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Matrices leaving a cone invariant

Hans Schneider and Bit-Shun Tam

Generalizations of the Perron-Frobenius theory of nonnegative matrices to lin-

ear operators leaving a cone invariant were first developed for operators on a

Banach space by Krein and Rutman [KR48], Karlin [Kar59] and Schaefer [Sfr66]

although there are early examples in finite dimensions, e.g. [Sch65] and [Bir67].

In this article we describe a generalization, sometimes called the geometric spec-

tral theory of nonnegative linear operators in finite dimensions, which emerged

in the late 1980s. Motivated by a search for geometric analogs of results in the

previously developed combinatorial spectral theory of (reducible) nonnegative

matrices (for reviews see [Sch86] and [Her99]), this area is a study of the Perron-

Frobenius theory of a nonnegative matrix and its generalizations from the cone-

theoretic viewpoint. The treatment is linear-algebraic and cone-theoretic (geo-

metric) with the facial and duality concepts and occasionally certain elementary

analytic tools playing the dominant role. The theory is particularly rich when

the underlying cone is polyhedral (finitely generated) and it reduces to the non-

negative matrix case when the cone is simplicial.

1 Perron-Frobenius Theorem for cones

We work with cones in a real vector space, as “cone” is a real concept. To deal

with cones in Cn, we can identify the latter space with R2n. For a discussion

on the connection between the real and complex case of the spectral theory, see

[TS94, Section 8].

DEFINITIONS
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A proper cone K in a finite-dimensional real vector space V is a closed,

pointed, full convex cone, viz.

• K + K ⊆ K, viz. x,y ∈ K =⇒ x + y ∈ K,

• R+K ⊆ K, viz. x ∈ K, α ∈ R+ =⇒ αx ∈ K,

• K is closed in the usual topology of V .

• K ∩ (−K) = {0}, viz. x,−x ∈ K =⇒ x = 0,

• intK 6= ∅, where intK is the interior of K.

Usually, the unqualified term cone is defined by the first two items in the above

definition. However, in this section we call a proper cone simply a cone. We

denote by K a cone in Rn, n ≥ 2.

The vector x ∈ Rn is K-nonnegative, written x ≥K 0, if x ∈ K.

The vector x is K-semipositive, written x K 0, if x ≥K 0 and x 6= 0.

The vector x is K-positive, written x >K 0, if x ∈ int K.

For x,y ∈ Rn we write x ≥K y (x K y, x >K y) if x − y is K-nonnegative

(K-semipositive, K-positive).

The matrix A ∈ Rn×n is K-nonnegative, written A ≥K 0, if AK ⊆ K.

The matrix A is K-semipositive, written A K 0, if A ≥K 0 and A 6= 0.

The matrix A is K-positive, written A >K 0, if A(K \ {0}) ⊆ int K.

For A,B ∈ Rn×n, A ≥K B (A K B, A >K B) means A−B ≥K 0, (A−B K

0, A−B >K 0).

A face F of a cone K ⊆ Rn is a subset of K which is a cone in the linear span

of F such that x ∈ F, x ≥K y ≥K 0 =⇒ y ∈ F .

(In this section, F will always denote a face rather than a field, since the only

fields involved are R and C.) Thus F satisfies all definitions of a cone except

that its interior may be empty.

A face F of K is a trivial face if F = {0} or F = K.
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For a subset S of a cone K, the intersection of all faces of K including S is

called the face of K generated by S and is denoted by Φ(S). If S = {x},
then Φ(S) is written simply as Φ(x).

For faces F, G of K, their meet and join are given respectively by F∧G = F∩G

and F ∨G = Φ(F ∪G).

A vector x ∈ K is an extreme vector if either x is the zero vector or x is

nonzero and Φ(x) = {λx : λ ≥ 0}; in the latter case, the face Φ(x) is called an

extreme ray.

If P is K-nonnegative, then a face F of K is a P -invariant face if PF ⊆ F .

If P is K-nonnegative, then P is K-irreducible if the only P -invariant faces

are the trivial faces.

If K is a cone in Rn then a cone, called the dual cone of K, is denoted and

given by

K∗ = {y ∈ Rn : yT x ≥ 0 for all x ∈ K}.

If A is an n×n complex matrix and x is a vector in Cn, then the local spectral

radius of A at x is denoted and given by ρx(A) = lim supm→∞‖Amx‖1/m,

where ‖ · ‖ is any norm of Cn. (For A ∈ Cn×n, its spectral radius is denoted by

ρ(A) (or ρ), cf. §1.4.3.)

FACTS

Let K be cone in Rn.

1. The condition intK 6= ∅ in the definition of a cone is equivalent to K−K =

V , viz. for all z ∈ V there exist x,y ∈ K such that z = x− y.

2. A K-positive matrix is K-irreducible.

3. [Van68], [SV70] Let P be a K-nonnegative matrix. The following are

equivalent:

(a) P is K-irreducible.
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(b)
∑n−1

i=0 P i >K 0.

(c) (I + P )n−1 >K 0,

(d) No eigenvector of P (for any eigenvalue) lies on the boundary of K.

4. (Generalization of Perron-Frobenius Theorem) [KR48], [BS75] Let P be a

K-irreducible matrix with spectral radius ρ. Then

(a) ρ is positive and is a simple eigenvalue of P ,

(b) There exists an (up to a scalar multiple) unique K-positive (right)

eigenvector u of P corresponding to ρ,

(c) u is the only K-semipositive eigenvector for P (for any eigenvalue),

(d) K ∩ (ρI − P )Rn = {0}.

5. (Generalization of Perron-Frobenius Theorem) Let P be a K-nonnegative

matrix with spectral radius ρ. Then

(a) ρ is an eigenvalue of P .

(b) There is a K-semipositive eigenvector of P corresponding to ρ.

6. If P, Q are K-nonnegative and Q K≤ P , then ρ(Q) ≤ ρ(P ). Further, if P

is K-irreducible and Q K� P , then ρ(Q) < ρ(P ).

7. P is K-nonnegative (K-irreducible) if and only if PT is K∗-nonnegative

(K∗-irreducible).

