interactively and in
stages. In each stage all processors simultaneously produce components neces-
sary for the work of some or all other processors in the next stage. Let xi(k)
denote the starting time of the kthstage on Pi (i = 1; :::; n) and let aij denote
the duration of the operation at which processor Pj prepares the component
necessary for processor Pi in the (k+ 1)st stage (i; j = 1; :::; n). Then, avoiding
any delay, we have

xi(k + 1) = max(x1(k) + ai1; :::; xn(k) + ain) (i = 1; :::; n; k = 0; 1; :::): (1)

We refer to such a system as to a multiprocessor interactive system (MPIS). In
order to analyse such systems transparently and e¢ ciently, we denote a � b =
max(a; b) and a
 b = a+ b: Then (1) gets the form

xi(k + 1) = ai1 
 x1(k)� :::� ain 
 xn(k) (i = 1; :::; n; k = 0; 1; :::):
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If, moreover, the pair of operations (�;
) is extended to matrices and vectors
in the same way as in linear algebra then we obtain a compact expression

x(k + 1) = A
 x(k) (k = 0; 1; :::):

We say that an MPIS reaches a steady regime [13] if it eventually moves
forward in regular steps, that is if for some � and k0 we have x(k+1) = �
x(k)
for all k � k0. Equivalently, the time between the starts of consecutive stages
will eventually be the same constant for every processor. If this happens then
we have

A
 x(k) = �
 x(k) for all k � k0
and so x (k) is an eigenvector of A with respect to the pair of operations (�;
)
("max-eigenvector"), with associated eigenvalue �: Reaching stability is a desir-
able target and the task of achieving this is of fundamental importance for any
MPIS. Since

x(k) = A
 x(k � 1) = A2 
 x(k � 2) = ::: = Ak 
 x(0)

for every natural k; the questions that may be of operational interest are:
Q1: Given A 2 Rn�n and x 2 Rn is there a natural number k such that

Ak 
 x is a max-eigenvector of A?
Q2: Characterize matrices A (strongly stable) for which Ak 
x is an eigen-

vector for every x and su¢ ciently large k:
Q3: Characterize matrices A (weakly stable) for which Ak 
 x is not eigen-

vector for any x and any k unless x is an eigenvector itself.
Question Q1 for irreducible matrices can be answered using an O

�
n3 log n

�
algorithm [29], see also [5]. It is known that Ak 
 x always reaches a max-
eigenvector of some power of A (see Corollary 3.1 below) and the algorithm in
[29] in fact �nds the smallest natural number s such that Ak 
 x is a max-
eigenvector of As:
An e¢ cient characterization of strongly stable matrices is known [7] (note

that in that paper strongly stable matrices are called robust), see also [5]. The
aim of the present paper is to provide a full and e¢ cient characterization of
weakly stable matrices, that is to solve Q3.
We start by the de�nition of basic concepts of max-algebra and an overview

of selected results in this area (Section 2). Section 3 is an introduction to the
reachability problem. Then we characterize the irreducible and reducible weakly
stable matrices, respectively (Sections 4 and 5). Finally, for completeness, a brief
overview of the results for strongly robust matrices is given in Section 6.

2 Prerequisites

2.1 Max-algebra: Basic de�nitions and properties

In this section we give the de�nitions and an overview of those results of max-
algebra which will be instrumental for the formulations and proofs of the results
of this paper. For the proofs and more information about max-algebra the reader
is referred to [1], [3], [21] and [5].
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We will use the following notation: As usual R is the set of real numbers
and the symbol R will stand for R [ f�1g: If a; b 2 R then we set

a� b = max(a; b)

and
a
 b = a+ b:

Obviously, �1 plays the role of a neutral element for �: Throughout the paper
we denote �1 by " and for convenience we also denote by the same symbol the
"zero" vector, whose all components are �1; or a matrix whose all components
are �1: If a 2 R then the symbol a�1 stands for �a: We assume everywhere
that n � 1 is a natural number and denote N = f1; :::; ng :
By max-algebra (recently also called "tropical linear algebra") we under-

stand the analogue of linear algebra developed for the pair of operations (�;
),
extended to matrices and vectors as in conventional linear algebra. That is if
A = (aij); B = (bij) and C = (cij) are matrices of compatible sizes with entries
from R, we write C = A�B if cij = aij � bij for all i; j 2 N and C = A
B if

cij =
X�

k2N
aik 
 bkj = max

k
(aik + bkj)

for all i; j 2 N . If � 2 R then � 
 A = (�
 aij). Although the use of the
symbols 
 and � is common in max-algebra we will use the usual convention
of not writing the symbol 
: Thus in what follows the symbol 
 will not be
used and unless explicitly stated otherwise, all multiplications indicated are in
max-algebra.
A vector or matrix are called �nite if all their entries are real numbers. A

square matrix is called diagonal if all its diagonal entries are real numbers and
o¤-diagonal entries are ": A diagonal matrix with all diagonal entries equal to 0 is
called a unit matrix and denoted I: Obviously, AI = IA = A whenever A and I
are of compatible sizes. A matrix obtained from a diagonal matrix [unit matrix]
by permuting the rows and/or columns is called a generalized permutation matrix
[permutation matrix ]. It is known that in max-algebra generalized permutation
matrices are the only type of invertible matrices [13], [5].
If A is a square matrix then the iterated product AA:::A in which the symbol

A appears k-times will be denoted by Ak. By de�nition A0 = I.
The following is easily proved: if A;B 2 Rm�n and x; y 2 Rn then:

A � B =) Ax � Bx; (2)

x � y =) Ax � Ay:

We will often bene�t from the close link between matrices and digraphs. A
digraph is an ordered pair D = (V;E) where V is a nonempty �nite set (of
nodes) and E � V � V (the set of arcs). A subdigraph of D is any digraph
D0 = (V 0; E0) such that V 0 � V and E0 � E: If e = (u; v) 2 E for some u; v 2 V
then we say that e is leaving u and entering v: Any arc of the form (u; u) is
called a loop.
Let D = (V;E) be a digraph. A sequence � = (v1; :::; vp) of nodes in D is

called a path (in D) if p = 1 or p > 1 and (vi; vi+1) 2 E for all i = 1; :::; p � 1:
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The node v1 is called the starting node and vp the endnode of �, respectively.
The number p� 1 is called the length of � and will be denoted by l (�) : If u is
the starting node and v is the endnode of � then we say that � is a u� v path.
If there is a u � v path in D then v is said to be reachable from u, notation
u �! v. Thus u �! u for any u 2 V:
A path (v1; :::; vp) is called a cycle if v1 = vp and p > 1 and it is called an

elementary cycle if, moreover, vi 6= vj for i; j = 1; :::; p� 1; i 6= j: If there is no
cycle in D then D is called acyclic.
A digraph D is called strongly connected if u �! v for all nodes u; v in D.

