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1. Introduction

The purpose of this paper is to investigate the interplay arising between max algebra, convexity

and matrix scaling. A nonnegative matrix A is called visualized if all its elements are less than or equal

to the maximum cycle geometric mean λ(A) of A, and it is called strictly visualized if, further, there

is strict inequality for the entries which do not lie on critical cycles. Given a nonnegative matrix A,

the chief aim of this paper is to identify and characterize in several ways diagonal matrices X with a

positive diagonal for which X−1AX is strictly visualized, see Theorems 3.3, 3.7, 4.2 and 4.4.

In Section 2, we revisit and appropriately summarize the theory of max algebraic eigenvectors and

subeigenvectors, and some properties of Kleene stars.

Sections 3 and 4 contain our principal results. In Section 4 our chief tool is the Kleene star A∗
of A (defined for a definite matrix), and the max algebraic cone V∗(A). The latter consists of the

subeigenvectors of A for the eigenvalue λ(A) or, equivalently, of the eigenvectors of A∗. We call V∗(A)
the subeigencone of A. It is also a convex cone. Diagonal matrices X corresponding to vectors x in its

relative interior of the subeigencone are precisely the matrices X that strictly visualize A, see Theorem

3.7. Among those vectors x are all linear combinations of the columns of A∗ with positive coefficients,

see Theorem 3.3.

While in Section 3 our approach is convex geometric, the main idea of Section 4 is to start with a

strictly visualized matrix and to describe all strict visualizers in matrix theoretic terms, see Theorem

4.2. We also show that the dimension of the linear hull of the subeigencone V∗(A) equals the number

of components of the critical graph of the Kleene star A∗, see Theorem 4.4. At the end of the sectionwe

showbyexample that themaxalgebraic dimensionofV∗(A)mayexceed its linear algebraic dimension.

The interplay between max algebra (essentially equivalent to tropical algebra) and convexity, here

explored via visualization, is also important for tropical convexity, see the papers [15,31,32], among

many others. We also note that visualization scalings can be important for max algebra, due to the

connections with the theory of 0–1matrices that they provide. See [16,17,39] for recent developments

and applications of this idea.

2. Eigenvectors and subeigenvectors

Bymax algebrawe understand the analogue of linear algebra developed over themax-times semir-

ing Rmax,× which is the set of nonnegative numbers R+ equipped with the operations of “addition”

a ⊕ b:= max(a, b) and the ordinary multiplication a ⊗ b:=a × b. The operations of the semiring are

extended to the nonnegative matrices and vectors in the same way as in conventional linear algebra.

That is if A = (aij), B = (bij) and C = (cij) are matrices of compatible sizes with entries from R+, we

write C = A ⊕ B if cij = aij ⊕ bij for all i, j and C = A ⊗ B if cij = ∑⊕
k aikbkj = maxk(aikbkj) for all

i, j. If α ∈ R+ then αA = (αaij). We assume everywhere in this paper that n� 1 is an integer. Pn will

stand for the set of permutations of the set {1, . . . , n}, and the sets like {1, . . . ,m} or {1, . . . , n} will be

denoted by [m] or [n], respectively. If A is an n × nmatrix then the iterated product A ⊗ A ⊗ · · · ⊗ A

in which the symbol A appears k times will be denoted by Ak .

Max algebra is often presented in settingswhich seem to be different fromRmax,×, namely, over the

max-plus semiringRmax,+ = (R ∪ {−∞},⊕ = max,⊗ = +)and themin-plus (or tropical) semiring

Rmin,+ = (R ∪ {+∞},⊕ = min,⊗ = +). The semirings are isomorphic to each other and toRmax,×.

In particular, x �→ exp(x) yields an isomorphism between Rmax,+ and Rmax,×.

Let A = (aij) ∈ R
n×n+ . Themax algebraic eigenproblem consists in finding λ ∈ R+ and x ∈ Rn+\{0}

such that A ⊗ x = λx. If this equation is satisfied, then λ is called a max algebraic eigenvalue of A and

x is called a max algebraic eigenvector of A associated with the eigenvalue λ.
We will also be interested in the max algebraic subeigenvectors associated with λ, that is, nonzero

x ∈ Rn+ such that A ⊗ x � λx. Their first appearance in max algebra seems to be [22, Chapter IV] and

[23]. For a more recent reference, see generalization of the max-plus spectral theory [1], where they

are called super-eigenvectors.

