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Abstract

We prove theorems of Perron–Frobenius type for positive elements in partially ordered topological
algebras satisfying certain hypotheses. We show how some of our results relate to known results on Banach
algebras. We give examples and state some open questions.
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1. Introduction

Perron–Frobenius theory—and such related results as, e.g., comparison theorems for operator
splittings: [7], [6] and Theorem 7.1—rely essentially on the notion of ‘positive operators’, usually
formulated (cf., e.g., [7], [3]) in terms of preservation of a positive cone in the underlying space
X on which the operators act. As with other spectral considerations (compare [2]), it seems of
interest to treat some of this in the context of the operator algebra A—in which X has no direct
relevance: indeed, we consider the algebra A abstractly, with no suggestion that its elements act
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at all as operators. We then reformulate as much as possible of the results in that context, now
emphasizing the order-theoretic aspects of the situation.

Thus our concern will be with real partially ordered algebras and our objective in this paper
is to show that this reformulation can be done with some success so that we can generalize some
known results for operators acting on Banach spaces. Our chief hypotheses are found in this
introduction. In Section 2 we introduce our definitions of spectrum and spectral radius and we
focus on a set of elements called tame which play a role comparable to bounded operators on a
Banach space. In Section 3 we examine in more detail the relation of our present concepts to some
known results in Banach algebras. Some preliminary results are in Section 4 and our principal
results are in Section 5. In particular, our form of Perron–Frobenius is stated as Theorem 5.7. Our
final Sections 6 and 7 contain examples, comments, and open questions.

The partially ordered algebras we consider are characterized algebraically by the hypothesis:

[H1] A is an algebra over the reals with a multiplicative identity, denoted by 1 (notationally
we identify multiples of this with scalars). A is partially ordered by a positive cone P.
If x, y � 0, λ > 0, then also (x + y), xy, λx � 0; 1 ∈ P. Finally, P is pointed, i.e., P ∩
[−P] = {0}.
We will equivalently write “x � y” or “(y − x) ∈ P”. We will also often have occasion to
write “−u � x � u” (necessarily with u � 0) or, equivalently, “±x � u” or “x = p − q

with p, q � 0” (with p + q = u on taking p = [u+ x]/2, q = [u− x]/2).
We have included, for convenience, the assumption that the positive cone P is pointed,

but have not included a possible complementary requirement that P+ [−P] = X, since
this has been unnecessary for formulating our results.

It will later be necessary to supplement the algebraic completeness of [H1] by some form of
topological completeness, much as in the usual distinction of the field of reals from the rationals.
We begin with the hypothesis:

[H2] The topology on A is Hausdorff. The positive cone P is closed in A. The algebraic opera-
tions of addition and multiplication by scalars are continuous; multiplication is continuous
if the factors are each constrained to an order interval [−u, u].

We can then introduce a completeness condition with respect to the order. We will say that the
partially ordered algebra A is ‘P-complete’ if

Given cN ↘ 0 in P, if “±[xj − xk] � cN for all j, k � N ,” then there is some x̄ ∈A such
that xk → x̄.

2. The spectrum and spectral radius

We begin by noting that for a real matrix x or, more generally, a bounded linear operator x on
a real normed space, it is standard to define the spectral radius as the radius of the smallest disk
centered at 0 in C containing the spectrum, i.e.,

ρ∗(x) = max{|λ| : λ ∈ σ(x)}. (2.1)

Since we are considering only real algebras and wish to work only with real scalars, we must be
careful in discussing the spectrum for elements of A. To this end, we introduce the polynomial
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q(ζ ) = q(ζ ; λ) =
[
|λ|2 − (λ+ λ̄)ζ + ζ 2

]
= (λ− ζ )(λ̄− ζ ) (2.2)

and, as usual, define q(x) = q(x; λ) by the substitution ζ←� x.

In making the substitution ζ←� x, we are identifying λ with that multiple of the identity, etc.,
and taking the first equality in (2.2) as definition; this involves only real operations in A, even
for complex λ, so q(x; λ) is always a well-defined element of A. The final equality in (2.2) is
included as motivation, but this is purely formal in connection with the substitution: we make
no suggestion that (λ− x) or (λ̄− x) have any independent meaning.

We then define the spectrum σ(x) as the complement of the resolvent set σ ′(x):

σ(x) = C\σ ′(x), σ ′(x) = {λ ∈ C : q(x; λ) is invertible} , (2.3)

noting that noninvertibility of q(x; λ) is equivalent to the noninvertibility of (λ− x) when λ is
real. [The set of all bounded linear operators on a Banach space forms a Banach algebra so this
is automatic in that context, but we note that in considering operators on an infinite dimensional
space it is standard to take invertibility to mean existence of a bounded inverse.]

Both the definition (2.1) of the spectral bound and the definition (2.3) of the spectrum are
meaningful for a general real Banach algebra. Our objective in this paper is to extend these ideas
still further—to partially ordered topological algebras without any norm—and to demonstrate a
generalization of the Perron–Frobenius Theorem (2.4) in that context. The classical Perron–Frobe-
nius theory of nonnegative matrices (in the simplest form: matrices with each entry nonnegative),
states that the spectral radius ρ∗ is itself an element of the spectrum:

ρ∗(x) ∈ σ(x) if x � 0. (2.4)

This has been extended to operators on partially ordered Banach spaces in many places; for
expositions and references see [3] (e.g., [3, Theorem 8.1]) and the Appendix of [5].

At this point we recall (cf., e.g., [4]) that the spectral radius ρ∗ of (2.1) for a bounded linear
operator x on a normed space is computable as

ρ = ρ(x) = lim
k→∞

{∥∥xk
∥∥1/k

}
which may equivalently be formulated as

ρ(x) = inf

{
1/α : α > 0, and{[αx]k : k = 1, 2, . . .

}
is a bounded set

}
. (2.5)

To provide a suitable notion—in terms of order-theoretic ideas—of “bounded set” in a partially
ordered algebra, a set S ⊂A will be called ‘P-bounded’ if it is contained in some order interval
[−u, u]—i.e., if there is some u ∈ P such that ±x � u for each x ∈ S. We can then use (2.5)
as the definition of ‘spectral bound’ in our present context by interpreting ‘bounded’ to mean
P-bounded. Thus, given an element x ∈A, we set

S(x) :=
{
α > 0 : there is some u = uα ∈ P for which

−u � [αx]k � u for k = 1, 2, . . .

}
. (2.6)

The definition (2.5) becomes

ρ(x) := 1

supS(x)
= inf{1/α : α ∈S(x)} (2.7)

if S(x) is nonempty, setting ρ(x) = ∞ otherwise.
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We refer to ρ(x), defined in this manner, as the ‘spectral bound’ since we will indeed show
as Theorem 5.2—under appropriate conditions—that ρ(x) does bound the spectrum σ(x) of
(2.3) and so, noting our version of Perron–Frobenius in Theorem 5.7, must coincide with
ρ∗(x) at least for x ∈ P. This is, in some sense, our principal result.