A subdigraph D0 of D is called a strongly connected component of D if it is a
maximal strongly connected subdigraph of D; that is, D0 is a strongly connected
subdigraph of D and if D0 is a subdigraph of a strongly connected subdigraph
D00 of D then D0 = D00: All strongly connected components of a given digraph
D = (V;E) can be identi�ed in O (jV j+ jEj) time [31]. Note that a digraph
consisting of one node and no arc is strongly connected and acyclic; however, if
a strongly connected digraph has at least two nodes then it obviously cannot be
acyclic. Because of this singularity we will have to assume in some statements
that jV j > 1:
If A = (aij) 2 R

n�n
then the symbol FA will denote the digraph with the

node set N and arc set E = f(i; j) ; aij > "g : If FA is strongly connected then
A is called irreducible and reducible otherwise. Note that every 1 � 1 matrix
is irreducible, even if it is (") : This matrix is the only irreducible with an "
column. We will assume in some statements that the irreducible matrix under
consideration is di¤erent from "; this is merely to exclude the 1� 1 matrix (") :
The following three lemmas are easily seen:

Lemma 2.1 If A 2 Rn�n is irreducible and A 6= " then A has no " row and
column.

Note that a matrix may be reducible even if it has no " row and column (e.g.
I).

Lemma 2.2 If A 2 Rn�n has no " column and x 6= " then Akx 6= " for every
nonnegative integer k. Hence if A 2 Rn�n has no " column then Ak also has
no " column for every k. This is true in particular when A is irreducible and
A 6= ":

Lemma 2.3 If A 2 Rn�n has no " column and no " row then FA contains a
cycle.

A weighted digraph is D = (V;E;w) ; where (V;E) is a digraph and w is
a real function on E: All de�nitions for digraphs are naturally extended to
weighted digraphs. If � = (v1; :::; vp) is a path in (V;E;w) then the weight of
� is w(�) = w (v1; v2) + w (v2; v3) + ::: + w (vp�1; vp) if p > 1 and " if p = 1.
A path � is called positive if w(�) > 0. In contrast, a cycle � = (u1; :::; up)
is called a zero cycle if w (uk; uk+1) = 0 for all k = 1; :::; p � 1: Since w stands
for "weight" rather than "length", we will use the word "heaviest path/cycle"
instead of "longest path/cycle".
Given A = (aij) 2 R

n�n
the symbol DA will denote the weighted digraph

(N;E;w) where FA = (N;E) and w (i; j) = aij for all (i; j) 2 E: The digraph
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DA is said to be associated with the matrix A: If � = (i1; :::; ip) is a path in
DA then we denote w(�;A) = w(�) and it now follows from the de�nitions that
w(�;A) = ai1i2 + ai2i3 + :::+ aip�1ip if p > 1 and " if p = 1.

Let S � Rn: The set S is called a max-algebraic subspace if

�u� �v 2 S

for every u; v 2 S and �; � 2 R: The adjective "max-algebraic" will usually be
omitted.
A vector v = (v1; :::; vn)

T 2 Rn is called a max-combination of S if

v =
X�

x2S
�xx; �x 2 R (3)

where only a �nite number of �x are �nite. The set of all max-combinations of
S is denoted by span (S) :We set span (;) = f"g : It is easily seen that span (S)
is a subspace. If span (S) = T then S is called a set of generators for T: A
subspace T is called �nitely generated if there is a �nite set of generators for T:
Let v = (v1; :::; vn)

T 2 Rn; v 6= ": The max-norm or just norm of v is
kvk = max (v1; :::; vn) ; v is called scaled if kvk = 0: The set S is called scaled if
all its elements are scaled.
The set S is called dependent if v is a max-combination of S �fvg for some

v 2 S: Otherwise S is independent.
Let S; T � Rn: The set S is called a basis of T if it is an independent set of

generators for T: The following is of fundamental importance in max-algebra.

Theorem 2.4 If T is a �nitely generated subspace then there is a unique scaled
basis for T:

2.2 Max-algebra: the key tools

Given A 2 Rn�n, the symbol �(A) will stand for the maximum cycle mean of
A, that is:

�(A) = max
�
�(�;A); (4)

where the maximization is taken over all elementary cycles in DA; and

�(�;A) =
w(�;A)

l (�)
(5)

denotes the mean of a cycle �. Clearly, � (A) always exists since the number of
elementary cycles is �nite. However, it is easy to show [5] that � (A) remains
the same if the word "elementary" is removed from the de�nition.
We use the convention max ; = ": It follows that �(A) = " if and only if DA

is acyclic.

Example 2.5 If

A =

0@ �2 1 �3
3 0 3
5 2 1

1A
then the means of elementary cycles of length 1 are �2; 0; 1; of length 2 are
2; 1; 5=2; of length 3 are 3 and 2=3: Hence �(A) = 3:
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The maximum cycle mean of a matrix is of fundamental importance in max-
algebra because for any square matrix A it is the greatest (max-algebraic) eigen-
value of A; and every eigenvalue of A is the maximum cycle mean of some
principal submatrix of A (see Subsection 2.3 for details).
Computation of the maximum cycle mean from the de�nition is di¢ cult

except for small matrices since the number of elementary cycles in a digraph
may be prohibitively large in general. There are many algorithms of known or
unknown computational complexity for �nding the maximum cycle mean, for
references see [5]. An algorithm with lowest known computational complexity is
probably Karp�s algorithm [22], see also [5] for details, which �nds the maximum
cycle mean of an n � n matrix in O(n jEj) time where E is the set of arcs of
DA.