Next we explain two notions important for both the eigenproblem and the subeigenproblem: that

of the maximum cycle mean and that of the Kleene star.
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Let A = (aij) ∈ R
n×n+ . The weighted digraph DA = (N(A), E(A)), with the set of nodes N(A) = [n]

and the set of edges E(A) = N(A) × N(A) with weights w(i, j) = aij , is called the digraph associated

with A. Suppose that π = (i1, . . . , ip) is a path in DA, then the weight of π is defined to be w(π , A) =
ai1i2ai2i3 · · · aip−1ip if p > 1, and 1 if p = 1. If i1 = ip then π is called a cycle. A path π is called positive

ifw(π , A) > 0. A path which begins at i and ends at j will be called an i → j path. Themaximum cycle

geometric mean of A, further denoted by λ(A), is defined by the formula

λ(A) = max
σ

μ(σ , A),

where the maximization is taken over all cycles in the digraph and

μ(σ , A) = w(σ , A)1/k

denotes the geometric mean of the cycle σ = (i1, . . . , ik , i1).
If the series I ⊕ A ⊕ A2 ⊕ · · · converges to a finite matrix, then this matrix is called the Kleene star

of A and denoted by A∗ = (a∗
ij). The next proposition gives a necessary and sufficient condition for a

matrix to be a Kleene star.

Proposition 2.1 [4]. Let A = (aij) ∈ R
n×n+ . The following are equivalent:

1. A is a Kleene star;
2. A∗ = A;
3. A2 = A and aii = 1 for all i = 1, . . . , n.

The next theorem explains some of the interplay between the maximum cycle geometric mean

λ(A), the Kleene star A∗, and the max algebraic eigenproblem.

Theorem 2.2 [4,5,12,13,40]. Let A ∈ R
n×n+ . Then

1. the series I ⊕ A ⊕ A2 ⊕ · · · converges to a finite matrix A∗ if and only if λ(A) � 1, and then A∗ =
I ⊕ A ⊕ A2 ⊕ · · · ⊕ An−1 and λ(A∗) = 1;

2. λ(A) is the greatest max algebraic eigenvalue of A.

This theoremshowsgreat similarity betweenmaxalgebra andnonnegative linear algebra.However,

it also reveals a crucial difference: the series I ⊕ A ⊕ A2 ⊕ A3 ⊕ · · · converges also if λ(A) = 1.

A ∈ R
n×n+ is called irreducible if for any nodes i and j in DA a positive i → j path exists.

Proposition 2.3 [4,13]. If A is irreducible and λ(A) � 1, then A∗ has all entries positive.

More generally, it is important that Kleene stars accumulate the paths with greatest weights.

Namely, if i /= j then a∗
ij = maxw(π , A) where π ranges over paths from i to j.

Matrices with λ(A) = 1 are called definite.

Results involving a Kleene star A∗ will be stated for definite matrices. There is no real loss of gener-

ality here in the case ofmatrices Awithλ(A) > 0. Indeed, for any such Awehave thatλ(αA) = αλ(A),
and if α > 0, then any eigenvector of A associated with λ(A) is also an eigenvector of αA associated

with λ(αA) and conversely. Hence if λ(A) > 0, then the eigenproblems for A and A/λ(A), which is

definite, are equivalent.

Note that λ(A) = 0 implies that A contains a zero column, and then eigenvectors and subeigenvec-

tors are just vectors x satisfying xi = 0 whenever the corresponding column A·i /= 0. In what follows,

we will not treat this trivial case and we will always assume that λ(A) > 0.

The spaces that we consider in max algebra are subsets of Rn+ closed under componentwise max-

imization ⊕, and scalar multiplication. They are called max cones, due to the apparent analogy and

important connections with conventionally convex cones in Rn+.
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The set consisting of the zero vector and all subeigenvectors of A associated with λ(A) will be

denoted by V∗(A). The set consisting of the zero vector and all eigenvectors associated with λ(A) will

be denoted by V(A). Both sets are max cones, and hence V(A) will be called the eigencone of A, and

V∗(A) will be called the subeigencone of A. Next we study some simple relations between V(A) and

V∗(A). The first one is immediate.

Proposition 2.4. V(A) ⊆ V∗(A).

Further we denote by span⊕(A) themax algebraic column span of A, which is the set ofmax combi-

nations
{∑⊕

i λiA·i, λi ∈ R+
}
of the columns of A. Note that V(A) ⊆ span⊕(A) for any matrix A.

Proposition 2.5. If A is definite, then V∗(A) = V(A∗) = V∗(A∗) = span⊕(A∗).

Proof. First note that by Theorem 2.2, if λ(A) = 1 then A∗ exists and λ(A∗) = 1. Now we show that

V∗(A) = V(A∗). Suppose that A∗ ⊗ x = x, then A ⊗ x � x, because A� A∗. If A ⊗ x � x, then (I ⊕ A) ⊗
x = x and also A∗ ⊗ x = x, since Am ⊗ x � x for anym (due to the monotonicity of matrix multiplica-

tion). As (A∗)∗ = A∗ by Proposition 2.1, we also have that V∗(A∗) = V(A∗).
We show that V∗(A) = span⊕(A∗). As A ⊗ A∗ � A∗, each column of A∗ is a subeigenvector of A,

hence span⊕(A∗) ⊆ V∗(A). The converse inclusion follows from V∗(A) = V(A∗) and the inclusion

V(A∗) ⊆ span⊕(A∗). �

A matrix Awill be called strongly definite, if it is definite and if all its diagonal entries equal 1. Note

that any Kleene star is strongly definite by Proposition 2.1.

Proposition 2.6. For A a strongly definite matrix, V(A) = V∗(A).