We let B denote the set of those elements of A for which S(x) is nonempty and refer to
elements x ∈ B as being tame. We further say that a set U ⊂A is uniformly tame if there is some
u ∈ P and some α > 0 such that

− u � [αx]k � u for k = 1, 2, . . . and all x ∈ U. (2.8)

Note that ρ is bounded on any uniformly tame set U.
The set B of tame elements will play a role in A quite comparable to the set of bounded

operators on a Banach space. Thus, when we discuss the spectrum σ(x) for an element x it
should be noted that we now will interpret the invertibility in (2.3) to mean existence of a tame
inverse so, e.g., we require existence of (λ− x)−1 ∈ B for λ ∈ R to be in the resolvent set σ ′(x).
[In general, not all x ∈A will be tame (cf., Remark 6.3-5) and, unlike the situation for ‘bounded
operators’, B need not itself be an algebra.]

3. Normed algebras

A Banach algebra is called a ‘partially ordered Banach algebra’, if it is furnished with a
positive cone P (assumed closed and pointed with 1 ∈ P) which is closed under addition and
multiplication (hence, convex) so x � y means (x − y) ∈ P. The hypotheses [H1], [H2] are then
almost immediate.

In this section we will primarily be concerned with the relation between the usual completeness
condition for a Banach algebra and our condition of P-completeness. We will also be concerned
with the relation between the norm and the order, recalling that the norm of a partially ordered
normed space (or normed algebra) is called semimonotone with respect to the order if there is
some real a > 0 such that:

If 0 � u � v, then ‖u‖ � a‖v‖. (3.1)

For information on semimonotone norms in partially ordered Banach spaces see [3, Section 4.1].

Theorem 3.1. Every partially ordered Banach algebra A satisfies [H1], [H2];A is P-complete
if and only if its norm is semimonotone with respect to the positive cone P.

Proof. The hypotheses [H1], [H2] follow immediately from the assumption that A is a partially
ordered Banach algebra.

Now suppose the norm is semimonotone. For the P-completeness condition, the criterion
means that 0 � cN ±

(
xj − xk

)
� 2cN —giving∥∥cN ±

(
xj − xk

)∥∥ � 2a ‖cN‖ → 0

whence
∥∥xj − xk

∥∥→ 0. This is the usual Cauchy criterion for convergence in the Banach algebra
and so ensures the convergence required for P-completeness.
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Conversely, suppose one had P-completeness but not semimonotonicity, i.e., (3.1) fails so
there would exist pairs [ui, vi] with 0 � ui � vi and ‖vi‖ � 2−i , ‖ui‖ � 2i . Letting xk = u1 +
· · · + uk , we would then have−cN � xj − xk � cN (j, k � N ) with cN =∑∞

N+1 vi (absolutely
convergent in the Banach algebra) so

‖cN‖ �
∞∑

N+1

‖vi‖ � 2−N → 0

yet, with ‖ui‖� 0 it would be impossible to have convergence of xk—a contradiction to P-
completeness. �

The classic context for the theories we are discussing is the example:

Example 3.2. LetA =Mn be the set of all n× n real matrices (usual matrix operations), calling
a matrix x nonnegative (x ∈ P) if each of its entries is nonnegative. We topologize Mn as Rn2

.

Remark 3.3. One easily verifies that Mn satisfies [H1], [H2]. This topology is equivalently
induced by the matrix norm ‖x‖ = max{|xjk|} and we always have ±x � y where y is the
n× n matrix with all entries ‖x‖ so ‖y‖ = ‖x‖; the P-completeness criterion is equivalent to
completeness for this norm, so Mn is P-complete. In this example one easily sees that P-
boundedness of a set is equivalent to norm boundedness, that all elements are tame (so we can
ignore the tameness requirement in (2.3)), and that (2.1) and (2.7) are equivalent. It is well-known
here that ρ(x), σ (x) depend continuously on x and, using local compactness, it is convenient at
this point to anticipate Theorem 5.5 by observing that in Mn:

For any α < ρ(x), there is a neighborhood U of x such that
α ∈S(y) for y ∈ U with uα in (2.6) taken constant on U.

(3.2)

Before we turn to the next example we provide a lemma:

Lemma 3.4. Let X be a Banach space partially ordered by a closed, pointed positive cone P0.

Suppose the X-norm is semimonotone with respect to P0 (i.e., (3.1) holds: there is some a such
that, if ξ, η − ξ ∈ P0, then |ξ | � a|η|) and X = P0 −P0 (i.e., each element ofX is a difference
of positive elements—equivalently: for ξ ∈ X there exists ω ∈ P0 with ±ξ � ω). Then, with a

as above and some b > 0, one has the apparently stronger conditions:
(a) If ± ξ � ω, then |ξ | � 2a|ω|,
(b) For each ξ ∈ X there is some ω ∈ P0 with
|ω| � b|ξ |, and ± ξ � ω.

(3.3)

Proof. Suppose±ξ � ω. Then one notes that 0 � ω ± ξ � 2ω gives |ω ± ξ | � 2a|ω| so 2|ξ | =
|(ω + ξ)− (ω − ξ)| � 4a|ω|, and we have (3.3-a). That the condition X = P0 −P0 implies
(3.3-b) is essentially Theorem 1.5 of [3]. �

Example 3.5. Let X be a Banach space, partially ordered by a closed pointed positive cone P0
such that X = P0 −P0; suppose the X-norm | · | is semimonotone with respect to P0. We then
let A =L(X) be the Banach algebra of all bounded linear operators on X with the induced norm
and the induced partial order given by P = {x ∈A : ξ ∈ P0 ⇒ xξ ∈ P0}.
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Remark 3.6. A is here a partially ordered Banach algebra so, noting Theorem 3.1, we have [H1]
(clearlyP is pointed) and [H2]. To see that it isP-complete, we first note that the induced operator
norm in A =L(X) is semimonotone with respect to P.

By Lemma 3.4 we have (3.3) for X. Now consider x, y ∈A with 0 � x � y. For arbitrary
ξ ∈ X, we note that (3.3-b) gives existence of some ω � 0 with |ω| � b|ξ | and±ξ � ω. Then
0 � x � y gives ±xξ � xω � yω so, by (3.3-a),

|xξ | � 2a|yω| � 2a‖y‖ |ω| � 2a‖y‖ b|ξ |
whence ‖x‖ � (2ab)‖y‖.

Thus, A =L(X) is P-complete by Theorem 3.1.

It is not yet clear whether necessarily A = P−P for Example 3.5 and it is precisely for this
reason that we have not included that property in our definition of a partially ordered algebra.

We place the following lemma here, as particularly related to Banach algebras,—despite the
fact that its proof uses Lemma 4.2 and Theorem 5.2 and so might well have been deferred.

Lemma 3.7. Let A be any P-complete partially ordered Banach algebra with a semimonotone
norm. If ±x � u for some u, necessarily in P, then x is tame with ρ(x) � ‖u‖. In particular,
every u � 0 is tame with ρ(u) � ‖u‖. If A = P−P, then every element x ∈A is tame with
ρ(x) � ‖x‖.