Lemma 2.6 If A = (aij) 2 R
n�n

has no " row or column then �(A) > ": This
is true in particular when A is irreducible and n > 1:

A matrix A 2 Rn�n is called de�nite if �(A) = 0 [8], [13]. Thus a matrix is
de�nite if and only if all cycles in DA are nonpositive and at least one has weight
zero. It is easy to check that �(�A) = ��(A) for any � 2 R: Hence (�(A))�1A
is de�nite whenever �(A) > ": The matrix (�(A))�1A will be denoted by A�.
Let A 2 Rn�n: A cycle � in DA is called critical if �(�;A) = �(A). We

denote by Nc (A) the set of critical nodes, that is nodes on critical cycles. These
nodes play an essential role in solving the eigenproblem (Subsection 2.3). If
i; j 2 Nc (A) belong to the same critical cycle then i and j are called equivalent
and we write i � j. Clearly, � constitutes a relation of equivalence on Nc (A) :
The critical digraph of A is the digraph CA with the set of nodes N ; the

set of arcs, notation Ec (A) ; is the set of arcs of all critical cycles. A strongly
connected component of CA is called trivial if it consists of a single node without
a loop, nontrivial otherwise. It is not di¢ cult to prove that all cycles in a critical
digraph are critical [3], [21], [5].

Given A 2 Rn�n we de�ne the following in�nite series

A+ = A�A2 �A3 � ::: (6)

and
A� = I �A+ = I �A�A2 �A3 � ::: . (7)

The matrix A+ is called the weak transitive closure of A and A� is the strong
transitive closure of A: Notice that AA� = A+ � A� and a+ij = a�ij if i 6= j:
The matrices A+ and A� are of fundamental importance in max-algebra as

they enable us to e¢ ciently describe all max-algebraic eigenvectors and �nite
subeigenvectors of A; respectively, see Subsection 2.3.
It is easily seen that the entries of A2 are the weights of heaviest paths of

length 2 for all pairs of nodes in DA: Similarly the entries of Ak (k = 1; 2; :::) are
the weights of heaviest paths of length k. Therefore the matrix A+ (if the series
converges) represents the weights of heaviest paths of any length. Motivated
by this fact A+ is also called the metric matrix corresponding to A [13]. We
deduce that A+ is �nite if A is irreducible, A 6= ". Note that A� is often called
the Kleene star.
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Lemma 2.7 Let A 2 Rn�n: Then (6) converges to a matrix with no +1 if and
only if �(A) � 0: If �(A) � 0 then

A+ = A�A2 � :::�Ak

and
A� = I �A�A2 � :::�Ak�1

for every k � n. If A is also irreducible and A 6= " then both A+ and A� are
�nite.

The following can also be immediately deduced:

Lemma 2.8 Let A 2 Rn�n be a de�nite matrix and A+ =
�
ij
�
: Then ii = 0

if and only if i 2 Nc(A): Hence if Nc(A) = N then A� = A+.

A matrix A = (aij) 2 R
n�n

is called increasing if aii � 0 for all i 2 N:
Obviously, A = I � A when A is increasing and so then there is no di¤erence
between A+ and A�:

Lemma 2.9 If A = (aij) 2 R
n�n

is increasing then x � Ax for every x 2 Rn:
Hence

A � A2 � A3 � :::. (8)

One of the most striking features of matrices in max-algebra is the periodicity
of matrix powers, which is expressed using the concept of cyclicity. If D0 is a
strongly connected component of a digraph D then the greatest common divisor
of all directed cycles in D0 is called the cyclicity of D0: The cyclicity of D;
notation �(D); is the least common multiple of the cyclicities of all strongly
connected components of D. The cyclicity of a digraph consisting of a single
node and no arc is 1 by de�nition. The cyclicity of a digraph can be found in
linear time [15]. A digraph D is called primitive if �(D) = 1 and imprimitive
otherwise. The cyclicity of A 2 Rn�n; notation � (A) ; is the cyclicity of its
critical digraph CA. We will use the adjectives "primitive" and "imprimitive"
for matrices in the same way as for their critical digraphs.
A matrix A 2 Rn�n is called ultimately periodic if there exist natural num-

bers p and T such that
Ak+p = (� (A))

p
Ak (9)

for every k � T: If A is ultimately periodic then the smallest value of p for which
a T satisfying (9) exists is called the period of A: If p is the period of A then
the smallest value of T for which (9) holds is called the transient of fAkg and
will be denoted by T (A).

Theorem 2.10 (Cyclicity Theorem) Every irreducible matrix A 2 Rn�n is
ultimately periodic and its period is equal to the cyclicity of A:

Theorem 2.10 has been proved for �nite matrices in [13]. A proof for general
matrices was presented in [9], see also [10] for an overview without proofs. A
proof in a di¤erent setting covering the case of �nite matrices is given in [24].
The general irreducible case is also proved in [2], [3], [19] and [21].
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2.3 Max-algebra: the eigenproblem

In this subsection we will give a brief overview of the methodology for solving
the max-algebraic eigenproblem.
The max-algebraic eigenvalue-eigenvector problem (brie�y eigenproblem) is

the following:
Given A 2 Rn�n, �nd all � 2 R (eigenvalues) and x 2 Rn; x 6= " (eigenvec-

tors) such that
Ax = �x:

This problem has been studied since the work of R. A. Cuninghame-Green
[12]. A full solution of the eigenproblem in the case of irreducible matrices has
been presented by R. A. Cuninghame-Green [13], [14] and M. Gondran and M.
Minoux [20], see also N. N. Vorobyov [32]. The general (reducible) case was
�rst presented by S. Gaubert [18] and R. B. Bapat, D. Stanford and P. van den
Driessche [4]. See also [7] and [5].
A key role in the solution of the eigenproblem is played by the maximum

cycle mean. It is the biggest eigenvalue for any matrix (therefore called the
principal eigenvalue) and although for an n � n matrix there may be up to n
other eigenvalues in total, each of them is the maximum cycle mean of some
principal submatrix. The maximum cycle mean of a matrix is also the only
eigenvalue whose associated eigenvectors may be �nite. Irreducible matrices
have no eigenvalues other than the maximum cycle mean. If the maximum
cycle mean is " then all eigenvectors can be described in a straightforward way;
we will therefore usually assume that the maximum cycle mean is �nite.
Let A 2 Rn�n: We denote by V (A; �) the set of all eigenvectors of A corre-

sponding to � 2 R; by V (A) the set of all eigenvectors of A and by �(A) the set
of all eigenvalues of A: The set V +(A) consists of �nite eigenvectors of A. It is
easily seen that V (A; �) [ f"g is a non-trivial subspace for each � 2 �: We will
therefore call V (A; �) [ f"g the eigenspace of A associated with the eigenvalue
�:
We �rst summarize how to �nd all eigenvectors associated with the principal

eigenvalue (principal eigenvectors) and then we proceed with other eigenvalues.
Note that A+� stands for (A�)

+
:

Theorem 2.11 Let A 2 Rn�n: Then

� �(A) is the greatest eigenvalue of A;