8. If A is an n × n complex matrix and x is a vector in Cn, then the local

spectral radius ρx(A) of A at x is equal to the spectral radius of the

restriction of A to the A-cyclic subspace generated by x, i.e., span{Aix :

i = 0, 1, . . .}. If x is nonzero and x = x1 + · · ·+xk is the representation of

x as a sum of generalized eigenvectors of A corresponding respectively to

distinct eigenvalues λ1, . . . , λk, then ρx(A) is also equal to max1≤i≤k|λi|.
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9. Barker and Schneider[BS75] developed Perron-Frobenius theory in the set-

ting of a (possibly infinite-dimensional) vector space over a fully ordered

field without topology. They introduced the concepts of irreducibility and

strong irreducibility, and show that these two concepts are equivalent if

the underlying cone has ascending chain condition on faces. See [ERS95]

for the role of real closed ordered fields in this theory.

EXAMPLES

1. The nonnegative orthant (R+
0 )n in Rn is a cone. Then x ≥K 0 if and only

if x ≥ 0, viz. the entries of x are nonnegative, and F is face of (R+
0 )n if

and only if F is of the form FJ for some J ⊆ {1, . . . , n}, where

FJ = {x ∈ (R+
0 )n : xi = 0, i /∈ J}.

Further, P ≥K 0 (P K 0, P >K 0, P is K-irreducible) if and only if

P ≥ 0 (P  0, P > 0, P is irreducible) in the sense used for nonnegative

matrices, cf. §2.4.

2. The non-trivial faces of the Lorentz (ice-cream) cone Kn in Rn, viz.

Kn = {x ∈ Rn : (x2
1 + · · ·+ x2

n−1)
1/2 ≤ xn},

are precisely its extreme rays, each generated by a nonzero boundary

vector, that is one for which the equality holds above. The matrix

P =




−1 0 0

0 0 0

0 0 1




is K3-irreducible [BP79, p.22].
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2 Collatz-Wielandt sets and distinguished

eigenvalues

Collatz-Wielandt sets were apparently first defined in [BS75]. However they

are so called because they are closely related to Wielandt’s proof of the Perron-

Frobenius theorem for irreducible nonnegative matrices, [Wie50], which employs

an inequality found in Collatz [Col42]. See also [Sch96] for further remarks on

Collatz-Wielandt sets and related max-min and min-max characterizations of

the spectral radius of nonnegative matrices and their generalizations.

DEFINITIONS

Let P be a K-nonnegative matrix.

The Collatz-Wielandt sets associated with P [BS75], [TW89], [TS01], [TS03],

[Tam01] are defined by

Ω(P ) = {ω ≥ 0 : ∃x ∈ K\{0}, Px ≥K ωx}.
Ω1(P ) = {ω ≥ 0 : ∃x ∈ int K, Px ≥K ωx}.
∑

(P ) = {σ ≥ 0 : ∃x ∈ K\{0}, Px K≤ σx}.
∑

1(P ) = {σ ≥ 0 : ∃x ∈ int K, Px K≤ σx}.

For a K-nonnegative vector x, the lower and upper Collatz-Wielandt num-

bers of x with respect to P are defined by

rP (x) = sup {ω ≥ 0 : Px ≥K ωx},
RP (x) = inf {σ ≥ 0 : Px K≤ σx},

where we write RP (x) = ∞ if no σ exists such that Px K≤ σx.

A (nonnegative) eigenvalue of P is a distinguished eigenvalue for K if it has

an associated K-semipositive eigenvector.

The Perron space Nν
ρ (P ) (or Nν

ρ ) is the subspace consisting of all u ∈ Rn

such that (P − ρI)ku = 0 for some positive integer k. (See §2.1.1 for a more

general definition of Nν
λ (A).)
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If F is a P -invariant face of K then the restriction of P to spanF is written as

P |F . The spectral radius of P |F is written as ρ[F ] and if λ is an eigenvalue of

P |F its index is written as νλ[F ].

A cone K in Rn is polyhedral if it is the set of linear combinations with nonneg-

ative coefficients of vectors taken from a finite subset of Rn, and is simplicial

if the finite subset is linearly independent.

FACTS

Let P be a K-nonnegative matrix.

1. [TW89] A real number λ is a distinguished eigenvalue of P for K if and

only if λ = ρb(P ) for some K-semipositive vector b.

2. [Tam90] Consider the following conditions:

(a) ρ is the only distinguished eigenvalue of P for K,

(b) x ≥K 0 and Px K≤ ρx imply that Px = ρx,

(c) The Perron space of PT contains a K∗-positive vector.

(d) ρ ∈ Ω1(PT ).

Conditions (a), (b) and (c) are always equivalent and are implied by con-

dition (d). When K is polyhedral, condition (d) is also an equivalent

condition.

3. [Tam90] The following conditions are equivalent:

(a) ρ(P ) is the only distinguished eigenvalue of P for K and the index

of ρ(P ) is one.

(b) For any vector x ∈ Rn, Px K≤ ρ(P )x implies that Px = ρ(P )x.

(c) K ∩ (ρI − P )Rn = {0}.

(d) PT has a K∗-positive eigenvector (corresponding to ρ(P )).
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4. [TW89] The following statements all hold:

(a) [BS75] If P is K-irreducible, then

sup Ω(P ) = sup Ω1(P ) = inf
∑

(P ) = inf
∑

1(P ) = ρ(P ).

(b) sup Ω(P ) = inf
∑

1(P ) = ρ(P ).

(c) inf
∑

(P ) is equal to the least distinguished eigenvalue of P for K.

(d) sup Ω1(P ) = inf
∑

(PT ), and hence is equal to the least distin-

guished eigenvalue of PT for K∗.

(e) sup Ω(P ) ∈ Ω(P ) and inf
∑

(P ) ∈ ∑
(P ).

(f) When K is polyhedral, we have sup Ω1(P ) ∈ Ω1(P ). For general

cones, we may have sup Ω1(P ) /∈ Ω1(P ).

(g) [Tam90] When K is polyhedral, ρ(P ) ∈ Ω1(P ) if and only if ρ(A) is

the only distinguished eigenvalue of PT for K∗.