Proof. Given u � 0, choose any α > 0 for which α‖u‖ = r < 1. Then ‖(αu)k‖ � rk and the
Neumann series

∑
k(αu)k converges absolutely to some z � 0. As in Theorem 5.2, we thus have

(αu)k � z for each k. This shows α ∈S(u) for all α < 1/‖u| so u is tame with ρ(u) � ‖u‖. If
±x � u, then Lemma 4.2 inductively gives ±(αx)k � (αu)k � z for each k so this α is also in
S(x), showing ρ(x) � ρ(u) � ‖u‖.

If A = P−P holds, then ±(αx)k � ck for some ck ∈ P such that ‖ck‖ � b‖ ± (αx)k‖ �
b|α|k‖x‖k by Lemma 3.4, so for 0 � α < 1/‖x‖ the series

∑
ck converges and we have α ∈S(x)

with u =∑
ck . �

As noted above, our hypotheses have not required in general that A = P−P, so we are not
assured that any such u exists for arbitrary x in the Banach algebra and without this and (3.3-b)
we cannot conclude that all elements of A are tame.

We note that a sequence (even of powers) can be bounded in norm without being bounded in
order. For an example, consider the Banach algebraA = 	1 with convolution as multiplication
and the usual componentwise partial order. Letting e(m) be the element with all components

0 except for a 1 in the mth place, one has here ‖e(m)‖ = 1 and
(
e(1)

)k = e(k) for k = 1, 2, . . .

Thus, to have a bound in the sense of the order—c = (cj ) �
(
e(1)

)k for all k—one would
need each ck � 1, which is impossible with c ∈ 	1 =A. In this example, however, one easily
sees that all elements are tame; e.g., although we have just seen that 1 /∈S(e(1)), we do have
ρ(e(1)) = 1.

For an example of a P-complete partially ordered Banach algebra in which not all elements
are tame, consider the algebra CB(R) consisting of bounded functions on R with the norm
‖x‖ = sup{|x(t)| : t ∈ R}. Ordering this by the positive cone
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P = {u ∈A : u(t) � 0 on R with u(t)→ 0 as t →±∞},
we easily verify that A = CB(R) becomes a partially ordered algebra, satisfying [H1], [H2],
and is P-complete. However, an element x will be tame only if x(t)→ 0 as t →±∞. Note
that we do not have A = P−P for this example.

On the other hand, when tameness is universal in a Banach algebra, the spectrum as we have
defined it here clearly coincides exactly with the usual Banach algebra spectrum.

Theorem 3.8. Let A be a partially ordered normed algebra, satisfying [H1], [H2] and such that
A = P−P. Assume also thatA isP-complete so its norm is semimonotone. Then every element
of A is tame and ρ(·), as defined by (2.6) and (2.7), coincides with the standard Banach algebra
definition

ρB(x) := lim
k→∞

∥∥xk
∥∥1/k

. (3.4)

[This is often defined as a lim sup, but it is standard that the limit always exists.]

Proof. Using the semimonotonicity of the norm and A = P−P, we may apply Lemma 3.4 to
A as a vector space to obtain (3.3).

Suppose, first, that 1/α > ρ(x) so, as in (2.7), we have±[αx]k � u for some u � 0 and all k.
Then αk‖xk‖ � 2a‖u‖ for all k so ‖xk‖ � 2a‖u‖α−k . Thus, using the definition (3.4), we have
ρB(x) � limk→∞[a‖u‖α−k]1/k = 1/α; this shows that ρ(x) � ρB(x) for all x.

Conversely, if 1/α > ρB(x), we can choose β > α such that 1/β > ρB(x) so, for k > K , we
have ‖xk‖1/k < 1/β and ‖[αx]k‖ � (α/β)k then. Using (3.3), for every k we have±[αx]k � uk .
Since ‖uk‖ � b‖[αx]k‖ � b(α/β)k for large k, the series

∑
k uk is convergent in A to some

u—clearly with u � uk for each k. Then ±[αx]k � uk � u for each k gives α ∈ S(x) whence
1/α > ρ(x). This shows ρ(x) � ρB(x) for all x, completing the proof. �

4. Preliminary results

We begin with some results for partially ordered algebras which use [H1], but which are
independent of any reliance on [H2].

Lemma 4.1

1. If U is uniformly tame in A, then {ρ(x) : x ∈ U} is bounded in R.
2. A finite union U =⋃

j Uj of uniformly tame sets is uniformly tame.

Proof. The definition (2.8) of uniform tameness fixes some 0 < α ∈S(x)—so, by (2.7), ρ(x) �
1/α—for each x ∈ U. Given αj , uj such that ±[αx]k � uj for 0 < α � αj and all x ∈ Uj , one
can takeα∗ = minj {αj } andu∗ =∑

j uj to have±[αx]k � u∗ for 0 < α � α∗ and allx ∈ U. �

Lemma 4.2. If ±x � a and ±y � b, then ±xjyk � ajbk for j, k = 1, 2, . . . ; in particular,
±xj � aj for j = 1, 2, . . .

Proof. By assumption we have (a − x), (a + x), (b − y), (b + y) ∈ P so the products (a −
x)(b + y) = (ab − xy)+ (ay − xb) and (a + x)(b − y) = (ab − xy)− (ay − xb) are also in
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P by [H1]; adding these shows 2(ab − xy) ∈ P so xy � ab. Similarly, the positivity of (a +
x)(b + y) and (a − x)(b − y) shows −xy � ab and we have shown the result for j = k = 1.

Using this with y, b inductively replaced by xj , aj gives ±xj � aj . Replacing x, a, y, b

by xj , aj , yk, bk then gives the desired general result. �

Lemma 4.3. Suppose x and y are tame. Then

1. Either
• both xy and yx are tame with ρ(yx) = ρ(xy) or
• neither xy nor yx is tame.

2. Ifxy = yx, the second alternative of 1. cannot occur and we haveρ(xy) = ρ(yx) � ρ(x)ρ(y).

Compare this with Lemma 4.4-3. where it is not given that x, y are tame.

Proof. By assumption we have ±x � a, ±y � b. Now, recalling that 0 < α < 1/ρ(x) implies
α ∈S(x), suppose xy is tame so for α ∈S(xy) we have ±(αxy)k � u = uα for each k =
1, 2, . . . Using Lemma 4.2 we then have

±(αyx)k = ±αy(αxy)k−1x � |α|auαb =: u′

for k = 0, 1, . . . so α ∈S(yx). This shows tameness of yx and thatS(yx) ⊃S(xy) so ρ(yx) �
ρ(xy). Symmetrically, we obtain the reverse inequality so the spectral bounds are equal as asserted.
This shows that one cannot have one of xy, yx tame without the other.

We have, by assumption, ±[αx]k � u and ±[βy]k � v. If xy = yx, we have ±[αβxy]k =
±[αx]k[βy]k � uv by Lemma 4.2 so αβ ∈S(xy) when α ∈S(x), β ∈S(y). �

Remark 6.3-4 below shows that the second alternative above is possible when x, y do not
commute.

Lemma 4.4. Suppose u, v ∈ B+, i.e., tame and nonnegative.