� if �(A) > " then at least one column of A+� has zero diagonal entry and
every such column is an eigenvector of A with associated eigenvalue �(A)
and

� if A is irreducible then there are no eigenvalues of A other than � (A),
that is V (A) = V (A; � (A)) :

Any column of A+� with zero diagonal entry will be called a fundamental
eigenvector of A: Clearly, when considering all possible max-combinations of a
set of fundamental eigenvectors (or, indeed, of any vectors), we may remove from
this set vectors that are multiples of some other. To be more precise, we say
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that two fundamental eigenvectors gi and gj are equivalent if gi = �gj for some
� 2 R. We can easily characterize equivalent fundamental eigenvectors using
the equivalence of critical nodes in the next statement (note that the relation
i � j has been de�ned in Subsection 2.1):

Theorem 2.12 [13] Suppose that A 2 Rn�n; �(A) > " and g1; :::; gn are the
columns of A+� =

�
ij
�
: Then

� i 2 Nc(A) if and only if ii = 0 and

� if i; j 2 Nc(A) then i � j if and only if gi = �gj for some � 2 R.

The following fundamental spectral theorem identi�es an essentially unique
basis of the eigenspace of A corresponding to the principal eigenvalue. Note
that this statement for irreducible matrices was already proved in [14].

Theorem 2.13 [2] Suppose that A 2 Rn�n; �(A) > " and g1; :::; gn are the
columns of A+� : Then

V (A; � (A)) =
n
A+� z; z 2 R

n
; zj = " for all j =2 Nc(A)

o
and we obtain a basis of V (A; �(A)) by taking exactly one gi for each equivalence
class in (Nc(A);s) :

If A is irreducible, A 6= "; then A+� is �nite and hence we also deduce:

Corollary 2.14 [13] If A 2 Rn�n is irreducible, A 6= "; and g1; :::; gn are the
columns of A+� then all eigenvectors of A are �nite and

V (A) = V +(A) =

�X�

i2N�
c (A)

�igi;�i 2 R
�
;

where N�
c (A) is any maximal set of non-equivalent critical nodes of A:

Corollary 2.15 If A 2 Rn�n is irreducible, A 6= " and Nc(A) = N then

V (A) = V +(A) =
�
A+� z; z 2 R

n
	
:

We now discuss how to �nd all max-algebraic eigenvalues of a matrix. It is

important that spectral properties of matrices are preserved by certain types of
transformations. The �rst straightforwardly follows from the de�nitions.

Lemma 2.16 If � 2 R and A is a square matrix then

� �(�A) = f��;� 2 �(A)g and

� V (�A) = V (A) :

9



If B = P�1AP for some generalized permutation matrix P then we say that
A and B are similar (notation A � B). If, moreover, P is a permutation matrix
then A and B are said to be directly similar (notation A � B). If, on the other
hand, P is a diagonal matrix then we say that B has been obtained from A by
diagonal similarity scaling (brie�y matrix scaling) (notation A � B). Clearly
all these relations are relations of equivalence.

If A � B then FA = FB ; if A � B then FA can be obtained from FB by
a renumbering of the nodes or, equivalently, A can be obtained from B by a
simultaneous permutation of the rows and columns.
Let P be a generalized permutation matrix, Ax = �x; x 6= ": Then�

P�1AP
� �
P�1x

�
= �

�
P�1x

�
and P�1x 6= ": Hence we deduce:

Lemma 2.17 If A and B are square matrices and B = P�1AP; where P is a
generalized permutation matrix, then we have:

� �(A) = �(B) and

� V (B) =
�
P�1x;x 2 V (A)

	
:

The following standard notation will be useful: If

1 � i1 < i2 < ::: < ik � n;K = fi1; :::; ikg � N

then A[K] denotes the principal submatrix0@ ai1i1 ::: ai1ik
::: ::: :::
aiki1 ::: aikik

1A
of the matrix A = (aij) and x[K] denotes the subvector (xi1 ; :::; xik)

T of the
vector x = (x1; :::; xn)T 2 R

n
.

If D = (N;E) is a digraph and K � N then D[K] denotes the induced
subgraph of D; that is

D[K] = (K;E \ (K �K)):

Every matrix A = (aij) 2 R
n�n

can be transformed by simultaneous per-
mutations of the rows and columns in linear time to a Frobenius normal form
[25] 0BB@

A11 " ::: "
A21 A22 ::: "
::: ::: ::: :::
Ar1 Ar2 ::: Arr

1CCA ; (10)

where A11; :::; Arr are irreducible square submatrices of A. If A is in a Frobenius
normal form then the corresponding partition of the node set N of DA will be
denoted as N1; :::; Nr and these sets will be called classes (of A). It follows that
each of the induced subgraphs DA[Ni] (i = 1; :::; r) is strongly connected and
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an arc from Ni to Nj in DA exists only if i � j: As a slight abuse of language
we will also say for simplicity that �(Ajj) is the eigenvalue of Nj :
If A is in the Frobenius normal form (10) then the condensation digraph,

notation C (A) ; is the digraph

(fN1; :::; Nrg; f(Ni; Nj); (9k 2 Ni)(9` 2 Nj)ak` > "g):

Observe that C (A) is acyclic.
Recall that the symbol Ni �! Nj means that there is a directed path from

a node in Ni to a node in Nj in C (A) (and therefore from each node in Ni to
each node in Nj in DA).
Due to Lemma 2.17 we may assume without loss of generality that A is in a

Frobenius normal form, say (10). It is intuitively clear that all eigenvalues of A
are among the unique eigenvalues of diagonal blocks. However, not all of these
eigenvalues are also eigenvalues of A: The following key result appeared for the
�rst time independently in the thesis [18] and [4], see also [5] and [7].

Theorem 2.18 (Spectral Theorem) Let (10) be a Frobenius normal form of a
matrix A 2 Rn�n: Then

�(A) = f�(Ajj);�(Ajj) = max
Ni!Nj

�(Aii)g:

Note that if a diagonal block, say Ajj has � (Ajj) = �, it still may not
satisfy the condition �(Ajj) = maxNi!Nj

�(Aii) and may therefore not provide
any eigenvectors. It is therefore necessary to identify blocks that satisfy this
condition: If

�(Ajj) = max
Ni!Nj

�(Aii)

then Ajj (and also Nj or just j) will be called spectral. Thus �(Ajj) 2 �(A)
if j is spectral but not necessarily the other way round. We can immediately
deduce:

Corollary 2.19 All initial blocks are spectral.

Also, it follows that the number of eigenvalues does not exceed n and ob-
viously, � (A) = maxi �(Aii) which con�rms that � (A) is indeed always an
eigenvalue.