(h) [TS03] ρ(P ) ∈ ∑
1(P ) if and only if Φ((N1

ρ (P ) ∩ K) ∪ C) = K,

where C is the set {x ∈ K : ρx(P ) < ρ(P )} and N1
ρ (P ) is the Perron

eigenspace of P .

5. In the irreducible nonnegative matrix case, statement (b) of the preceding

fact reduces to the well-known max-min and min-max characterizations

of ρ(P ) due to Wielandt. Schaefer [Sfr84] generalized the result to ir-

reducible compact operators in Lp-spaces and more recently Friedland

[Fri90], [Fri91] also extended the characterizations in the settings of a Ba-

nach space or a C∗-algebra.

6. [TW89, Theorem 2.4(i)] For any x ≥K 0, rP (x) ≤ ρx(P ) ≤ RP (x). (This

fact extends the well-known inequality rP (x) ≤ ρ(P ) ≤ RP (x) in the

nonnegative matrix case, due to Collatz[Col42] under the assumption that

x is a positive vector and due to Wielandt[Wie50] under the assumption

that P is irreducible and x is semipositive. For similar results concerning

a nonnegative linear continuous operator in a Banach space, see [FN89].)
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7. A discussion on estimating ρ(P ) or ρx(P ) by a convergent sequence of

(lower or upper) Collatz-Wielandt numbers can be found in [TW89, Sec-

tion 5], [Tam01, Subsection 3.1.4].

8. [GKT95, Corollary 3.2] If K is strictly convex (i.e. each boundary vec-

tor is extreme), then P has at most two distinguished eigenvalues. This

fact supports the statement that the spectral theory of nonnegative linear

operators depends on the geometry of the underlying cone.

3 The peripheral spectrum, the core, and

the Perron-Schaefer condition

In addition to using Collatz-Wielandt sets to study Perron-Frobenius theory we

may also approach this theory by considering the core (whose definition will be

given below). This geometric approach started with the work of Pullman[Pul71]

who succeeded in rederiving the Frobenius theorem for irreducible nonnega-

tive matrices. Naturally, this approach was also taken up in geometric spec-

tral theory. It was found that there are close connections between the core,

the peripheral spectrum, the Perron-Schaefer condition, and the distinguished

faces of a K-nonnegative linear operator. This led to a revival of interest in

the Perron-Schaefer condition and associated conditions for the existence of a

cone K such that a preassigned matrix is K-nonnegative. (see [Bir67], [Sfr66],

[Van68], [Sch81]). The study has also led to the identification of necessary and

equivalent conditions for a collection of Jordan blocks to correspond to the pe-

ripheral eigenvalues of a nonnegative matrix (see [TS94] and [McD03]). The

local Perron-Schaefer condition was identified in [TS01] and has played a role in

the subsequent work. In the course of this investigation methods were found for

producing invariant cones for a matrix with the Perron-Schaefer condition, see

[TS94], [Tam06]. These constructions may also be useful in the study of allied
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fields, such as linear dynamical systems. There invariant cones for matrices are

often encountered (see, for instance, [BNS89]).

DEFINITIONS

If P is K-nonnegative, then a nonzero P -invariant face F of K is a distin-

guished face (associated with λ) if for every P -invariant face G with G ⊂ F

we have ρ[G] < ρ[F ] (and ρ[F ] = λ).

If λ is an eigenvalue of A ∈ Cn×n, then ker(A− λI)k is denoted by Nk
λ (A) for

k = 1, 2, . . ., the index of λ is denoted by νA(λ) (or νλ when A is clear), and

the generalized eigenspace at λ is denoted by Nν
λ (A). See §2.1.1 for more

information.

Let A ∈ Cn×n.

The order of a generalized eigenvector x for λ is the smallest positive integer k

such that (A−λI)kx = 0. The maximal order of all K-semipositive generalized

eigenvectors in Nν
λ (A) is denoted by ordλ.

The matrix A satisfies the Perron-Schaefer condition ([Sfr66], [Sch81]) if

• ρ = ρ(A) is an eigenvalue of A,

• If λ is an eigenvalue of A and |λ| = ρ, then νA(λ) ≤ νA(ρ).

If K is a cone and P is K-nonnegative, then the set
⋂∞

i=0 P iK, denoted by

coreK(P ), is called the core of P relative to K.

An eigenvalue λ of A is called a peripheral eigenvalue if |λ| = ρ(A). The

peripheral eigenvalues of A constitute the peripheral spectrum of A.

Let x ∈ Cn. Then A satisfies the local Perron-Schaefer condition at x if

there is a generalized eigenvector y of A corresponding to ρx(A) that appears

as a term in the representation of x as a sum of generalized eigenvectors of

A. Furthermore, the order of y is equal to the maximum of the orders of the

generalized eigenvectors that appear in the representation and correspond to

eigenvalues with modulus ρx(A).
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FACTS

1. [Sfr66, Chapter V] Let K be a cone in Rn and let P be a K-nonnegative

matrix. Then P satisfies the Perron-Schaefer condition.

2. [Sch81] Let K be a cone in Rn and let P be a K-nonnegative matrix

with spectral radius ρ. Then P has at least m linearly independent K-

semipositive eigenvectors corresponding to ρ, where m is the number of

Jordan blocks in the Jordan form of P of maximal size that correspond to

ρ.

3. [Van68] Let A ∈ Rn×n. Then there exists a cone K in Rn such that A is

K-nonnegative if and only if A satisfies the Perron-Schaefer condition.

4. [TS94] Let A ∈ Rn×n that satisfies the Perron-Schaefer condition. Let

m be the number of Jordan blocks in the Jordan form of A of maximal

size that correspond to ρ(A). Then for each positive integer k, m ≤ k ≤
dim N1

ρ (A), there exists a cone K in Rn such that A is K-nonnegative

and dim span(N1
ρ (A) ∩K) = k.

5. Let A ∈ Rn×n. Let k be a nonnegative integer and let ωk(A) consist

of all linear combinations with nonnegative coefficients of Ak, Ak+1, . . . .

The closure of ωk(A) is a cone in its linear span if and only if A satisfies

the Perron-Schaefer condition. (For this fact in the setting of complex

matrices see [Sch81].)