1. If uv = vu, then uv ∈ B+ with ρ(uv) � ρ(u)ρ(v).

2. If ±x � u, then x ∈ B with ρ(x) � ρ(u).

3. If±x � u and±y � v with xy = yx, then xy is tame; if also uv = vu, then ρ(xy) � ρ(uv) �
ρ(u)ρ(v).

Proof. For 1., we need only note that (γ uv)k = (αu)k(βv)k if uv = vu and γ = αβ; the result
follows by letting α→ ρ(u), β → ρ(v). For 2., we have±xk � uk by Lemma 4.2 and the result
follows. Finally, for 3. if uv = vu we again set γ = αβ and note that

±(γ xy)k = ±(αx)k(βy)k � (αu)k(βv)k = (γ uv)k

for each k, which gives ρ(xy) � ρ(uv) and we can then apply 1.; if u, v need not commute,
replace u, v by w = u+ v to get the tameness. �

Considering

(
0 1
0 0

)
,

(
0 0
1 0

)
in M2 shows that the commutativity requirements for 1., 3.

are not merely artifacts of the proof and cannot be omitted.



ARTICLE IN PRESS

T.I. Seidman, H. Schneider / Linear Algebra and its Applications xxx (2005) xxx–xxx 9

Lemma 4.5. Suppose x, y ∈ B.

1. For any real λ one has

(λx) ∈ B with ρ(λx) = |λ|ρ(x). (4.1)

2. If xy = yx, then (x + y) ∈ B with

ρ(x + y) � ρ(x)+ ρ(y). (4.2)

Proof. To see 1., note that α ∈S(x) if and only if (α/|λ|) ∈S(λx) and S(−x) =S(x).
For 2., let ρ(x) =: ξ, ρ(y) =: η and let ζ = ξ + η. For any 0 < r < 1 we set α = r/ξ, β =

r/η, γ = r/ζ so ζγ (x + y) = (ξαx + ηβy). Since α ∈S(x), β ∈S(y), there exist u, v such
that ±(αx)k � u and ±(βy)k � v for each k. [Note that we need not have uv = vu, but the
assumed xy = yx ensures applicability below of the Binomial Theorem.] We now have

±(γ [x + y])k = ±ζ−k(ξαx + ηβy)k

= ±ζ−k
k∑

j=0

(
k

j

)
ξj (αx)jηk−j (βy)k−j

� ζ−k
k∑

j=0

(
k

j

)
ξju ηk−j v

= ζ−k(ξ + η)kuv = uv

for each k so γ ∈S(x + y). This for each r < 1 gives (4.2). �

Again, taking x =
(

0 1
0 0

)
and y =

(
0 0
1 0

)
in M2 shows that the commutativity require-

ment here cannot be omitted for (4.2) even if x, y � 0. Indeed, we will see later (in Remark
6.3-4) that B need not even be closed under addition.

Lemma 4.6. If x, y ∈ B and w ∈ B+ with x, y, w commuting, then

− w � x − y � w implies |ρ(x)− ρ(y)| � ρ(w). (4.3)

Proof. Assume±(x − y) � w. Then from 2. of Lemma 4.4 we have ρ(±[x − y]) � ρ(w). From
2. of Lemma 4.5 we have

ρ(x) � ρ(y)+ ρ(x − y) � ρ(y)+ ρ(w),

ρ(y) � ρ(x)+ ρ(y − x) � ρ(x)+ ρ(w)

and the result follows. �

The remaining lemmas of this section assume [H2] in addition to [H1].

Lemma 4.7. In aP-complete partially ordered algebraA, suppose±[xk − x̄] � uk (i.e.,−uk �
xk − x̄ � uk) with uk → 0. Further, either assume that {uk} is monotone (each uk+1 � uk) or
that P has nonempty interior. Then xk → x̄.

Proof. Setting zk = xk − x̄, we seek to prove that zk → 0.
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Under the monotonicity assumption, ±[zj − zk] � uj + uk � 2uN for j, k � N so P-com-
pleteness implies convergence zk → z. Since we have [uk − zk] ∈ P and P is closed, it follows
that [0− z] ∈ P in the limit; similarly, [0+ z] ∈ P. Thus, since P is pointed, we have z = 0 so
zk → 0.

In the second case, fix some v in the interior of P so the set v −P contains an open set U1
containing 0. We then set U = U1

⋂[−U1] so ±x � v for any x in the open set U. For any
subsequence {uk(j)} we can recursively select a subsubsequence {uk(j (i))} with 0 � uk(j (i)) �
2−iv.

To see this, note that±x � 2−iv for x ∈ 2−iU and that 2−iU is an open set containing 0 so con-
vergence to 0 ensures that uk(j) ∈ 2−iU for some j = j (i) (asking also that j (i) > j (i − 1))
whence 0 � uk(j (i)) � 2−iv by construction.

For this subsubsequence we have±zk(j (i)) � uk(j (i)) � 2−iv. Since 2−iv ↘ 0 as i →∞, we
may apply the first case result to see that zk(j (i))→ 0. The standard ‘Subsubsequence Lemma’
then gives convergence zk → 0 for the full sequence. �

Lemma 4.8. Let A be a P-complete partially ordered algebra A.

1. Sandwich Lemma: Let xk � yk � zk with xk, zk convergent. Assume (zk − xk)↘ 0 so the
limits are the same. Then also yk converges to this same limit.

2. If ±xk � u in A and αk → 0 in R, then αkxk → 0.

Proof. For 1., let limk xk = limk zk = y. We have 0 � yk − xk � zk − xk ↘ 0 so the condition
in the definition of P-completeness holds whence uk = (yk − xk) converges to some u ∈A.
Since each uk ∈ P and P is closed, u ∈ P. By the continuity of addition, vk = (zk − yk) =
(zk − xk)− uk →−u so, as each vk ∈ P, we have −u ∈ P—showing u = 0. Then yk = uk +
xk → u+ y = y.

Remark 6.6-1. shows the importance here of the P-completeness assumption.

For 2., given any subsequence, we may extract a subsubsequence such that αk ↘ 0 (or that
−αk ↘ 0). We then have −αku � αkxk � αku↘ 0 whence, by 1., we have αkxk → 0 for the
subsubsequence. Thus, by the usual Subsubsequence Lemma, we have αkxk → 0 for the full
sequence. �

Lemma 4.9. Supposexk → x̄ and±(xk − x̄) � uk with {xj , uk}all commuting and withρ(uk)→
0 as k→∞. Then

ρ(x̄) = lim
k→∞ ρ(xk). (4.4)

In particular, x̄ is tame if {ρ(xk)} is bounded.

Proof. By [H1] we have x̄xk = xkx̄ on letting j →∞. Then by Lemma 4.6 we have |ρ(x̄)−
ρ(xk)| � ρ(uk)→ 0. �

This is a restricted continuity result for the spectral bound ρ(·) with respect to the topology of
A. On the other hand, the spectral bound need not be A-continuous in general (cf., Remark
6.3-5).



ARTICLE IN PRESS

T.I. Seidman, H. Schneider / Linear Algebra and its Applications xxx (2005) xxx–xxx 11

5. Results on σ and ρ

We begin with a spectral calculus: Given a fixed element x in the partially ordered algebra
A, we seek to define f (x) ∈A for suitable functions f . The definition is obvious when f is a
polynomial with real coefficients and we wish to extend this appropriately to a larger function class
F. Given some R > 0, we let � = �R = {ζ ∈ C : |ζ | < R} and—compare Example 6.10—will
let F be the algebra:

F =FR =F(�) =
{
f : �R

analytic−→ C : f (ζ̄ ) = f (ζ ) for ζ ∈ �

}
.