Proof. ToestablishV(A) = V∗(A), it is enoughtoshowV∗(A) ⊆ V(A), as theconverse inclusion is trivi-
ally true. Take y ∈ V∗(A).Wehave that

∑⊕
j /= i aijyj ⊕ yi � yi which is equivalent to

∑⊕
j /= i aijyj ⊕ yi = yi,

so y ∈ V(A). �

By the above propositions, the subeigenvectors of A, and in the strongly definite case also the

eigenvectors of A, are described as the vectors from the max algebraic column span of A∗, which we

call Kleene cone.

More generally, a set S is called a generating set for a max cone K , written K = span⊕(S), if every

vector y ∈ K can be expressed as amax combination y = ∑m
i=1

⊕λix
i of some elements x1, . . . , xm ∈ S,

withλi � 0 for i ∈ [m]. A set S is called a (weak) basis for K if span⊕(S) = K and none of the vectors in S

can be expressed as amax combination of the other vectors in S. A vector y ∈ K is called amax extremal

of K , if y = u ⊕ w, u,w ∈ K implies that y = u or y = w. The set of max extremals u of K scaled with

respect to themax norm, whichmeans that ||u|| = maxi ui = 1, will be denoted by ext⊕(K). We have

the following general result describing max extremals of closed max cones.

Theorem 2.7 [11,24]. If K ⊆ Rn+ is a closed max cone, then the set ext⊕(K) is non-empty and it is the

unique scaled basis for K.

IfK = span⊕(A) for somematrixA, thenK is closed, so the set ext⊕(span⊕(A))denoted by ext⊕(A)
for brevity, is non-empty and constitutes the unique scaled basis for span⊕(A). In this case the vectors

of ext⊕(A) are some of the columns of A scaled with respect to the max norm.

Nextwe describe the eigencone and the subeigencone of A ∈ R
n×n+ , and the sets of their scaledmax

extremals, in the case λ(A) > 0. For this we will need the following notions and notation. The cycles

with the cycle geometric mean equal to λ(A) are called critical, and the nodes and the edges of DA that

belong to critical cycles are called critical. The set of critical nodes is denoted byNc(A), the set of critical
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edges is denoted by Ec(A), and the critical digraph of A, further denoted by C(A) = (Nc(A), Ec(A)), is
the digraph which consists of all critical nodes and critical edges of DA. All cycles of C(A) are critical

[4]. The set of nodes that are not critical is denoted by Nc(A). By C∗(A) we denote the digraph with

the set of nodes [n] and the set of edges E∗
c (A) containing all the loops (i, i) for i ∈ [n] and such

that (i, j) ∈ E∗
c (A), for i /= j, if and only if there exists an i → j path in C(A). The following theorem

describes both subeigencone and eigencone in the case when A is definite. For two vectors x and y, we

write x ∼ y if x = λy for λ > 0.

Theorem 2.8. Let A ∈ R
n×n+ be a definite matrix, and let M(A) denote a fixed set of indices such that for

each strongly connected component of C(A) there is a unique index of that component in M(A). Then A∗ is

strongly definite, and

1. the following are equivalent: (i, j) ∈ Ec(A), aija
∗
jk = a∗

ik for all k ∈ [n], a∗
kj = a∗

kiaij for all k ∈ [n].
2. the following are equivalent: (i, j) ∈ E∗

c (A), A
∗·i ∼ A∗·j , A∗

i· ∼ A∗
j ;

3. any column of A∗ is a max extremal of span⊕(A∗);
4. V(A) is described by

V(A) =
⎧⎨
⎩

∑
i∈M(A)

⊕
λiA

∗·i; λi ∈ R+

⎫⎬
⎭ ,

and ext⊕(V(A)) is the set of scaled columns of A∗ whose indices belong to M(A);
5. for any y ∈ V∗(A) and any (i, j) ∈ Ec(A) we have aijyj = yi;
6. V∗(A) is described by

V∗(A) = V(A∗) =
⎧⎪⎨
⎪⎩

∑
i∈M(A)

⊕
λiA

∗·i ⊕
∑

j∈Nc(A)

⊕
λjA

∗·j; λi, λj ∈ R+

⎫⎪⎬
⎪⎭ ,

and ext⊕(V∗(A)) = ext⊕(A∗) is the set of scaled columns of A∗ whose indices belong to M(A) ∪
Nc(A).

Proof. Statements 1–4 are well-known [4,13,14,22,26].

We show 5: By Proposition 2.5, any y ∈ V∗(A) is a max combination of the columns of A∗. Let
(i, j) ∈ Ec(A), then part 1 implies that aijzj = zi for any z = A∗·k , k ∈ [n]. As y is a max combination of

all these, it follows that aijyj = yi.