6. Necessary and sufficient conditions involving ωk(A) so that A ∈ Cn×n has

a positive (nonnegative) eigenvalue appear in [Sch81]. For the correspond-

ing real versions, see [Tam06].

7. [Pul71],[TS94] If K is a cone and P is K-nonnegative, then coreK(P ) is

a cone in its linear span and P (coreK(P )) = coreK(P ). Furthermore,

coreK(P ) is polyhedral (or simplicial) whenever K is. So when coreK(P )

is polyhedral, P permutes the extreme rays of coreK(P ).

11



8. For a K-nonnegative matrix P , a characterization of K-irreducibility (as

well as K-primitivity) of P in terms of coreK(P ), which extends the cor-

responding result of Pullman for a nonnegative matrix, can be found in

[TS94].

9. [Pul71] If P is an irreducible nonnegative matrix, then the permutation

induced by P on the extreme rays of core(R+
0 )n(P ) is a single cycle of

length equal to the number of distinct peripheral eigenvalues of P . (This

fact can be regarded as a geometric characterization of the said quantity

(cf. the known combinatorial characterization, see Fact 5(c) of §2.4.2),

whereas part(b) of the next fact is its extension.)

10. [TS94, Theorem 3.14] For a K-nonnegative matrix P , if coreK(P ) is a

nonzero simplicial cone then:

(a) There is a one-to-one correspondence between the set of distinguished

faces associated with nonzero eigenvalues and the set of cycles of the

permutation τP induced by P on the extreme rays of coreK(P ).

(b) If σ is a cycle of the induced permutation τP , then the peripheral

eigenvalues of the restriction of P to the linear span of the distin-

guished P -invariant face F corresponding to σ are simple and are

exactly ρ[F ] times all the dσth roots of unity, where dσ is the length

of the cycle σ.

11. [TS94] If P is K-nonnegative and coreK(P ) is nonzero polyhedral, then:

(i) coreK(P ) consists of all linear combinations with nonnegative co-

efficients of the distinguished eigenvectors of positive powers of P

corresponding to nonzero distinguished eigenvalues.

(ii) coreK(P ) does not contain a generalized eigenvector of any positive

powers of P other than eigenvectors.
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This fact indicates that we cannot expect that the index of the spectral ra-

dius of a nonnegative linear operator can be determined from a knowledge

of its core.

12. A complete description of the core of a nonnegative matrix (relative to

the nonnegative orthant) can be found in [TS94, Theorem 4.2].

13. For A ∈ Rn×n, in order that there exists a cone K in Rn such that AK = K

and A has a K-positive eigenvector it is necessary and sufficient that A is

nonzero, diagonalizable, all eigenvalues of A are of the same modulus and

ρ(A) is an eigenvalue of A. For further equivalent conditions, see [TS94,

Theorem 5.9].

14. For A ∈ Rn×n, an equivalent condition given in terms of the periph-

eral eigenvalues of A so that there exists a cone K in Rn such that A

is K-nonnegative and (i) K is polyhedral, or (ii) coreK(A) is polyhedral

(simplicial or a single ray) can be found in [TS94, Theorems 7.9, 7.8, 7.12,

7.10].

15. [TS94, Theorem 7.12] Let A ∈ Rn×n with ρ(A) > 0 that satisfies the

Perron-Schaefer condition. Let S denote the multi-set of peripheral eigen-

values of A with maximal index (i.e., νA(ρ)), the multiplicity of each

element being equal to the number of corresponding blocks in the Jordan

form of A of order νA(ρ). Let T be the multi-set of peripheral eigenvalues

of A for which there are corresponding blocks in the Jordan form of A

of order less than νA(ρ), the multiplicity of each element being equal to

the number of such corresponding blocks. The following conditions are

equivalent:

(a) There exists a cone K in Rn such that A is K-nonnegative and

coreK(A) is simplicial.
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(b) There exists a multi-subset T̃ of T such that S ∪ T̃ is the multi-set

union of certain complete sets of roots of unity multiplied by ρ(A).

16. McDonald[McD03] refers to the condition(b) that appears in the preced-

ing result as the Tam-Schneider condition. She also provides another

condition, called the extended Tam-Schneider condition, which is

necessary and sufficient for a collection of Jordan blocks to correspond to

the peripheral spectrum of a nonnegative matrix.

17. [TS01] If P is K-nonnegative and x is K-semipositive, then P satisfies the

local Perron-Schaefer condition at x.

18. [Tam06] Let A be an n×n real matrix, and let x be a given nonzero vector

of Rn. The following conditions are equivalent :

(a) A satisfies the local Perron-Schaefer condition at x.

(b) The restriction of A to span{Aix : i = 0, 1, . . .} satisfies the Perron-

Schaefer condition.

(c) For every (or, for some) nonnegative integer k, the closure of ωk(A,x),

where ωk(A,x) consists of all linear combinations with nonnegative

coefficients of Akx, Ak+1x, . . ., is a cone in its linear span.

(d) There is a cone C in a subspace of Rn containing x such that AC ⊆ C.

19. The local Perron-Schaefer condition has played a role in the work of [TS01],

[TS03] and [Tam04]. Further work involving this condition and the cones

ωk(A,x) (defined in the preceding fact) will appear in [Tam06].

20. One may apply results on the core of a nonnegative matrix to rederive

simply many known results on the limiting behavior of Markov chains.

An illustration can be found in [Tam01, Section 4.6].
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4 Spectral theory of K-reducible matrices

In this subsection we touch upon the geometric version of the extensive combi-

natorial spectral theory of reducible nonnegative matrices first found in [Fro12,

Section 11] and continued in [Sch56]. Many subsequent developments are re-

viewed in [Sch86] and [Her99]. Results on the geometric spectral theory of

reducible K-nonnegative matrices may be largely found in a series of papers by

B.S. Tam, some joint with Wu and H. Schneider, [TW89], [Tam90], [TS94],[TS01],

[TS03], [Tam04]. For a review containing considerably more information than

this subsection see [Tam01].

In some studies the underlying cone is lattice-ordered (for a definition and much

information see [Sfr74]) and in some studies the Frobenius form of a reducible

nonnegative matrix is generalized; see the work by Jang and Victory [JV93] on

positive eventually compact linear operators on Banach lattices. However in the

geometric spectral theory the Frobenius normal form of a nonnegative reducible

matrix is not generalized as the underlying cone need not be lattice-ordered.