[Each f ∈F has a power series expansion
∑

k akζ
k convergent on �R with real coefficients

{ak}.] We topologize F by uniform convergence on compact subsets of �.

Theorem 5.1. Let the partially ordered algebra A be P-complete and let x ∈A be tame (so
ρ(x) <∞); choose R > ρ(x). Now let F =F(�R) as above and define a map F = Fx :F→
A : f �→ f (x) by

F = Fx : f �→ f (x) =
∞∑

k=1

akx
k for f (ζ ) =

∞∑
k=1

akζ
k (5.1)

Then:

1. The map F is well-defined on F =FR and provides a continuous algebra homomorphism:
F→A.

2. If x � 0 in A and each coefficient ak � 0, then f (x) � 0 in A. Thus, for each f ∈F one
has ±f (x) � f+(x) where f+(ζ ) =∑

k |ak|ζ k.

3. f (x) is tame for each f ∈F with

ρ(f (x)) � f+(ρ(x)) where f+(ζ ) =
∞∑

k=1

|ak| ζ k. (5.2)

4. If U is uniformly tame, R > sup{ρ(x) : x ∈ U}, then {f (x) : x ∈ U} is again uniformly tame.
5. Each f∗ ∈F has a neighborhoodN ⊂F such thatU = {f (x) : f ∈N} is uniformly tame.

Proof. For f ∈F giving f (ζ ) =∑∞
k=1 akζ

k , we note that each coefficient ak is real and that∑
k akr

k converges absolutely in R if we choose r so ρ(x) < r < R. We now take the obvious
definition of f (x) when f is a polynomial and then interpret the infinite series defining f (x) for
more general f as resulting from convergence of the sequence of the polynomial partial sums
f N(ζ ) =∑N

k=1 akζ
k.

With r as above and noting that the definition of ρ(x) gives±xk � rku, we have the inequality

±
[
f M(x)− f N(x)

]
= ±


 M∑

k=N+1

akx
k


 �


 ∞∑

k=N+1

|ak| rk


 u (5.3)

for each M > N . Note that r < R ensures
[∑∞

k=N+1 |ak| rk
]→ 0 as N →∞ so the P-

completeness of A ensures convergence of the sequence
{
f N(x)

}
to some (unique) limit,

which we now call f (x). Thus, F :F→A is well-defined. It will be useful to note that
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±
[
f (x)− f N(x)

]
�


 ∞∑

k=N+1

|ak| rk


 u, (5.4)

as follows, since P is closed, by letting M →∞ in (5.3). We also observe similarly that,
uniformly in N , we have ±f N(x) � f+(r)u.

Continuity of F = Fx means that convergence fn→ f in F (defined as uniform convergence
on compact subsets of � for fn(ζ ) =∑

k an,kζ
k) should imply that fn(x)→ f (x) in A.

To see this, note first that a standard complex analysis argument shows that
∑N

0

∣∣an,k

∣∣ rk →∑N
0 |ak| rk as n→∞ uniformly in N (and uniformly in r � r̄ if r̄ < R). We then note that,

for any N , one has

[f (x)− fn(x)] =
([

f (x)− f N(x)
]
−
[
fn(x)− f N

n (x)
]
+
[

N∑
0

(
ak − an,k

)
xk

])
.

(5.5)

Now, standard estimation of the three terms, using (5.3) for f − f N and for fn − f N
n with the

noted uniformity and the tameness of x, lets us conclude that ± [f (x)− fn(x)] � εnu with
εn→ 0, so Lemma 4.7 applies to show fn(x)→ f (x).

Noting that the property 2. is obvious for polynomials and the positive cone P is closed in A
by [H2], it now extends to F by continuity.

We next wish to consider 3. We have already observed that
[
f+(r)u± f N(x)

]
are in P for

each N and this holds in the limit f N → f since P is closed. Applying this to powers [f ]k then
gives the tameness and the bound (5.2).

Given f and k, let e(ζ ) = [f (ζ )]k and e+(ζ ) = [f+(ζ )]k . We then have±[f (x)]n = ±e(x) �
e+(r)u for ρ(x) < r < R. Noting that e(r) � e+(r) = [f+(r)]k for any r � 0, we have shown
that

± [αf (x)]k �
[
αf+(r)

]k
u. (5.6)

This holds for each k = 1, 2, . . . and is bounded by u if α � 1/f+(r). Thus f (x) is tame and,
letting r → ρ(x), one obtains (5.2) as desired for 2.

We observe that this argument shows, further, that

± [αf (x)]k � u for all 0 < α < 1/g(ρ(x)), k = 1, 2, . . . (5.7)

for any g(ζ ) =∑∞
k=1 bkζ

k with each bk � |ak|. Note that u in (5.7) is the same as in (2.6),
defining tameness of x.

We immediately get 4. since (5.6) holds uniformly in x ∈ U. The extension (5.7) permits us
to verify 5.

For any r < R (still with r > ρ(x)) and any β > 0, the set

N = {f ∈F : |f (ζ )− f∗(ζ )| < β for |ζ | � r}
is open in F, so is a neighborhood of f∗. The Cauchy Integral Formula then gives

|ak − a∗k| � βr−k for k = 1, 2, . . . , f (ζ ) =
∑

k

akζ
k ∈N
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and, uniformly for f ∈N, we may take g(ζ ) = f+∗ (ζ )+ β/(r − ζ ) in (5.7). This g is not
in F =F(�R), but is in the corresponding function algebra F(�r ) so our results continue
to apply. The inequality (5.7) then holds for all f ∈N so U = {f (x) : f ∈N} is uniformly
tame.

Finally, we verify that F is an algebra homomorphism—i.e., show that for s = f + g and
p = fg one has F [s] = F [f ] + f [g] and F [p] = F [f ] F [g].

For the sum we need only note that sN(x) = f N(x)+ gN(x) for each N so we have equality
also in the limit. For the product we write g(z) =∑

k bkz
k and get

p(ζ ) =
∞∑

n=0

cnζ
n with cn =

n∑
k=0

akbn−k

(so |cn| � ∑N
0 |ak| |bn−k|) while

pN(ζ ) = f N(ζ ) gN(ζ ) =∑
n cN

n ζ n

with cN
n =

∑ {ak bn−k : 0 � k, n− k � N} .
Noting that cN

n = cn for N � n and
∣∣cN

n − cn

∣∣ �
∑N

0 |ak| |bn−k|, we have pN − pN → 0
in F so pN(x)→ p(x) in A. On the other hand, f N(x)→ f (x) and gN(x)→ g(x) with
{f N(x)}, {gN(x)}P-bounded so, by the continuity of multiplication as assumed in [H2], we
have pN(x) = f N(x)gN(x)→ f (x)g(x) whence p(x) = f (x)g(x). �

Theorem 5.2. Let x be a tame element of a P-complete partially ordered algebra A. Then

1. q̂(x;µ)=(1− [µ+ µ̄] x + |µ|2x2
)

is tamely invertible for |µ|<1/ρ(x). [Note that q̂(ζ ;µ) =
q(ζ ; λ)/|λ|2 with λ = 1/µ.]