We show6: By Proposition 2.5wehaveV∗(A) = span⊕(A∗) and any columnofA∗ is amax extremal

of span⊕(A∗) by part 3. By 2 we have that A∗·i ∼ A∗·j if and only if (i, j) ∈ E∗
c (A), hence all the columns

inM(A) are independentmax extremals and any other columnswith indices inNc(A) are proportional
to them. Also note that there are no edges (i, j) ∈ E∗

c (A) such that i /∈ Nc(A) or j /∈ Nc(A) except for the

loops, and therefore all columns in Nc(A) are also independent max extremals. �

The number of connected components of C(A) will be denoted by n(C(A)). For a finitely generated

max cone K the cardinality of its unique scaled basis will be called the max algebraic dimension of K .

Parts 4 and 6 of Theorem 2.8 yield the following corollary.

Proposition 2.9. For any matrix A ∈ R
n×n+ with λ(A) > 0 we have that the max algebraic dimension of

V(A) is equal to n(C(A)), and the max algebraic dimension of V∗(A) is equal to n(C(A)) + |Nc(A)|.
For x ∈ Rn+ denote by diag(x) the diagonal matrix with entries δijxi, for i, j ∈ [n], where δij is the

Kronecker symbol (that is, δij = 1 if i = j and δij = 0 if i /= j). Note that the max algebraic multipli-

cation by a diagonal matrix is not different from the conventional multiplication, and therefore the

notation ⊗ will be omitted in this case. If x is positive, then X = diag(x) is invertible both in max

algebra and in the ordinary linear algebra, and the inverse X−1 has entries δijx
−1
i , for i, j ∈ [n]. The
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spectral properties of a matrix A do not change significantly if we apply a diagonal similarity scaling

A �→ X−1AX , where X = diag(x), with a positive x ∈ Rn+.

The following proposition follows very easily from results in the diagonal scaling literature, see,

e.g. Remark 2.9 of [18].

Proposition 2.10. Let A ∈ R
n×n+ and let B = X−1AX, where X = diag(x), with positive x ∈ Rn+. Then

1. w(σ , A) = w(σ , B) for every cycle σ , hence λ(A) = λ(B) and C(A) = C(B);
2. V(A) = {Xy|y ∈ V(B)} and V∗(A) = {Xy|y ∈ V∗(B)};
3. A is definite if and only if B is definite, and in this case B∗ = X−1A∗X.

3. Subeigenvectors, visualization and convexity

We call x ∈ Rn+ a nonnegative linear combination (resp. a log-convex combination) of y1, . . . , ym ∈
Rn+, if x = ∑m

i=1 λiy
i with λi � 0 (resp. x = ∏m

i=1(y
i)λi with λi � 0 and

∑m
i=1 λi = 1, and both power

andmultiplication taken componentwise). The combinations are called positive if λi > 0 for all i. A set

K ⊆ Rn+ is called a convex cone (resp. a log-convex set), if it is stable under linear combinations (resp.

under log-convex combinations).

In max arithmetics, a ⊕ b� c is equivalent to a� c and b� c. Using this, one can write out a system

of very special homogeneous linear inequalities which define the subeigencone of A, and hence this

cone is also a convex cone and a log-convex set.

Proposition 3.1. Let A ∈ R
n×n+ and λ(A) > 0. Then V∗(A) is a max cone, a convex cone and a log-convex

set.

Proof. We have that

V∗(A)={y|A ⊗ y� λ(A)y} =
⎧⎨
⎩y|∑

j

⊕
aijyj � λ(A)yi ∀i

⎫⎬
⎭

={y|aijyj � λ(A)yi ∀i, j}.
Each set {y|aijyj � λ(A)yi} is a max cone, a convex cone and a log-convex set, hence the same is true

about V∗(A), which is the intersection of these sets. �

The log-convexity in (R+\{0})n (i.e. in the max-times setting) corresponds to the conventional

convexity in Rn (i.e., themax-plus setting or themin-plus setting). We also note that {y|aijyj � λ(A)yi}
and hence V∗(A) are closed under some other operations. In particular, V∗(A) is closed under compo-

nentwise p-norms ⊕p defined by (y ⊕p z)i = (y
p
i + z

p
i )

1/p for p > 0.

Proposition 3.1 raises a question whether or not there exist max cones containing positive vectors,

which are finitely generated and convex, other than Kleene cones. The results of [32] suggest that the

answer is negative.

Let K be a convex cone, then y ∈ K is called an extremal of K if and only if y = λu + μv, where

u, v ∈ K , implies y ∼ u (and hence also y ∼ v). The set of scaled extremals of K will be denoted by

ext(K).

Proposition 3.2. Let A ∈ R
n×n+ and λ(A) > 0, then ext⊕(V∗(A)) ⊆ ext(V∗(A)).