Invariant faces are considered instead of the classes which play an important

role in combinatorial spectral theory of nonnegative matrices; in particular, dis-

tinguished faces and semi-distinguished faces are used in place of distinguished

classes and semi-distinguished classes respectively. (For definitions of the pre-

ceding terms, see [TS01].)

It turns out that the various results on a reducible nonnegative matrix are

extended to a K-nonnegative matrix in different degrees of generality. In par-

ticular, the Frobenius-Victory theorem ([Fro12], [Vic85]) is extended to a K-

nonnegative matrix on a general cone. The following are extended to a polyhe-

dral cone: the Rothblum index theorem ([Rot75]), a characterization (in terms

of the accessibility relation between basic classes) for the spectral radius to have
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geometric multiplicity 1, for the spectral radius to have index 1 ([Sch56]), and a

majorization relation between the (spectral) height characteristic and the (com-

binatorial) level characteristic of a nonnegative matrix ([HS91b]). Various con-

ditions are used to generalize the theorem on equivalent conditions for equality

of the two characteristics ([RiS78], [HS89], [HS91a]). Even for polyhedral cones

there is no complete generalization for the nonnegative-basis-theorem, not to

mention the preferred-basis theorem ([Rot75], [RiS78], [Sch86], [HS88]). There

is a natural conjecture for the latter case ([Tam04]). The attempts to carry

out the extensions have also led to the identification of important new concepts

or tools. For instance, the useful concepts of semi-distinguished faces and of

spectral pairs of faces associated with a K-nonnegative matrix are introduced

in [TS01] in proving the cone version of some of the combinatorial theorems

referred to above. To achieve these ends certain elementary analytic tools are

also brought in.

DEFINITIONS

Let P be a K-nonnegative matrix.

A nonzero P -invariant face F is a semi-distinguished face if F contains in

its relative interior a generalized eigenvector of P and if F is not the join of two

P -invariant faces that are properly included in F .

A K-semipositive Jordan chain for P of length m (corresponding to ρ(P )) is

a sequence of m K-semipositive vectors x, (P − ρ(P )I)x, . . . , (P − ρ(P )I)m−1x

such that (P − ρ(P )I)mx = 0.

A basis for Nν
ρ (P ) is called a K-semipositive basis if it consists of K-semipositive

vectors.

A basis for Nν
ρ (P ) is called a K-semipositive Jordan basis for P if it is

composed of K-semipositive Jordan chains for P .

The set C(P, K) = {x ∈ K : (P − ρ(P )I)ix ∈ K for all positive integers i} is

called the spectral cone of P (for K corresponding to ρ(P )).
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Denote νρ by ν.

The height characteristic of P is the ν-tuple η(P ) = (η1, ..., ην) given by:

ηk = dim(Nk
ρ (P ))− dim(Nk−1

ρ (P )).

The level characteristic of P is the ν-tuple λ(P ) = (λ1, . . . , λν) given by:

λk = dim span(Nk
ρ (P ) ∩K)− dim span(Nk−1

ρ (P ) ∩K).

The peak characteristic of P is the ν-tuple ξ(P ) = (ξ1, ..., ξν) given by:

ξk = dim(P − ρ(P )I)k−1(Nk
ρ ∩K).

If A ∈ Cn×n and x is a nonzero vector of Cn then the order of x relative

to A, denoted by ordA(x), is defined to be the maximum of the orders of the

generalized eigenvectors, each corresponding to an eigenvalue of modulus ρx(A),

that appear in the representation of x as a sum of generalized eigenvectors of

A.

The ordered pair (ρx(A), ordA(x)) is called the spectral pair of x relative

to A and is denoted by spA(x). We also set spA(0) = (0, 0) to take care of the

zero vector 0.

We use ¹ to denote the lexicographic ordering between ordered pairs of real

numbers, i.e. (a, b) ¹ (c, d) if either a < c, or a = c and b ≤ d. In case

(a, b) ¹ (c, d) but (a, b) 6= (c, d), we write (a, b) ≺ (c, d).

FACTS

1. If A ∈ Cn×n and x is a vector of Cn, then ordA(x) is equal to the size of

the largest Jordan block in the Jordan form of the restriction of A to the

A-cyclic subspace generated by x for a peripheral eigenvalue.

Let P be a K-nonnegative matrix.

2. In the nonnegative matrix case, the present definition of the level char-

acteristic of P is equivalent to the usual graph-theoretic definition; see

[NS94, (3.2)] or [Tam04, Remark 2.2].
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3. [TS01] For any x ∈ K, the smallest P -invariant face containing x is equal

to Φ(x̂), where x̂ = (I + P )n−1x. Furthermore, spP (x) = spP (x̂). In the

nonnegative matrix case, the said face is also equal to FJ , where FJ is as

defined in Example 1 of Subsection 1 and J is the union of all classes of

P having access to supp(x) = {i : xi > 0}. (For definitions of classes and

the accessibility relation, see §2.4.)

4. [TS01] For any face F of K, P -invariant or not, the value of the spectral

pair spP (x) is independent of the choice of x from the relative interior of

F . This common value, denoted by spA(F ), is referred to as the spectral

pair of F relative to A.

5. [TS01] For any faces F, G of K, we have

(a) spP (F ) = spP (F̂ ), where F̂ is the smallest P -invariant face of K

including F .

(b) If F ⊆ G, then spP (F ) ¹ spP (G). If F,G are P -invariant faces and

F ⊂ G then spP (F ) ¹ spP (G); viz. either ρ[F ] < ρ[G] or ρ[F ] = ρ[G]

and νρ[F ][F ] ≤ νρ[G][G].

6. [TS01] If K is a cone with the property that the dual cone of each of

its faces is a facially exposed cone, for instance, when K is a polyhedral

cone, a perfect cone or equals P (n) (see [TS01] for definitions), then for

any nonzero P -invariant face G, G is semi-distinguished if and only if

spP (F ) ≺ spP (G) for all P -invariant faces F properly included in G.