Lemma 2.20 If x is an eigenvector with xi �nite for some i 2 Ns and some s
then xj is �nite for every j; j �! i and in particular for every j 2 Ns:

It remains to explain how to �nd a basis of the eigenspace associated with a
general eigenvalue � 2 �: Let A 2 Rn�n be in the Frobenius normal form (10),
N1; :::; Nr be the classes of A and R = f1; :::; rg: Suppose � 2 �(A); � > " and
denote

I(�) = fi 2 R;�(Ni) = �;Ni spectralg:
Note that �(��1A) = ��1�(A) may be positive since � � �(A) and thus
(��1A)+ = (ij) may now include entries equal to +1 (see Lemma 2.7). Let
us denote

Nc(A; �) =
S

i2I(�)
Nc(Aii) =

(
j 2 N ; jj = 0; j 2

S
i2I(�)

Ni

)
:

11



Two nodes i and j in Nc(A; �) are called � - equivalent (notation i �� j) if
i and j belong to the same cycle of cycle mean �:

Theorem 2.21 Suppose that A 2 Rn�n and � 2 �(A); � > ". Let g1; :::; gn
be the columns of (��1A)+: Then gj 2 R

n
(that is gj does not contain a +1

component) for all j 2 Nc(A; �);

V (A; �) =
n
�(��1A)z; z 2 Rn; z 6= "; zj = " for all j =2 Nc(A; �)

o
and a basis of V (A; �) can be obtained by taking exactly one gj for each ��
equivalence class.

Corollary 2.22 The spectrum �(A) and bases of V (A; �) for all � 2 �(A) can
be found using O(n3) operations.

Note that if the set I(�) consists of only one index then V (A; �) can alter-
natively be found as follows: If I(�) = fjg then de�ne

M2 =
S

Ni!Nj

Ni;M1 = N �M2:

Hence V +(A[M2]) 6= ; and

V (A; �) = fx;x[M1] = "; x[M2] 2 V +(A[M2])g:

2.4 Subeigenvectors and visualization scaling

If A 2 Rn�n and � 2 R then a vector x 2 Rn; x 6= " satisfying

Ax � �x (11)

is called a subeigenvector of A with associated eigenvalue � and we denote

V� (A; �) =
n
x 2 Rn;Ax � �x; x 6= "

o
:

Finite subeigenvectors are of particular importance and can easily be described:

Theorem 2.23 [5] Let A 2 Rn�n; A 6= ". Then the following statements hold:

(a) Ax � �x has a �nite solution if and only if � � � (A) and � > ":

(b) If � � � (A) and � > " then

V� (A; �) \ Rn =
n�
��1A

��
z; z 2 Rn

o
:

Lemma 2.24 Let A 2 Rn�n be irreducible: If Ax � �x; x 6= " then x is �nite,
that is

V�(A; �) = fx 2 Rn;Ax � �xg :

12



Corollary 2.25 If A is irreducible, A 6= " then

V�(A; � (A)) =
�
A+� z; z 2 R

n
	
:

Using matrix scaling [28], [30], [17], [26], [27] it is possible to simplify the
structure of a matrix, while preserving its spectral properties. In particular, it
enables us to "visualize" some features, such as the entries corresponding to the
arcs on critical cycles.
We say that A = (aij) 2 R

n�n
is visualized if

aij � � (A) for all i; j 2 N: (12)

Since for every (i; j) 2 Ec (A) the entry aij contributes to an average equal to
� (A) it is easy to see that (12) actually implies

aij = � (A) for all (i; j) 2 Ec (A) : (13)

If x = (x1; :::; xn)
T 2 Rn then the symbol diag (x) stands for the diagonal

matrix whose diagonal entries are x1; :::; xn:

Theorem 2.26 [28], [30] If A 2 Rn�n, � (A) > "; x 2 V� (A) \ Rn and X =
diag (x) then X�1AX is visualized.

As before, let g1; :::; gn be the columns of A
+
� : Note that due to Corollary

2.25 for the vector x in Theorem 2.26 we can take for instance
P�

j2Ngj :
A matrix A is called strictly visualized if it is visualized and

aij = � (A) if and only if (i; j) 2 Ec (A) :

Theorem 2.27 [28], [30] If A 2 Rn�n is irreducible, A 6= "; x =
P

j2N�jgj
(conventional linear combination), �1; :::; �n > 0 and X = diag (x) then X�1AX
is strictly visualized.

It follows from this theorem that the identi�cation of the critical digraph
can be done e¢ ciently, in a polynomial number of steps.
Note that the strict visualization scaling for reducible matrices (not needed

in this paper) is slightly more evolved. The reader is referred to [30] and [5] for
details.
Following Lemma 2.17 we will assume in some statements without loss of

generality that the matrix is visualized.

2.5 Max-linear systems

One-sided max-linear systems Ax = b; where A = (aij) 2 Rm�n and b =
(b1; :::; bm)

T 2 Rm were historically probably the �rst problem studied in max-
algebra [11]. We will only need the case when A has no " columns and rows and
b 2 Rm: The existence of a solution and unique solution in this case can easily
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be expressed in terms of set coverings and minimal set coverings. As before
N = f1; :::; ng and we now also denote M = f1; :::;mg,

S(A; b) =
n
x 2 Rn;Ax = b

o
and x = (x1; :::; xn)T ; where

xj =

�
max
i2M

aijb
�1
i

��1
for j 2 N: Obviously, x 2 Rn and

xj = min
�
bia

�1
ij ; i 2M;aij 2 R

	
for j 2 N . We will also denote

Mj =
�
i 2M ;xj = bia�1ij

	
for j 2 N:

Theorem 2.28 If A 2 Rm�n is a matrix with no " columns and rows and
b 2 Rm then the following three statements are equivalent:

1. S(A; b) 6= ;;

2. x 2 S(A; b);

3.
S
j2N Mj =M:

The set of all solutions can also be described in combinatorial terms:

Theorem 2.29 [12], [33] If A 2 Rm�n is a matrix with no " columns and rows
and b 2 Rm then x 2 S(A; b) if and only if x � x and[

j:xj=xj

Mj =M; (14)

The combinatorial aspect of max-linear systems will become even more vis-
ible in the following criterion for unique solvability:

Theorem 2.30 If A 2 Rm�n is a matrix with no " columns and rows and
b 2 Rm then S(A; b) = fxg if and only if