Proof. Without loss of generality we assume that A is definite. By Theorem 2.8 part 6, ext⊕(V∗(A)) is
the set of scaled columns of A∗, after eliminating the repetitions. As a∗

ika
∗
kk = a∗

ik , for all i, k ∈ [n], we

have that the x :=A∗·k satisfies a∗
ikxk = xi for all i ∈ [n]. As V∗(A) = V∗(A∗) by Proposition 2.5, we have
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that a∗
ikzk � zi for any z ∈ V∗(A) and all i ∈ [n], implying that if x = λz1 + μz2 with z1, z2 ∈ V∗(A),

then a∗
ikz

s
k = zsi for all i ∈ [n] and s = 1, 2. Hence z1 ∼ x and z2 ∼ xmeaning that x ∈ ext(V∗(A)). �

We note that the convex extremals ext(V∗(A)) correspond to the pseudovertices of tropical poly-

tropes [32] (Kleene cones in themin-plus setting), and it is known that the number of thesemay be up

to (2(n − 1))!/(n − 1)! [15,32], unlike the number of max extremals ext⊕(V∗(A)) which is not more

than n.

Max algebraic subeigenvectors give rise to useful diagonal similarity scalings. A matrix A is called

visualized (resp. strictly visualized), if aij = λ(A) for all (i, j) ∈ Ec(A), and aij � λ(A) for all (i, j) /∈ Ec(A)
(resp. aij < λ(A) for all (i, j) /∈ Ec(A)).

In the context of max algebra, visualizations have been used to obtain better bounds on the con-

vergence of the power method [16,17]. Strong links between diagonal scaling and max algebra were

established in [9].

Specifically, Corollary 2.9 of [9] shows that for a definite A ∈ R
n×n+ , X−1AX is visualized if and only

if X = diag(x) where x is nonnegative linear combination of the columns of A∗ that is positive.

Strict visualization was treated in a special case [8], in connection with the strong regularity of

max-plus matrices.

A preliminary version of the following theorem appeared in [10].

Theorem 3.3. Let A ∈ R
n×n+ be definite and X = diag(x) with positive x ∈ Rn+. Then X−1AX is strictly

visualized if any of the following conditions are true:
1. x is a positive linear combination of all columns of A∗;
2. A is irreducible and x is a positive log-convex combination of all columns of A∗.

Proof. The following argument goes for both cases. In both cases, x is positive: for positive linear

combinations this is true since a∗
ii = 1 for all i, and for positive log-convex combinations, Proposition

2.3 assures that A∗ is positive if A is irreducible. As x ∈ V∗(A), we have that aijxj � xi for all i, j. By

Theorem2.8 part 5, aijxj = xi for all (i, j) ∈ Ec(A). If (i, j) /∈ Ec(A), then, by Theorem2.8 part 1, aijzj < zi
for z = A∗·i, while aijzj � zi for all z = A∗·k where k ∈ [n]. After summing these inequalities for all z = A∗·k
with positive coefficients, or after raising them in positive powers and multiplying, we obtain that

aijxj < xi, taken into account the strict inequality for z = A∗·i. Thus x is positive, x
−1
i aijxj = 1 for all

(i, j) ∈ Ec(A) and x
−1
i aijxj < 1 for all (i, j) /∈ Ec(A). �

Note that if A is definite, then every column of A∗ can be used to obtain a visualization of A, which

may not be strict. This result was known to Afriat [2,3] and Fiedler and Pták [20,21], and it has been a

source of inspiration for many works on scaling problems, see [18,19,27,35–38].

Theorem 3.3 implies the following.

Proposition 3.4. Let A have λ(A) > 0, then there exists X = diag(x) with positive x ∈ Rn+ such that

X−1AX is strictly visualized.

If A is definite and irreducible then A∗ is irreducible, and in this case A∗ has an essentially unique

positive linear algebraic eigenvector, called the Perron eigenvector [6]. As it is a positive linear combi-

nation of the columns of A∗, we have the following.

Proposition 3.5. Let A ∈ R
n×n+ be definite and irreducible and let x be the Perron eigenvector of A∗. Then

X−1AX , for X = diag(x), is strictly visualized.

Wewill now give a topological description of strict visualization scalings, using the linear hull and

relative interior of V∗(A).
By Theorem2.8 part 5, for all y ∈ V∗(A) and (i, j) ∈ Ec(A)wehave aijyj = yi. This can be formulated

geometrically. For A ⊆ Rn+ consider the set

L(C(A)) = {x ∈ Rn|aijxj = λ(A)xi ∀(i, j) ∈ Ec(A)}.
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This is a linear subspace of Rn which contains both V∗(A) (as its convex subcone) and V(A) (as a max

subcone of V∗(A)). If B = X−1AX with X = diag(x) and x positive, then, by Proposition 2.10, we have

C(A) = C(B), and we infer that L(C(A)) = {Xy|y ∈ L(C(B))}.
Let K be a convex cone. The least linear space which contains K will be called the linear hull of K

and denoted by Lin(K). This is a special case of the affine hull of a convex set, see [25]. Denote by Bε
y

the open ball with radius ε > 0 and centered at y. The relative interior of K , denoted by ri(K), is the
set of points y ∈ Rn+ such that for sufficiently small ε we have that Bε

y ∩ Lin(K) ⊆ K . If Lin(K) = Rn,

then it is the interior of K , denoted by int(K).
The following important “splitting” lemma can be deduced from [42, Lemma 2.9].