2. the spectral bound ρ(x) is, indeed, a bound on the spectrum:
λ ∈ σ(x)⇒ |λ| � ρ(x),

i.e., q(x; λ), as in (2.3), always has a tame inverse when |λ| > ρ(x),
3. for |λ| > ρ(x) we have the estimate

ρ(q(x; λ)) �
(

1

|λ| − ρ(x)

)2

. (5.8)

Proof. Part 1. follows from Theorem 5.1.

For |µ| < 1/ρ(x) we take ρ(x) < R < 1/|µ| and set q̂(ζ ) = q̂(ζ ;µ), etc. Note that

f (ζ ) = 1

q̂(ζ )
= 1

1− [µ+ µ̄] ζ + |µ|2ζ 2
= 1

(1− µζ)
· 1

(1− µ̄ζ )
(5.9)

is in F(�R): analytic on �R and real for real ζ . Since f (ζ ) q̂(ζ ) ≡ 1 on �R , Theorem 5.1
gives f (x) = [q̂(x)]−1 so we have invertibility with [q̂(x)]−1 tame. The estimate

ρ(q̂(x;µ)) �
(

1

1− |µ|ρ(x)

)2

(5.10)

follows from (5.2) on computing the series for f (ζ ) as the product of the power series (in ζ )
for (1− µζ)−1 and for (1− µ̄ζ )−1.
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This can be simplified to a Neumann series if λ is real and we then note that for 0 < µ =
1/λ < 1/ρ(x). Theorem 5.1-2. shows (1− µx)−1 � 0 for x � 0.

With µ = 1/λ for |λ| > ρ(x), the invertibility of q̂(x) then gives invertibility of q(x; λ) =
|λ|2q̂(x), whence λ ∈ σ ′(x) as asserted and (5.8) then follows immediately from (5.10). �

Specializing this, we have the following:

Lemma 5.3. Let x be a tame element of a P-complete partially ordered algebra A and suppose
α is real with |α| < 1/ρ(x). Then:

1. the Neumann series 1+ αx + [αx]2 + · · · converges to a tame element y = yα = (1− αx)−1;
if α > 0 and x ∈ P, then yα ∈ P

2. if α = 1/λ so |λ| > ρ(x), then (λ− x)−1 = αyα and

ρ
(
(λ− x)−1

)
= |α| ρ

(
(1− αx)−1

)
� 1

|λ| − ρ(x)
.

Lemma 5.4. Let {xn} be uniformly tame in a P-complete partially ordered algebra A and let
αn→ 0 in R. Then {yn := (1− αnxn)

−1} is uniformly tame with yn→ 1.

Proof. By Lemmas 4.1 and 5.3 we have yn defined for large enough n. Further, {yn} is uniformly
tame by Theorem 5.1-3. and a similar argument shows that {xnyn} is also uniformly tame. Noting
that yn − 1 = αnxnyn, the desired result follows from Lemma 4.8. �

Theorem 5.5. For any tame element x in a P-complete partially ordered algebra A:

1. the set σ(x) is closed in C, i.e., its complement σ ′(x) is open;
2. the B-valued symmetrized resolvent map

λ �→ r(λ) = [q(x; λ)]−1 [q(z; λ) = (λ− z)(λ̄− z)] (5.11)

is continuous on σ ′(x);
3. each λ ∈ σ ′(x) has a neighborhood N (actually a symmetric neighborhood of λ, λ̄) such that

r(N) = {r(λ) : λ ∈N} is uniformly tame.

Proof. Given λ∗, set q∗ = q(ζ ; λ∗) as in (2.2). For each given ζ , we set ω = 1/q∗(ζ ) and for
λ∗ ∈ σ ′(x), we then set r∗ = r(λ∗) = [q∗(x)]−1—which, by the assumption, exists, is tame and,
of course, commutes with x. Finally, setting q = q(ζ ; λ) for more general λ, some manipulation
provides the identity

q = q∗
(

1− [
(λ∗ − λ)(λ̄∗ − ζ )+ (λ̄∗ − λ̄)(λ∗ − ζ )

]
ω + |λ∗ − λ|2ω

)
.

Substituting x ←� ζ means also substituting r∗ ←� ω and we thus obtain the identity

q(x; λ) = q∗(x)[1− y] with y = y(λ) = (αr∗ + βxr∗),

where

{
α = (λ∗ − λ)λ̄∗ + (λ̄∗ − λ̄)λ∗ − |λ∗ − λ|2,
β = 2Re{λ− λ∗}.

(5.12)

Using Lemmas 4.4 and 4.5, we see that

ρ(y) � [|α| + |β|ρ(x)] ρ(r∗)
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so, as α, β = O(|λ− λ∗|), it is clear that there is some ε > 0 such that

|λ− λ∗| < ε⇒ ρ(y) < 1,

from which it follows by Theorem 5.2 that q(x; λ) is also tamely invertible when |λ− λ∗| < ε

so we have 1.
Clearly we have y(λ)→ 0 as λ→ λ∗ and, as in Lemma 5.4, we have [1− y(λ)]−1 → 1.

Inverting in (5.12) we obtain the resolvent identity

r(x; λ)− r∗ =
(
[1− y(λ)]−1 − 1

)
r∗ (5.13)

and, using Lemma 5.4, it follows that r(λ)→ r∗ so we have 2. This argument is uniform over a
neighborhood of λ∗, so we also have 3. �

Lemma 5.6. Let x � 0 and suppose (1− αx) is invertible for some α > 0 with y = yα = (1−
αx)−1 � 0. Then

1. 0 � (αx)k � y for each k so α ∈S(x) and x is tame.

We may then use uα = y in the definition (2.6) of S(x); as y is a limit of polynomials in x,

this necessarily commutes with every element which commutes with x.

2. If yα is tame, then α < ᾱ = 1/ρ(x).

Proof. For each k we have (1− αx)
[
1+ · · · + (αx)k

] = 1− (αx)k+1 so

1+ · · · + (αx)k + (αx)k+1(1− αx)−1 = (1− αx)−1 = y. (5.14)

Since each term on the left is nonnegative, we have 0 � (αx)k � y so α ∈S(x) and x ∈ B+.

In fact, we have shown not only that the individual powers (αx)k are uniformly bounded, but
that the partial sums of the Neumann series form a bounded monotone sequence. Nevertheless,
if we do not already know that y is tame, it is not clear from this that we must necessarily
have (αx)k → 0, so we cannot conclude here from the identity (5.14) that (1− αx)−1 should
be given by a convergent Neumann series.