1.
S
j2N Mj =M and

2.
S
j2N 0Mj 6=M for any N 0 � N;N 0 6= N:

Note that �nding minimal vectors in the solution to Ax = b reduces to the
hypergraph transversal problem [23]. Using this observation e¢ cient algorithms
for �nding all minimal solutions to Ax = b have recently been published [16].
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3 Reachability of eigenspaces by matrix orbits

Given A 2 Rn�n and x 2 Rn the sequence of vectors Ax;A2x;A3x; ::: is called
the orbit (of A with starting vector x). For A 2 Rn�n we denote by attr (A)

the set of all starting vectors from which the orbit reaches an eigenvector, that
is

attr (A) =
n
x 2 Rn; (9k � 0)Akx 2 V (A)

o
:

The set attr (A) is called the attraction set of A: We also denote for � 2 R :

attr (A; �) =
n
x 2 Rn; (9k � 0)Akx 2 V (A; �)

o
:

For stability it is important that once it is reached it can be guaranteed
in subsequent stages, that is x 2 V (A) =) Ax 2 V (A) and hence also x 2
V (A) =) Akx 2 V (A) for every k � 0: However, this is not true in general for
eigenvectors associated with � = " : For instance if

A =

�
" "
0 "

�
and x = (0; ")

T then Ax = ("; 0)
T 2 V (A; ") but A2x = ("; ")

T
=2 V (A; ") :

Therefore we will assume everywhere that A has only �nite eigenvalues. Equiv-
alently, A has no " columns.
On the other hand if � > " then x 2 V (A; �) implies Ax 2 V (A; �) since

A (Ax) = A (�x) = �Ax and Ax 6= " since Ax = �x and x 6= ": Hence if A has
no " columns we have

V (A) � attr (A) � Rn � f"g :

A is called strongly stable (robust in [7]) if attr (A) = Rn � f"g and it is
called weakly stable if attr (A) = V (A): Note that in the de�nition of attraction
sets the exponent k starts from 0 and thus the 1 � 1 matrix A = (") is both
strongly and weakly stable since V (A) = Rn � f"g = attr (A) :
A remarkable feature of irreducible matrices is that although orbits with

matrix A do not necessarily reach an eigenvector of A; they are guaranteed to
reach an eigenvector of some power of A :

Corollary 3.1 If A 2 Rn�n is irreducible and x 2 Rn; x 6= " then Akx 2
V (A�(A)) for some natural number k:

Proof. By Cyclicity Theorem we have Ak+�(A)x = (� (A))�(A)Akx; which can
also be written as

A�(A)
�
Akx

�
= (� (A))

�(A) �
Akx

�
:

It remains to add that Akx 6= " by Lemma 2.2.
The basic reachability question, Q1 (see Section 1) is solved by anO

�
n3 log n

�
algorithm presented in [29]. In fact that algorithm �nds the smallest value of
s for which a given orbit reaches V (As) by converting this question to �nding
exact period of a periodic number sequence.
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The aim of this paper is to characterize matrices whose attraction set coin-
cides with the set of eigenvectors, that is the weakly stable matrices. Note that
a brief overview of the known characterization of strongly stable matrices [7],
[5] is given in Section 6.
Suppose that A is weakly stable. Let P be a generalized permutation matrix,

B be the matrix P�1AP and suppose that Bkz 2 V (B). Then for x = Pz we
have: �

P�1AP
�k
z =

�
P�1AkP

�
P�1x

= P�1Akx 2 V (B) :

By Lemma 2.17 then Akx 2 V (A): Hence x 2 V (A) and by the same lemma
then P�1x 2 V (B) : Thus z 2 V (B) and B is weakly stable. We have proved:

Lemma 3.2 If A and B are square matrices, A � B; then A is weakly stable
if and only if B is weakly stable.

At the same time V (�A) = V (A) for � 2 R by Lemma 2.17 and (�A)k =
�kAk and so we deduce:

Lemma 3.3 If A and B are square matrices, B = �A; then A is weakly stable
if and only if B is weakly stable.

When we investigate weak stability, due to the last two lemmas we may, if
necessary, assume without loss of generality that the matrix under consideration
is de�nite and visualized. Note that every 1� 1 matrix A is weakly stable since
then V (A) = R:

Lemma 3.4 Let A 2 Rn�n. Then the following are equivalent:

(a) A is weakly stable.

(b) For any x; if Ax 2 V (A) then x 2 V (A):

Proof. (a) =) (b) Follows from the de�nition immediately.
(b) =) (a) If Akx 2 V (A) then Ak�1x 2 V (A); :::; x 2 V (A); hence A is

weakly stable.
Recall that the set of subeigenvectors of A associated with � 2 R is

V�(A; �) =
n
x 2 Rn;Ax � �x; x 6= "

o
:

It will be helpful also to work with the set of supereigenvectors of A associated
with � 2 R :

V �(A; �) =
n
x 2 Rn;Ax � �x; x 6= "

o
:

Lemma 3.5 V (A; � (A)) � V �(A; � (A)) � attr (A; � (A)) for every A 2 Rn�n

with � (A) > ":
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Proof. First inclusion is trivial. For the second suppose that Ax � � (A)x; x 6=
": Then

x � A�x � A2�x � ::: � An�x � An+1� x � ::::

Since A� is de�nite we have A
+
� x = A

n
�x = A

n+1
� x 6= "; hence An�x 2 V (A�; 0) =

V (A; � (A)) by Lemma 2.17. Therefore Anx = (� (A))nAn�x 2 V (A; � (A)) and
so x 2 attr (A; � (A)) :

Lemma 3.6 If A 2 Rn�n is weakly stable and � (A) > " then

V (A; � (A)) = V �(A; � (A)) = attr (A; � (A)) :

Proof. Suppose V (A) = attr (A) : Due to Lemma 3.5 we only need to prove
attr (A; � (A)) � V (A; � (A)) : Let x 2 attr (A; � (A)) :HenceAkx 2 V (A; � (A))
for some k; that is

Ak+1x = � (A)Akx and Akx 6= " (15)

Since attr (A; � (A)) � attr (A) = V (A) we also have that

Ax = �x

for some � 2 R: This implies that

Ak+1x = �Akx

which together with (15) yields � = � (A) and thus x 2 V (A; � (A)) :

4 Weakly stable matrices - the irreducible case

If A is irreducible then V (A) = V (A; � (A)) and so attr (A) = attr (A; � (A)) :
Also, recall that A can only have �nite subeigenvectors (Lemma 2.24), in par-
ticular V�(A; � (A)) � Rn:

Lemma 4.1 V (A) � V�(A; � (A)) � attr (A) if A 2 R
n�n

is irreducible.