Lemma 3.6. Suppose that K ⊆ Rn+ is a convex cone which is a solution set of a finite system of linear

inequalities S. Let S1 be composed of the inequalities of S which are satisfied by all points in K with equality,

and S2 :=S\S1 be non-empty.

1. There exists a point in K by which all inequalities in S2 are satisfied strictly.
2. Lin(K) is the solution set to S1, and ri(K) is the cone which consists of the points in K by which all

inequalities in S2 are satisfied strictly.

Now we describe all scalings that give rise to strict visualization.

Theorem 3.7. Let A ∈ R
n×n+ and λ(A) > 0.

1. L(C(A)) is the linear hull of the subeigencone V∗(A).
2. x ∈ ri(V∗(A)) if and only if, for X = diag(x), the matrix X−1AX is strictly visualized.
3. ri(V∗(A)) contains the eigenvectors of A if and only if V∗(A) = V(A).
4. If A is definite, then any positive linear combination, and, if A is irreducible, also any positive log-

convex combination x of all columns of A∗ belongs to ri(V∗(A)) and X−1AX with X = diag(x) is

strictly visualized.

Proof. and 2: Consider Lemma 3.6 with K = V∗(A), then V∗(A) is the solution set to the system

of inequalities aijxj � xi, and we need to show that the inequalities with (i, j) ∈ Ec(A), and those

with (i, j) /∈ Ec(A), play the role of S1, and S2 of Lemma 3.6, respectively. For this, we note that by

Theorem 2.8 part 6, the inequalities with (i, j) ∈ Ec(A) are satisfied with equality for all x ∈ V∗(A),
and Proposition 3.4 implies that there is x ∈ V∗(A) by which all the inequalities with (i, j) /∈ Ec(A) are
satisfied strictly.

3: The “if” part is obvious. The “only if” part: from Theorem 2.8 it follows that V∗(A) = V(A) if and
only if the set of critical nodes is [n]. Suppose that V(A) is properly contained in V∗(A), then there is

a node i which is not critical. Then for any eigenvector y there is an edge (i, j) for which aijyj = yi and

obviously (i, j) /∈ Ec(A). Hence y /∈ ri(V∗(A)).
4: Follows from Theorem 3.3 and part 2. �

Note that as V∗(A) is the max algebraic column span of A∗, its relative interior may also contain

vectorswhich are not positive linear combinations or positive log-convex combinations of the columns

of A∗. However, the relative interior of V∗(A), or the set of vectors which lead to strict visualization, is

exactly the set of vectors that can be represented as positive combinations of all convex extremals in

ext⊕(V∗(A)), see [25, Section 2.3].

We also remark here that a bijection between ri(V∗(A)) and ri(V∗(AT )) is given by x �→ x−1, since

λ(A) = λ(AT ) and if x is positive, then aijxj = λ(A)xi (resp. aijxj < λ(A)xi) holds if and only if aijx
−1
i =

λ(A)x−1
j (resp. aijx

−1
i < λ(A)x−1

j ). In particular, positive linear combinations of rows of Kleene stars

also lead, after the inversion, to strict visualization scalings.

If A is strongly definite (that is, λ(A) = 1 and aii = 1 for all i ∈ [n]), then by Proposition 2.6 we

have V∗(A) = V(A), so that V(A) is convex and the maximum cycle geometric mean can be strictly
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visualized by eigenvectors in ri(V(A)). We note that in the case when, in addition, the weights of

all non-trivial cycles are strictly less than 1, the strict visualization scalings have been described

in [8].

Stronglydefinitematricesare related to theassignmentproblem.By thisweunderstand the following

task: given A ∈ R
n×n+ find a permutation π ∈ Pn such that its weight a1,π(1) · a2,π(2) · · · an,π(n) is

maximal. A permutation π of maximal weight will be also called a maximal permutation.

Again, our aim is to precisely identify (“visualize”) matrix entries belonging to an optimal solution

using matrix scaling. That is, for a matrix A with nonzero permutations, find diagonal matrices X and

Y such that all entries of XAY on maximal permutations are equal to 1 and that all other entries are

strictly less than 1.

To do this,we first find amaximal permutationπ and define the corresponding permutationmatrix

Dπ by

Dπ
ij =

{
aij , if j = π(i),
0, if j /= π(i).

Using this matrix, we scale A to one of its strongly definite forms (Dπ )−1A. In a strongly definite

matrix, any maximal permutation is decomposed into critical cycles. Conversely, any critical cycle

can be extended to a maximal permutation, using the diagonal entries. Therefore, scalings X which

visualize the maximal permutations of (Dπ )−1A are scalings which visualize the critical cycles, and

these are given by Theorem 3.7. After we have done this diagonal similarity scaling, we need permuta-

tion matrix Eπ−1 = (δiπ−1(i)) to bring all permutations again to their right place. Thus we get scaling

Eπ−1

X−1(Dπ )−1AX which visualizes all maximal permutations.