To obtain the strict inequality α < ᾱ in 2., we first note that the product yx is tame by Lemma
4.4. We can then choose 0 < ε < 1/ρ(yx) so, by Theorem 5.2, there exists (1− εyx)−1 � 0.
Noting 1− [α + ε]x = (1− αx)(1− εyx), we see that this is invertible with (1− [α + ε]x)−1 =
(1− εyx)−1y � 0. It follows, much as above, that [α + ε] ∈S(x) so α + ε � ᾱ and α < ᾱ. �

We now note our principal result: that (2.4) holds in this context—compare this with the Krein–
Bonsall–Karlin Theorem as cited in [3, Theorem 8.1] for operators on a partially ordered Banach
space.

Theorem 5.7. Let A be a P-complete partially ordered algebra and let x � 0 be tame. Then
ρ(x) ∈ σ(x), i.e., [ρ(x)− x] cannot be tamely invertible.

Proof. Suppose, to the contrary, that [ρ(x)− x]were invertible so, with ᾱ = 1/ρ(x), there would
be a tame element y with y(1− ᾱx) = (1− ᾱx)y = 1. For any 0 < α < 1/ρ(x) = ᾱ, Theorem
5.2 gives existence of yα = (1− αx)−1 � 0. Letting α ↗ ᾱ, we certainly have (1− αx)→
(1− ᾱx) with {(1− αx)}P-bounded. Hence, by the continuity of the inversion map as asserted
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in [H2], we have yα → yᾱ so, as P is closed, we have yᾱ � 0 as well. But with yᾱ tame, Lemma
5.6 would give ᾱ < 1/ρ(x)—a contradiction. �

We note that this gives ρ(x) = ρ∗(x) for x � 0.

For Mn =L(Rn)—and, somewhat more generally, for L(X) with X infinite dimensional,
subject to a compactness condition—the usual theory supplements (2.4) by asserting existence
of a positive eigenvector. Here that consideration is moot since our algebra’s elements are not
presented as operators, so there are no such things as eigenvectors in our context.

6. Some examples

We now introduce some further examples which will enable us to clarify the significance of
our hypotheses and the sharpness of our results.

Example 6.1. Let � ⊂ Rk be an open set and then take A = C(�) to consist of all continu-
ous functions on � with the topology of uniform convergence on compact subsets, pointwise
operations, and the usual notion of positivity: x � 0 if x(t) � 0 in R for each t ∈ �. Somewhat
more generally, we may let these functions be matrix valued—say, n× n real matrices, ordered
entrywise as in Example 3.2 above—so A = C(�→Mn).

For Example 6.1 so A = C(�→ Mn), one verifies immediately that this is a partially ordered
algebra, satisfying [H1] and [H2]. It is also easy to verify the P-completeness of C(�→ Mn).

To see this, fix any compact �∗ ⊂ � and note that cn→ 0 just means that there is a scalar
sequence αn→ 0+ with |cn(t)| � αn on �∗. The uniform convergence on �∗ then implies
that {xn} is a Cauchy sequence in the complete metric space C(�∗ → Mn) with its usual
uniform metric; hence xn converges uniformly on �∗ to some continuous limit function x.
Since this holds for each such �∗, we have convergence xn→ x ∈A in the sense of Example
6.1.

We now show how to compute ρ(x), characterizing B, and σ(x) in terms of the functions
ρ(x(t)) = ρ∗(x(t)) and the spectra σ(x(t))—computed in Mn for each t ∈ �.

Lemma 6.2. For x ∈A = C(�→ Mn) one has

ρ(x)= sup{ρ(x(t)) : t ∈ �}
= sup{|λ| : λ ∈ σ(x(t)), t ∈ �} (6.1)

so x is tame in A when ρ(x(·)) is bounded as a function on �, and

σ(x) =
⋃
t∈�

σ(x(t)). (6.2)

It follows that for Example 6.1 one has σ(x) compact and also that ρ(x) = ρ∗(x) := max{|λ| :
λ ∈ σ(x)} for all tame x.

Proof. If α < 1/ρ(x), then α ∈S(x) so for k = 1, . . . one has ±[αx]k � cα ∈A and
equivalently ±[αx(t)]k � cα(t), giving α � 1/ρ(x(t)), for each t ∈ �. Thus, ρ(x) �
sup{ρ(x(t)) : t ∈ �}. Conversely, if one would have α < 1/ sup{ρ(x(t)) : t ∈ �}, then for
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each t ∈ � there would be some cα(t) ∈Mn such that [αx(t)]k � cα(t) (k = 1, . . .) and this
would give α ∈S(x) if cα : [t �→ cα(t)] would be continuous and so a (positive) element of
A. The observation made following Example 3.2 shows that we can, indeed, choose cα(·) to be
continuous.

Using the continuity of x(·), we have open neighborhoods U(t) ⊂ � on which we can
take c = c∗(t) constant. There is then a locally finite subcover {U(tj )} of � and a correspond-
ing partition of unity {ϕj } with each ϕj continuous and supported on U(tj ). Then cα(t) :=∑

j ϕj (t)c∗(tj ) defines a suitable element of C(�→Mn)—continuous and dominating each

[αx(t)]k .

Thus ρ(x) = sup{ρ(x(t)) : t ∈ �}. Since ρ ≡ ρ∗ on Mn, we have (6.1).
Note that in Example 6.1 one has

[
x−1

]
(t) = [x(t)]−1 for each t ∈ �. Thus, if λ ∈ R is in

σ(x(t∗)) for some t∗ ∈ �, we could not have [λ− x(t)]−1 defined at t = t∗ whence [λ− x]−1

could not exist: λ ∈ σ(x). The same consideration also applies to
[|λ|2 − (λ+ λ̄)x + x2

]−1
for

complex λ, so σ(x) ⊃⋃
t∈� σ(x((t)). On the other hand, if λ∗ /∈⋃t∈� σ(x((t)), then (for real λ∗)

the Mn-valued function [λ∗ − x(·)]−1 is defined on all of � and is easily seen to be continuous,
hence in our algebra. Noting that the Spectral Mapping Theorem for Mn gives

σ([λ∗ − x(t)]−1) =
{

1

λ∗ − λ
: λ ∈ σ(x(t))

}
,

we see from (6.1) that [λ∗ − x]−1 is then a tame element of C(�→Mn) precisely if λ∗ is
actually bounded away from

⋃
t∈� σ(x((t)). Since the same consideration also applies to complex

λ∗, we have (6.2). Comparing with (6.1), we see that ρ(x) is finite (i.e., x is tame) if and only
if
⋃

t∈� σ(x((t)) is bounded so σ(x) is compact and the final assertion of the lemma is then
immediate. �

Remark 6.3. We now observe some possibilities arising in Example 6.1, noting where these
complement some of our results.

1. It is fairly standard that the topology of C(�→Mn) is separable and metrizable, but cannot
be given by a norm if � is not compact.

2. From Lemma 6.2 we see that one will always have both tame and non-tame elements in the
algebra A = C(�→Mn). Indeed (see 5. below) a tame element x may be algebraically
invertible with x−1 existing in A but not itself tame.

3. It is not difficult to see that P has empty interior for this example.
� is not compact, but we can find an increasing sequence {�n} of compact sets with⋃

n �n = �. Then, given any x ∈ P, we can find xn ∈A coinciding with x on �n but
taking negative values somewhere outside that. Then xn /∈ P while, for any fixed compact
set, xn ≡ x for large enough n so xn→ x.