Proof. First inclusion is trivial. For the second suppose Ax � � (A)x; x 6= ";
then we have by the Cyclicity Theorem (for k big enough):

Ap+kx � � (A)Ap+k�1x � ::: � (� (A))pAkx = Ap+kx:

Hence all inequalities are satis�ed with equality and (using also Lemma 2.2)
Ap+k�1x 2 V (A); thus x 2 attr (A) :
The next statement follows from Lemmas 3.5 and 4.1.

Corollary 4.2 If A is irreducible then (see Fig. 1)

V (A) = V�(A; � (A)) \ V �(A; � (A)) � V�(A; � (A)) [ V �(A; � (A)) � attr (A) :

Lemma 4.3 Let A 2 Rn�n be irreducible, A 6= ". Then V (A) = V�(A; � (A))
if and only if every node in DA is critical (that is Nc(A) = N).
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Attr(A)

V*(A,λ(A))

V(A)

V*(A,λ(A))

Figure 1: Sub- and supereigenvectors of irreducible matrices

Proof. Without loss of generality suppose that A 6= " and let A be de�nite.
Suppose that V (A) = V�(A; � (A)) and a node, say k; is not critical. Then

a+kk < 0 = a
�
kk and AA

�
k � A�k 6= " but

AA�k = A
+
k 6= A

�
k:

Hence A�k 2 V�(A)� V (A):
If all nodes are critical then A� = A+ and the statement follows from

V (A) =
�
A+z; z 2 Rn

	
;

V�(A) = fA�z; z 2 Rng ;

due to Corollary 2.25 and Corollary 2.15, respectively.

Corollary 4.4 If A 2 Rn�n is irreducible and weakly stable then Nc(A) = N:

Lemma 4.5 If A 2 Rn�n is de�nite, Nc(A) = N and Ax 2 V (A) then Ax � x:

Proof. A+ is increasing since Nc(A) = N . Also, Ax 2 V (A) implies Ax =
A2x = A3x = ::: and hence by Lemma 2.9

x � A+x = Ax�A2x�A3x� ::: = Ax:

Lemma 4.6 If A 2 Rn�n is irreducible and weakly stable then CA is strongly

connected.
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Proof. Suppose CA is not strongly connected. Take any strongly connected
component of CA and renumber the nodes so that this component consists of
the �rst, say k; nodes. By the corresponding simultaneous permutation of the
rows and columns of A we obtain the matrix�

A11 A12
A21 A22

�
;

where A11 is k � k; k < n; � (A11) = � (A) and CA11 is strongly connected. Let
z 2 V (A11): Then

A

�
z
"

�
=

�
A11z �A12"
A21z �A22"

�
=

�
� (A) z
A21z

�
� � (A)

�
z
"

�
:

Since
�
z
"

�
=2 V (A) (because V (A) contains only �nite vectors) and

�
z
"

�
2

V �(A; � (A)), we have by Lemma 3.6 that A is not weakly stable.
A digraph with one node and no arc is called trivial, otherwise it is called

non-trivial.

Lemma 4.7 If D is a non-trivial strongly connected digraph and D is not an
elementary cycle then there is a node in D with two or more incoming arcs.
Similarly for outcoming arcs.

Proof. If there is exactly one incoming arc at every node then an elementary
cycle can be constructed (following the arcs backwards) starting from any node.
Since D is not an elementary cycle there is a node, say x; not on this cycle. But
then the nodes on the cycle are not reachable from x as these nodes have no more
than one incoming arc. This is a contradiction with the strong connectivity of
D.
Next statement is a key result of this paper. In the proof v (�) denotes the

vector whose every component is �:

Theorem 4.8 An irreducible matrix A 2 Rn�n; A 6= " is weakly stable if and
only if its critical digraph is an elementary cycle containing all nodes of the
associated digraph, that is CA is a Hamiltonian cycle in DA:

Proof. Due to Corollary 4.4 and Lemmas 3.4, 3.3, 3.2 and 4.6 it is su¢ cient to
prove that if A is de�nite, visualized, Nc(A) = N and CA is strongly connected
then the following two statements are equivalent:

1. For any x; if Ax 2 V (A) then x 2 V (A):

2. CA is an elementary cycle.

If CA is strongly connected, Nc(A) = N and A is visualized, A � 0 then all
nodes in DA are accessible from each other by a zero path. Hence the weights
of heaviest paths between any pair of nodes is 0: Therefore A+ = 0 and all
eigenvectors are v (�) ; � 2 R.
Suppose that CA is an elementary cycle, say �. All arcs on � have weight

0 since A is visualized. If any arc not on � also had weight 0 then it would be
on some critical cycle and consequently, CA is not an elementary cycle. Hence
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A is actually strictly visualized, all column maxima are unique, of value 0; and
column maxima in di¤erent columns are in di¤erent rows. Hence Ax = v (�) has
a unique solution (Theorem 2.30), namely x = v (�) ; yielding that x 2 V (A):
Suppose that CA is not an elementary cycle. Since CA is strongly connected

by Lemma 4.7 there is a node with two or more incoming arcs, thus there is a
column of A with two or more zeros, implying that the system of the sets of
column maxima indices is a covering of the set of row indices but not minimal.
Hence there is a solution to Ax = v (�) whose components are � � with at least
one equality and one strict inequality (Theorem 2.29). This solution is not in
V (A):
It follows from Theorem 2.27 that CA can be found in a polynomial number

of steps. It is then easy to check whether CA is a Hamiltonian cycle in DA: We
can however formulate a problem formulated in terms of weakly stable matrices
equivalent to the Hamilton cycle problem, which thus embodies the hardness of
the Hamilton cycle problem: Given a strongly connected digraph D, is it possible
to assign the weights to the arcs of D so that the obtained weighted digraph is
DA for some weakly stable matrix A?

5 Weakly stable systems - the reducible case

We will now suppose without loss of generality that A 2 Rn�n is in the Frobenius
normal form (10) and denote R = f1; :::; rg: Let N1; :::; Nr be the partition of
N determined by the Frobenius normal form. Any Ns; s 2 R and in fact also
the index s will be called a class. Recall that all initial classes are spectral. A
class s 2 R is called weakly stable if Ass is weakly stable. As usual for x 2 R

n

we denote supp (x) = fj;xj 6= "g :
If x is an eigenvector then the set T = supp (x) is the union of certain

classes, inaccessible from any j 2 N � T [5]: Clearly, � = � (A [T ]) : Any set
T = supp (x) for some eigenvector x will be called spectral (note that every
spectral set contains as a subset the union of a number of classes, including at
least one spectral). A set T will be called weakly stable if A [T ] is weakly stable.