Numerically, solvingvisualizationproblemsby themethodsdescribedabove, relies on the following

three standard problems: finding themaximal cycle mean, computing the Kleene star of a matrix, and

finding amaximal permutation. The first problemcan be solved byKarp’smethod [4,33,26], the second

problem can be solved by the Floyd–Warshall algorithm [34] and the third problem can be solved by

the Hungarian method [34]. All of these methods are polynomial and require O(n3) operations, which

also gives a complexity bound for the visualization problems.

Finally we note that the problem of strict visualization is related to the problem of max balancing

considered in [35,37,38]. A matrix B is max balanced if and only if each non-zero element lies on

a cycle on which it is a minimal element. It follows that B is strictly visualized. It was shown in

[35,37,38] that for each irreducible nonnegative A there is an essentially unique diagonal matrix X

such that the scaling B = X−1AX is max balanced, and hence there is a unique max balanced matrix

MB(A) diagonally similar to A. Importantly, the matrix MB(A) is canonical for diagonal similarity of

irreducible nonnegative matrices, that is A is diagonally similar to C if and only if MB(A) = MB(C). A
complexity bound for max balancing which follows from [35,37,38], is O(n4), see also [41] for a faster

version of the max balancing algorithm.

4. Diagonal similarity scalings which leave a matrix visualized

Another approach to describing the visualization scalings is to start with a visualized matrix and

describe all scalings which leave it visualized.

Wefirst describe the Kleene star of a definite visualizedmatrixA ∈ R
n×n+ . Let C∗(A)havem strongly

connected components Cμ, where μ ∈ [m], and denote by Nμ the set of nodes in Cμ. Denote by Aμν

the (μ, ν)-submatrix of A extracted from the rows with indices in Nμ and from the columns with

indices in Nν . Let A
C ∈ R

m×m+ be the m × m matrix with entries αμν = max{aij|i ∈ Nμ, j ∈ Nν}, and
let E ∈ R

n×n+ be the n × nmatrix with all entries equal to 1.

Proposition 4.1. Let A ∈ R
n×n+ be a definite visualized (resp. strictly visualized)matrix, let m be the num-

ber of strongly connected components of C∗(A) and let AC = (αμν), A
∗
μν and Eμν be as defined above.

Then
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1. αμμ = 1 for all μ ∈ [m] and αμν � 1 (resp. αμν < 1 for μ /= ν), where μ, ν ∈ [m];
2. any (μ, ν)-submatrix of A∗ is equal to A∗

μν = α∗
μνEμν ,where α∗

μν is the (μ, ν)-entry of (AC)∗, and
Eμν is the (μ, ν)-submatrix of E.

Proof. 1: Immediate from the definitions.

2: Take any i ∈ Nμ, j ∈ Nν , and any path π = (i1, . . . , ik) with i1 := i and ik := j. Then π can be

decomposed as π = τ1 ◦ σ1 ◦ τ2 ◦ · · · ◦ σl−1 ◦ τl , where τi, for i ∈ [l], are (possibly trivial) paths

which entirely belong to some critical component Cμi
, withμ1 :=μ andμl = ν , andσi, for i ∈ [l − 1],

are edges between the strongly connected components. Then w(π , A) �w(π ′, A), where π ′ = τ ′
1 ◦

σ ′
1 ◦ τ ′

2 ◦ · · · ◦ σ ′
l−1 ◦ τ ′

l is also a path from i to j such that τ ′
i entirely belong to the same critical

components as τi, and σ ′
i are edges connecting the same critical components as σi, but w(σ ′

i , A) =
max{aij|i ∈ Nμi

, j ∈ Nμi+1
} and w(τ ′

i , A) = 1. Such a path exists, since in a visualized matrix, there

exists a path of weight 1 between any nodes in the same component of the critical digraph. Thus a∗
ij is

the greatest weight over all such paths π ′. As π ′ bijectively correspond to the paths in the weighted

digraph associated with AC , the claim follows. �

Note that, after a convenient simultaneous permutation of rows and columns, we have that if A is

a definite visualized matrix, then

A∗ =

⎛
⎜⎜⎜⎝

E11 α∗
12E12 . . . α∗

1nE1m
α∗
21E21 E22 . . . α∗

2nE2m
...

...
. . .

...
α∗
m1Em1 α∗

m2Em2 . . . Emm

⎞
⎟⎟⎟⎠ . (1)

Note that AC does not contain critical cycles except for the loops, otherwise Cμ are not the compo-

nents of C∗(A). Hence L(AC) = Rm, and we can speak of the interior of V∗(AC).
Given a strictly visualizedmatrix A as above, denote by Iμ, μ ∈ [m], thematrix such that (Iμ)ij = 1

whenever i = j belongs to Nμ and (Iμ)ij = 0 elsewhere, and by A�B the direct sum of matrices A and

B.

Theorem 4.2. Let A ∈ R
n×n+ be a definite visualized matrix and let m be the number of strongly connected

components of C∗(A). Let AC and Iμ be as defined above. Then X−1AX , where X = diag(x) with x ∈ Rn+
positive, is visualized (resp. strictly visualized) if and only if X has the form

X = x̃1I1 � · · · � x̃mIm,

where x̃ is a vector satisfying αμν x̃ν � x̃μ (resp. αμν x̃ν < x̃μ),whereμ /= ν ,μ, ν ∈ [m]. In other words,

x̃ ∈ V∗(AC) (resp. x̃ ∈ int(V∗(AC))).