7. [Tam04] (Cone version of the Frobenius-Victory theorem, [Fro12], [Vic85],

[Sch86])

(i) For any real number λ, λ is a distinguished eigenvalue of P if and only

if λ = ρ[F ] for some distinguished face F of K.

(ii) If F is a distinguished face, then there is a (up to multiples) unique

eigenvector x of P corresponding to ρ[F ] that lies in F . Furthermore, x
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belongs to the relative interior of F .

(iii) For each distinguished eigenvalue λ of P , the extreme vectors of the

cone N1
λ(P )∩K are precisely all the distinguished eigenvectors of P that

lie in the relative interior of certain distinguished faces of K associated

with λ.

8. Let P be a nonnegative matrix. The Jordan form of P contains only one

Jordan block corresponding to ρ(P ) if and only if any two basic classes of

P are comparable (with respect to the accessibility relation); all Jordan

blocks corresponding to ρ(P ) are of size 1 if and only if no two basic classes

are comparable, [Sch56]. An extension of these results to a K-nonnegative

matrix on a class of cones which contains all polyhedral cones can be found

in [TS01, Theorems 7.2 and 7.1].

9. [Tam90, Theorem 7.5] If K is polyhedral, then:

(i) There is a K-semipositive Jordan chain for P of length νρ; thus, there

is a K-semipositive vector in Nν
ρ (P ) of order νρ, viz. ordρ = νρ.

(ii) The Perron space Nν
ρ (P ) has a basis consisting of K-semipositive

vectors.

However, when K is nonpolyhedral, there need not exist a K-semipositive

vector in Nν
ρ (P ) of order νρ, viz. ordρ < νρ. For a general distinguished

eigenvalue λ, we always have ordλ ≤ νλ, no matter whether K is polyhe-

dral or not.

10. Part(ii) of the preceding fact is not yet a complete cone version of the

nonnegative-basis theorem, as the latter theorem guarantees the existence

of a basis for the Perron space which consists of semipositive vectors that

satisfy certain combinatorial properties. For a conjecture on a cone version

of the nonnegative-basis theorem, see [Tam04, Conjecture 9.1].
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11. [TS01, Theorem 5.1] (Cone version of the (combinatorial) generalization

of the Rothblum index theorem, [Rot75], [HS88])

Let K be a polyhedral cone. Let λ be a distinguished eigenvalue of P

for K. Then there is a chain F1 ⊂ F2 ⊂ . . . ⊂ Fk of k = ordλ distinct

semi-distinguished faces of K associated with λ, but there is no such chain

with more than ordλ members. When K is a general cone, the maximum

cardinality of a chain of semi-distinguished faces associated with a distin-

guished eigenvalue λ may be less than, equal to, or greater than ordλ, see

[TS01, Examples 5.3, 5.4, 5.5].

12. For K = (R+
0 )n, viz. P is a nonnegative matrix, characterizations of

different types of P -invariant faces (in particular, the distinguished and

semi-distinguished faces) are given in [TS01] (in terms of the concept of

an initial subset for P ; see [HS88] or [TS01] for definition of an initial

subset).

13. [Tam04] The spectral cone C(P, K) is always invariant under P − ρ(P )I

and satisfies:

N1
ρ (P ) ∩K ⊆ C(A,K) ⊆ Nν

ρ (P ) ∩K.

If K is polyhedral, then C(A,K) is a polyhedral cone in Nν
ρ (P ).

14. (Generalization of corresponding results on nonnegative matrices, [NS94])

We always have ξk(P ) ≤ ηk(P ) and ξk(P ) ≤ λk(P ) for k = 1, . . . , νρ.

15. [Tam04, Theorem 5.9] Consider the following conditions :

(a) η(P ) = λ(P ).

(b) η(P ) = ξ(P ).

(c) For each k, k = 1, . . . , νρ, Nk
ρ (P ) contains a K-semipositive basis.

(d) There exists a K-semipositive Jordan basis for P .

(e) For each k, k = 1, . . . , νρ, Nk
ρ (P ) has a basis consisting of vectors

taken from Nk
ρ (P ) ∩ C(P,K).
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(f) For each k, k = 1, . . . , νρ, we have

ηk(P ) = dim(P − ρ(P )I)k−1[Nk
ρ (P ) ∩ C(P, K)].

Conditions (a)–(c) are equivalent and so are conditions (d)–(f). Moreover,

we always have (a)=⇒(d), and when K is polyhedral, conditions (a)–(f)

are all equivalent.

16. As shown in [Tam04], the level of a nonzero vector x ∈ Nν
ρ (P ) can be

defined to be the smallest positive integer k such that x ∈span(Nk
ρ (P )∩K);

when there is no such k the level is taken to be ∞. Then the concepts

of K-semipositive level basis, height-level basis, peak vector, etc., can be

introduced and further conditions can be added to the list given in the

preceding result.

17. [Tam04, Theorem 7.2] If K is polyhedral, then λ(P ) ¹ η(P ).

18. Cone-theoretic proofs for the preferred-basis theorem for a nonnegative

matrix and for a result about the nonnegativity structure of the principal

components of a nonnegative matrix can be found in [Tam04].

5 Linear equations over cones

Given a K-nonnegative matrix P and a vector b ∈ K, in this subsection we

consider the solvability of following two linear equations over cones and some

consequences:

(λI − P )x = b, x ∈ K. (1)

and

(P − λI)x = b, x ∈ K. (2)

Equation (1) has been treated by several authors in finite-dimensional as well as

infinite-dimensional settings, and several equivalent conditions for its solvability

have been found. (See [TS03] for a detailed historical account.) The study of
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equation (2) is relatively new. A treatment of the equation by graph-theoretic

arguments for the special case when λ = ρ(P ) and K = (R+
0 )n can be found

in [TW89]. The general case is considered in [TS03]. It turns out that the

solvability of equation (2) is a more delicate problem. It depends on whether λ

is greater than, equal to, or less than ρb(P ).

FACTS

Let P be a K-nonnegative matrix, let 0 6= b ∈ K, and let λ be a given positive

real number.

1. [TS03, Theorem 3.1] The following conditions are equivalent:

(a) Equation (1) is solvable.

(b) ρb(P ) < λ.