Lemma 5.1 If A 2 Rn�n is weakly stable then every spectral set is weakly
stable.

Proof. Let B = A [T ] ; where T = supp (x) and x is an eigenvector. Suppose
that Bku is an eigenvector of B: Since the indices in T are inaccessible from any
j 2 N � T; we can simultaneously permute the rows and columns of A so that
we get

D =

�
C "
::: B

�
:

The corresponding permutation of x yields y =
�
"
u

�
: We then have Dky =�

"
Bku

�
: The matrix D is weakly stable (Lemma 3.2). Also, Dky is an eigen-

vector of D since Bku is an eigenvector of B: Hence y is an eigenvector of D
and thus u is an eigenvector of B and so B is weakly stable.
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Lemma 5.2 If A 2 Rn�n is weakly stable then every initial class is also weakly
stable.

Proof. Every initial class is spectral (Corollary 2.19) and so the statement
immediately follows from Lemma 5.1.

Theorem 5.3 Let A 2 Rn�n: Then A is weakly stable if and only if every
spectral class is initial and weakly stable.

Proof. In this proof we suppose without loss of generality (Lemma 3.2) that A
is in the Frobenius normal form (10).
Suppose thatA is weakly stable. Due to Lemma 5.2 for the �rst implication it

is su¢ cient to prove that every spectral class is initial. To obtain a contradiction
suppose that a class, say s; is spectral but not initial. Let � be the associated
eigenvalue and S be the set of all spectral classes from which s is accessible; thus
S � fsg 6= ;. Then there is an x 2 V (A; �) such that x [Ns] 6= " and x [Ni] = "
for i =2 S: By Lemma 2.20 every such eigenvector has x [Ni] �nite for all i 2 S:
Let us denote

T =
[
i2S

Ni:

Clearly � = � (A [T ]) = � (A [Ns]),

A [T ]x [T ] = �x [T ]

and T is weakly stable by Lemma 5.1. The matrix A [Ns] = Ass is irre-
ducible. Let us take any vector z 2 Rn such that z [Ns] 2 V (A [Ns]) � Rn and
zi = " for i =2 Ns: Then A [Ns] z [Ns] = �z [Ns] ; yielding A [T ] z (T ) � �z (T )
and consequently, z 2 V � (A [T ] ; � (A [T ])) : However, by Lemma 2.20 z =2
V (A [T ] ; � (A [T ])) since z [Ns] is �nite and zi = " for at least one index i 2 T
because S � fsg 6= ;. This contradicts the weak stability of A [T ] since by
Lemma 3.6 V � (A [T ] ; � (A [T ])) = V (A [T ] ; � (A [T ])) if A [T ] is weakly stable.
Suppose now that each spectral class of A is initial and weakly stable. If

Ax 2 V (A; �) for some � then (Ax) [Ni] is �nite for i 2 S � R; where S
is a set of spectral classes with eigenvalue �: Also (Ax) [Ni] = " for i =2 S
since all spectral classes are initial. By Lemma 2.2 then x[Ni] = " for i =2 S:
Hence (Ax) [Ni] = Aiix[Ni] 2 V (Aii; �) for all i 2 S: Since Aii is weakly stable
x [Ni] 2 V (Aii; �) for every i 2 S and thus x 2 V (A; �) : Using Lemma 3.4 we
conclude that A is weakly stable.

Corollary 5.4 A 2 Rn�n is weakly stable if and only if every initial class is
weakly stable and the (unique) eigenvalue of every non-initial class is strictly less
than the eigenvalue of any initial class from which it is accessible. See Figure
2.
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…

λ1 λ2 λs

< λ1  < λ1  < λ2  < λs  < λs

Figure 2: Condensation digraph of a weakly stable matrix

6 Strongly stable matrices

In order to provide a full picture on reachability in this section we present here
the main results on strongly stable matrices [7], [5], that is matrices for which
attr (A) = Rn � f"g :

Lemma 6.1 If A � B then A is strongly stable if and only if B is strongly
stable .

Due to this lemma we may without loss of generality investigate strong sta-
bility of the matrix arising from a given matrix by a simultaneous permutation
of the rows and columns, that is in a Frobenius normal form.

Theorem 6.2 [6] Let A 2 Rn�n be irreducible. Then A is strongly stable if
and only if A is primitive.

A Frobenius normal form block is called trivial if it is the 1� 1 matrix ("):

Theorem 6.3 Let A 2 Rn�n be a matrix with no " columns and in the Frobe-
nius normal form (10) with classes N1; :::; Nr and R = f1; :::; rg: Then A is
strongly stable if and only if the following hold:

1. All non-trivial classes N1; :::; Nr are spectral and primitive.

2. For any i; j 2 R; if Ni; Nj are non-trivial mutually inaccessible classes
then �(Ni) = �(Nj):

22



A typical condensation digraph of a strongly stable matrix can be seen in
Figure 3, where �1 < �2 < �3 < �4: In general it consists of layers of classes.
Classes in each layer have the same eigenvalues and these values are strictly in-
creasing with layers. Also, any two consecutive layers form a complete bipartite
digraph with all arcs directed from the layer with smaller eigenvalues to that
with greater eigenvalues.

7 Conclusions and further research

This paper fully characterizes weakly stable matrices, that is matrices whose
orbit never reaches an eigenvector unless it starts in one. The characterization
enables us to check that a matrix is weakly stable in a polynomial number of
steps. As a by-product the paper o¤ers a view of eigenspaces as intersections of
super- and sub-eigenspaces, which proves to be a useful tool when considering
periodic properties of matrices.
Weakly stable matrices are those which are stable with respect to the prob-

lem of describing all x such that Ax is an eigenvector. In this paper we showed
how to describe such matrices combinatorially. In general, the space of vectors
x such that Akx is an eigenvector, includes the eigenspace, and the sequence
of such spaces grows with k, stabilizing at some stage due to the Cyclicity
Theorem (in the irreducible case). It may be interesting to ask for a combina-
torial criterion characterizing sequences that would stabilize in no more than
m steps (m-weakly stable matrices). The hypergraph transversal problem [16],
[23] might be useful in answering this question.
We also note the importance of supereigenspaces which, in contrast to subeigenspaces,

seem to be much harder to describe and to our knowledge no such description
has been found yet.
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