Proof. The “if” part: Let x be as described, then the elements aij , for i, j ∈ Nμ, do not change after the

scaling, so each block Aλλ remains unchanged, and hence visualized (resp. strictly visualized). For aij
with i ∈ Nμ, j ∈ Nν ,μ /= ν , we have that aijxj � xi (resp. aijxj < xi), as xi = x̃μ, xj = x̃ν , and αij is the

maximum over these aij . Hence X−1AX is visualized (resp. strictly visualized).

The “only if” part: Suppose that scaling byX leavesA visualized (resp.makesA strictly visualized). As

A is initially visualized, all critical edges haveweights equal to 1, and x should be such that xi = xj = x̃μ
whenever i, j belong to the same Nμ. For i ∈ Nμ, j ∈ Nν ,μ /= ν , we should have that aijx̃ν � x̃μ (resp.

aijx̃ν < x̃μ). Taking maximum over these aij , we obtain that this is equivalent to αμν x̃ν � x̃μ (resp.

αμν x̃ν < x̃μ).

It remains to apply Lemma 3.6 (with S1 = ∅), to obtain that the same is equivalent to x̃ ∈ V∗(AC)
(resp. x̃ ∈ int(V∗(AC))). �

In the following we discuss some issues concerning linear algebraic properties of Kleene cones and

Kleene stars. In this context, Kleene stars are known as path product matrices, see [28–30].
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For a matrix A ∈ R
n×n+ with λ(A) > 0, we proved that

L(C(A)) = {x ∈ Rn|aijxj = λ(A)xi, (i, j) ∈ Ec(A)} (2)

is the linear hull of V∗(A). Note that in the case when A is definite and strictly visualized, aij = 1 for

all (i, j) ∈ Ec(A) and λ(A) = 1. Also see Section 2 for the definition of n(C(A)) and |Nc(A)|.

Proposition 4.3. Let A ∈ R
n×n+ have λ(A) > 0.

1. The dimension of L(C(A)) is equal to the number of strongly connected components in C∗(A), that
is, to n(C(A)) + |Nc(A)|;

2. If A is definite, then C∗(A) = C(A∗) and L(C(A)) = L(C(A∗)).

Proof. Let Nμ, for μ ∈ [m] where m = n(C(A)) + |Nc(A)|, be the set of nodes of Cμ, a strongly con-

nected component of C∗(A). In the case when A is definite and strictly visualized, C∗(A) = C(A∗) is

seen from (1), where α∗
μν < 1 for all μ /= ν , and it is also seen from (1) that L(C(A∗)) is the linear

space comprising all vectors x ∈ Rn+ such that xi = xj whenever i and j belong to the same Nμ. As

L(C(A)) is also equal to that space by (2), we have that L(C(A)) = L(C(A∗)). We can take, as a basis of

this space, the vectors eμ, forμ ∈ [m], such that e
μ
j = 1 if j ∈ Nμ and e

μ
j = 0 if j /∈ Nμ, and hence the

dimension of L(C(A)) is n(C(A)) + |Nc(A)|. The general case can be obtained using diagonal similarity.

�

Proposition 4.3 enables us to present the following result.

Theorem 4.4. For any matrix A with λ(A) > 0, the max algebraic dimension of V∗(A) is equal to the

(linear algebraic) dimension of L(C(A)), which is the linear hull of V∗(A).

Proof. It follows from Proposition 2.9 and Proposition 4.3 part 1. that both dimensions are equal to

the number of strongly connected components in C(A). �

When A is strongly definite and the weights of all nontrivial cycles are strictly less than 1, Theorem

4.4 implies that V∗(A) contains n linearly independent vectors. This result has been obtained by Butk-

ovič [7, Theorem 4.1]. One could also conjecture that in this case the columns of A∗ should be linearly

independent in the usual sense. However, this is not so in general as we show by modifying Example

3.11 in Johnson-Smith [28]. Let

A = A∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 5/11 5/11 7/11 7/11 7/11
5/11 1 5/11 7/11 7/11 7/11
5/11 5/11 1 7/11 7/11 7/11
7/11 7/11 7/11 1 5/11 5/11
7/11 7/11 7/11 5/11 1 5/11
7/11 7/11 7/11 5/11 5/11 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then the linearalgebraic rankofA∗ is 5, however, byTheorem4.4 (or [7, Theorem4.1]) themaxalgebraic

dimension of V∗(A), and therefore the linear algebraic dimension of L(C(A)), are 6. We observe that

x = [7/11, 7/11, 7/11, 1, 1, 1]T is a max eigenvector of A∗ (hence in V∗(A)) but it is not in the linear

algebraic span of the columns of A∗. Finally we note that the original form of Example 3.11 in [28]

provides a Kleene star with negative determinant.
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