(c) lim
m→∞

m∑
j=0

λ−jP jb exists.

(d) lim
m→∞

(λ−1P )mb = 0.

(e) 〈z,b〉 = 0 for each generalized eigenvector z of PT corresponding

to an eigenvalue with modulus greater than or equal to λ.

(f) 〈z,b〉 = 0 for each generalized eigenvector z of PT corresponding

to a distinguished eigenvalue of P for K which is greater than or

equal to λ.

2. For a fixed λ, the set (λI−P )K∩K, which consists of precisely all vectors

b ∈ K for which equation (1) has a solution, is equal to {b ∈ K : ρb(P ) <

λ} and is a face of K.

3. For a fixed λ, the set (P −λI)K∩K, which consists of precisely all vectors

b ∈ K for which equation (2) has a solution, is in general not a face of K.

4. [TS03, Theorem 4.1] When λ > ρb(P ), equation (2) is solvable if and

only if λ is a distinguished eigenvalue of P for K and b ∈ Φ(N1
λ(P )∩K).

5. [TS03, Theorem 4.5] When λ = ρb(P ), if equation (2) is solvable then

b ∈ (P − ρb(P )I)Φ(Nν
ρb(P )(P ) ∩K).
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6. [TS03, Theorem 4.19] Let r denote the largest real eigenvalue of P less

than ρ(P ). (If no such eigenvalues exist, take r = −∞.) Then for any λ,

r < λ < ρ(P ), we have

Φ((P − λI)K ∩K) = Φ(Nν
ρ (P ) ∩K).

Thus, a necessary condition for equation (2) to have a solution is that

b K≤ u for some u ∈ Nν
ρ (P ) ∩K.

7. [TS03, Theorem 5.11] Consider the following conditions:

(a) ρ(P ) ∈ ∑
1(P

T ).

(b) Nν
ρ (P )∩K = N1

ρ (P )∩K, and P has no eigenvectors in Φ(N1
ρ (P )∩K)

corresponding to an eigenvalue other than ρ(P ).

(c) K ∩ (P − ρ(P )I)K = {0} (equivalently, x ≥K 0, Px ≥K ρ(P )x imply

that Px = ρ(P )x).

We always have (a)=⇒ (b)=⇒(c). When K is polyhedral, conditions

(a), (b) and (c) are equivalent. When K is nonpolyhedral, the missing

implications all do not hold.

6 Elementary analytic results

In geometric spectral theory, besides the linear-algebraic method and the cone-

theoretic method, certain elementary analytic methods have also been called into

play, for example the use of Jordan form or the components of a matrix. This

approach may have begun with the work of Birkhoff[Bir67] and it was followed

by Vandergraft[Van68] and Schneider[Sch81]. Friedland and Schneider[FS80],

and Rothblum[Rot81] have also studied the asymptotic behavior of the pow-

ers of a nonnegative matrix, or their variants, by elementary analytic methods.

The papers [TS94] and [TS01] in the series also need a certain kind of ana-

lytic arguments in their proofs; more specifically, they each make use of the
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K-nonnegativity of a certain matrix, either itself a component or a matrix de-

fined in terms of the components of a given K-nonnegative matrix (see Facts

3 and 4 in this subsection). In [HNR90] Hartwig, Neumann and Rose offer a

(linear)algebraic-analytic approach to the Perron-Frobenius theory of a nonneg-

ative matrix, one which utilizes the resolvent expansion but does not involve

the Frobenius normal form. Their approach is further developed by Neumann

and Schneider, [NS92], [NS93], [NS94]. By employing the concept of spectral

cone and combining the cone-theoretic methods developed in the earlier papers

of the series with this algebraic-analytic method, Tam, [Tam04], offers a unified

treatment to reprove or extend (or partly extend) several well-known results in

the combinatorial spectral theory of nonnegative matrices. The proofs given

in [Tam04] rely on the fact that if K is a cone in Rn, then the set π(K) that

consists of all K-nonnegative matrices is a cone in the matrix space Rn×n and

if, in addition, K is polyhedral then so is π(K), [Fen53, p. 22], [SV70], [Tam77]

. See [Tam01, Section 6.5] and [Tam04, Section 9] for further remarks on the

use of the cone π(K) in the study of the spectral properties of K-nonnegative

matrices.

In this subsection we collect a few elementary analytic results (whose proofs

rely on the Jordan form) which have proved to be useful in the study of the

geometric spectral theory. In particular, Facts 3, 4 and 5 identify members

of π(K). As such, they can be regarded as nice results, which are difficult

to come by for the following reason: If K is non-simplicial, then π(K) must

contain matrices which are not nonnegative linear combinations of its rank-one

members, [Tam77]. However, not much is known about such matrices([Tam92]).

DEFINITIONS

Let P be a K-nonnegative matrix. Denote νρ by ν.

The principal eigenprojection of P , denoted by Z
(0)
P , is the projection of Cn

onto the Perron space Nν
ρ along the direct sum of other generalized eigenspaces
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of P .

For k = 0, . . . , ν, the kth principal component of P is given by

Z
(k)
P = (P − ρ(P ))kZ

(0)
P .

The kth component of P corresponding to an eigenvalue λ is defined in a similar

way.

For k = 0, . . . , ρ, the kth transform principal component of P is given by:

J
(k)
P (ε) = Z

(k)
P + Z

(k+1)
P /ε + · · ·+ Z

(ν−1)
P /εν−k−1 for all ε ∈ C\{0}.

FACTS

Let P be a K-nonnegative matrix. Denote νρ by ν.

1. [Kar59], [Sch81] Z
(ν−1)
P is K-nonnegative.

2. [TS94, Theorem 4.19(i)] The sum of the νth components of P correspond-

ing to its peripheral eigenvalues is K-nonnegative; it is the limit of a

convergent subsequence of ((ν − 1)!P k/[ρk−ν+1kν−1]).

3. [Tam04, Theorem 3.6(i)] If K is a polyhedral cone, then for k = 0, . . . , ν−1,

J
(k)
P (ε) is K-nonnegative for all sufficiently small positive ε.

7 Splitting theorems and stability

Splitting theorems for matrices have played a large role in the study of conver-

gence of iterations in numerical linear algebra, see [Var62]. Here we present a

cone version of a splitting theorem which is proved in [Sch65] and applied to

stability (inertia) theorems for matrices. A closely related result is generalized

to operators on a partially ordered Banach space in [DH03] and [Dam04]. There

it is used to describe stability properties of (stochastic) control systems and to

derive non-local convergence results for Newton’s method applied to nonlinear

operator equations of Riccati type. We also discuss several kinds of positivity
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for operators involving a cone that are relevant to the applications mentioned.

For recent splitting theorems involving cones see [SSA05]. For applications of

theorems of the alternative for cones to the stability of matrices see [CHS97].

Cones occur in many parts of stability theory, see for instance [Her98].

DEFINITIONS Let K be a cone in Rn and let A ∈ Rn×n.

A is positive stable if spec(A) ⊆ C+ viz. the spectrum of A is contained in

the open right half plane.

A is K-inverse nonnegative if A is nonsingular and A−1 is K-nonnegative.

A is K-resolvent nonnegative if there exists an α0 ∈ R such that, for all

α > α0, αI −A is K-inverse nonnegative.

A is cross-positive on K if for all x ∈ K,y ∈ K∗,yT x = 0 implies yT Ax ≥ 0.

A is a Z-matrix if all of its off-diagonal entries are nonpositive.

FACTS Let K be a cone in Rn.

1. A is K-resolvent nonnegative if and only if A is cross-positive on K. Other

equivalent conditions and also Perron-Frobenius type theorems for the

class of cross-positive matrices can be found in [Els74], [SV70] or [BNS89].

2. When K is (R+
0 )n, A is cross-positive on K if and only if −A is a Z-matrix.

3. [Sch65], [Sch97]. Let T = R− P where R, P ∈ Rn×n and suppose that P

is K-nonnegative. If R satisfies R(int K) ⊇ int K or R(int K)∩ int K = ∅,
then the following are equivalent:

(a) T is K-inverse nonnegative.

(b) For all y >K 0 there exists (unique) x >K 0 such that y = Tx.

(c) There exists x >K 0 such that Tx >K 0.

(d) There exists x ≥K 0 such that Tx >K 0.

(e) R is K-inverse nonnegative and ρ(R−1P ) < 1.
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4. Let T ∈ Rn×n. If−T is K-resolvent nonnegative, then T satisfies T (int K) ⊇
int K or T (int K) ∩ int K = ∅. But the converse is false, see Example 1

below.

5. [DH03, Theorem 2.11], [Dam04, Theorem 3.2.10]. Let T, R, P be as given

in Fact 3. If −R is K-resolvent nonnegative, then conditions (a)–(e) of

Fact 3 are equivalent. Moreover, the following are additional equivalent

conditions:

(f) T is positive stable.

(g) R is positive stable and ρ(R−1P ) < 1.

6. If K is (R+
0 )n, R = αI and P is a nonnegative matrix, then T = R − P

is a Z-matrix. It satisfies the equivalent conditions (a)–(g) of Facts 3 and

5 if and only if it is a nonsingular M-matrix [BP79, Chapter 6].

7. (Special case of Fact 5 with P = 0). Let T ∈ Rn×n. If −T is K-resolvent

nonnegative, then conditions (a)–(d) of Fact 3 and condition (f) of Fact 5

are equivalent.

8. In [GT06] a matrix T is called a Z-transformation on K if −T is cross-

positive on K. Many properties on Z-matrices, such as being a P -matrix,

a Q-matrix (which has connection with the linear complementarity prob-

lem), an inverse-nonnegative matrix, a positive stable matrix, a diago-

nally stable matrix, etc., are extended to Z-transformations. For a Z-

transformation, the equivalence of these properties is examined for vari-

ous kinds of cones, particularly for symmetric cones in Euclidean Jordan

algebras.

9. [Sch65], [Sch97]. (Special case of Fact 3 with K equal to the cone of pos-

itive semi-definite matrices in the real space of n× n Hermitian matrices,

and R(H) = AHA∗, P (H) = Σs
k=1CkHC∗k ). Let A,Ck, k = 1, . . . , s
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be complex n × n matrices which can be simultaneously upper triangu-

larized by similarity. Then there exists a natural correspondence αi, γ
(k)
i

of the eigenvalues of A,Ck, k = 1, . . . , s. For Hermitian H, let T (H) =

AHA∗ − Σs
k=1CkHC∗k . Then the following are equivalent:

(a) |αi|2 − Σs
k=1|γ(k)

i |2 > 0, i = 1, . . . , n.

(b) For all positive definite G there exists a (unique) positive definite H

such that T (H) = G.

(c) There exists a positive definite H such that T (H) is positive definite.

10. Gantmacher-Lyapunov [Gan59, Chapter XV] (Special case of Fact 9 with

A replaced by A+I, s = 2, C1 = A,C2 = I, and special case of Fact 7 with

K equal to the cone of positive semi-definite matrices in the real space of

n× n Hermitian matrices and T (H) = AH + HA∗).

Let A ∈ Cn×n. The following are equivalent:

(a) For all positive definite G there exists a (unique) positive definite H

such that AH + HA∗ = G.

(b) There exists a positive definite H such that AH + HA∗ is positive

definite.

(c) A is positive stable.

11. Stein [Ste52](Special case of Fact 9 with A = I, s = 1, C1 = C, and special

case of Fact 7 with T (H) = H − CHC∗).

Let C ∈ Cn×n. The following are equivalent:

(a) There exists a positive definite H such that H − CHC∗ is positive

definite.

(b) The spectrum of C is contained in the open unit disk.

EXAMPLES
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1. Let K = (R+
0 )2 and take T =


 0 1

1 0


. Then TK = K and so

T (int K) ⊇ int K. Note that 〈Te1, e2〉 = 1 > 0 whereas 〈e1, e2〉 = 0;

so −T is not cross-positive on K and hence not K-resolvent nonnegative.

Since the eigenvalues of T are −1 and 1, T is not positive stable. This

example tells us that the converse of Fact 4 is false. It also shows that to

the list of equivalent conditions of Fact 3 we cannot add condition (f) of

Fact 5.
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