4. We see that the product or sum of positive tame elements u, v ∈ B+ need not be tame.

To see this, consider A = C(R→M2) and fix M =
(

0 1
0 0

)
∈ M2. We now take u(t) =

f (t)M and v(t) = f (t)M∗ for a continuous positive scalar function f so u, v � 0 in A.
Clearly u, v are tame (with ρ(u) = ρ(v) = 0) since [uk](t) = [f (t)]kMk = 0 for k > 1
and similarly for v. On the other hand [uv](t) = f 2(t)P where P is the idempotent P =
MM∗ =

(
1 0
0 0

)
so [αuv]k(t) = αkf 2k(t)P . If we take f to be unbounded, then there
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can be no nonzero choice of α, independent of t , for which, αkf 2k(t)P is bounded for
each t . Thus uv is not tame. Note that uv /= vu since M, M∗ do not commute. Essentially
the same calculation shows that u+ v also cannot be tame.

This shows that the hypothesis in Lemma 4.3 that one of the products is tame cannot be omitted
and that the commutativity hypotheses in Lemmas 4.4 and 4.5 are necessary.

5. We emphasize the significance of including the requirement of tameness of the inverse in the
definition of σ(x): without that Theorem 5.7 would be incorrect.

To see this, consider x(t) = t2/(1+ t2) in C(R), giving ρ(x) = 1. We note that (1− x)

is here not accepted as invertible—while the algebra ic inverse (1− x)−1 = 1+ t2 exists
in A, this is unbounded as a scalar function on R and so, by Lemma 6.2, is not tame.

Changing the topology of Example 6.1 to the order topology (making bounded monotone
sequences converge, say, by requiring existence of sup and inf), shows that this need not
provide P-completeness.

Let xn(s) = max{0, min{ns, 1}} inA = C(R) so 0 � xn � 1; each xn is continuous so
xn ∈ B+ ⊂A. We easily verify that xn(s) � xn+1(s) for each s so we have a bounded
monotone sequence in A. On the other hand, the pointwise limit is 0 for s � 0 and 1
for 0 < s—which does not correspond to any element of A—so the sequence cannot
be convergent in A.

Complementing Lemma 4.9, this example shows that the spectral bound need not be con-
tinuous.

To see this, choose x∗ ∈ C(R) such that x∗(t) = 0 for |t | � 1 and x∗(t) = 1 for |t | � 2;
set xk(t) = x∗(t/k). Clearly xk � 1 and xk → 0 in the sense of Example 6.1, but
ρ(xk) = 1 for every k. Thus

lim
k

ρ(xk) = 1 /= 0 = ρ(0) = ρ(lim
k

xk).

6. If we were to take � compact, then this would become a Banach algebra with the monotone
norm ‖x‖ = max{|x(t)| : t ∈ �}.

We next consider a generalization of an example presented in [3], due to Stetsenko.

Example 6.4. Let � ⊂ C be a connected open set containing a nontrivial closed real interval
J. We then take A = A(�,J) to be the collection of all complex-valued functions which are
analytic on � and are real on J, using pointwise operations. Take P, in this case, to be the subset
of functions in A which are nonnegative on J. Finally, we take convergence in A to be uniform
convergence on each compact subset of �.

For Example 6.4 we first note that we can always take � symmetric across the reals with no
loss of generality since x(ζ̄ ) = x(ζ ) for ζ ∈ �, x ∈A. Next, if±x ∈ P, then x ≡ 0 on J so, by
analyticity, x ≡ 0 on �—i.e., P is pointed. Further, for any x ∈A we have y = (

1+ x2
)
/2 ∈ P

and ±x � y, from which it follows that P+ (−P) =A.
We now compute ρ(x) = maxJ |x(·)| for Example 6.4.

Lemma 6.5. Every x ∈A =A(�,J) is tame and we have

ρ(x) = max{|x(t)| : t ∈ J}, σ (x) = {x(ζ ) : ζ ∈ �}. (6.3)
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Proof. Note that x(·) is continuous on the compact set J ⊂ � so c = max{|x(s)| : s ∈ J} =
|x(s∗)| exists. For any 0 < α < 1/c we have±αx(s) � 1 for s ∈ J so±[αx]k � 1(·) in the par-
tially ordered algebra A where 1(·) ∈ P ⊂A is the constant function 1, showing that ρ(x) � c.
On the other hand, if u is any function in A and α > 1/c, we have

∣∣[αx]k(s∗)
∣∣ = [αc]k →∞ as

k→∞ so, eventually,
∣∣[αx]k(s∗)

∣∣ > u(s∗) and it is impossible that±[αx]k � u in A. This also
shows that each x ∈A is tame: we have here B =A.

The identity of A is the constant function 1 and we have pointwise operations so, if y is
invertible, y−1(ζ ) = 1/y(ζ ). If y(ζ∗) = 0 for some ζ∗ ∈ � and some y ∈A, then 1/y(·) cannot
be analytic at ζ∗. Thus, [λ− x] cannot be invertible in A if x(ζ∗) = λ for any ζ∗ ∈ �. Similarly,
for non-real λ, we note that if x(ζ∗) = λ, then—setting α = 1/λ and

y = (λ− x)(λ̄− x)/λ2 =
[
1− (α + ᾱ)x + |α|2x2

]
∈A

—we have y(ζ∗) = 0 so y is not invertible and λ ∈ σ(x); of course we also have λ̄ ∈ σ(x). �

Remark 6.6. We now observe some possibilities arising in Example 6.4.

1. This example shows that a partially ordered algebra, satisfying [H1] and [H2], need not be
P-complete.

To see this, let � be the unit disk {ζ ∈ C : |ζ | < 2} and J = [−1, 1] ⊂ �. If we consider
the sequences xn(ζ ) = (1/n) cos(nζ ) and cn ≡ 1/n in A =A(�,J), then we can verify
that cn ↘ 0 uniformly on � (so cn→ 0 in A) and that ±xn � cn in A (i.e., pointwise
on J). On the other hand, the sequence of values {xn(ζ ) : n = 1, . . .} is unbounded for
almost all ζ /∈ R so it is not possible (even for a subsequence) to have convergence of (xn)

in A to any limit.

This also shows the importance of the P-completeness assumption imposed for Lemma 4.8.

With xn, cn as above, we have −cn � xn � cn with 0 = limn(−cn) = limn cn, but do not
have xn→ 0.

2. In Example 6.4 we will never have ρ(x) = ρ∗(x)—indeed, ρ(x) will not even be a bound on
the spectrum σ(x)—unless the function x(·) is a constant.

This follows from Lemma 6.5: by the maximum principle for analytic functions, if x(·)
is not a constant, then there must exist some ζ∗ ∈ � giving λ = x(ζ∗) ∈ σ(x) such that
|λ| > max{|x(s)| : s ∈ J} = ρ(x).

This observation indicates the significance of the P-completeness condition in Theorem 5.7.
3. We now note that Example 6.4 shows that our Theorem 5.7 does subsume [3, Theorem 4.1].

Theorem 3.1 and Example 3.5 show that Stetsenko’s example cited in [3] (where the X-norm
is not semimonotone) would not provide a counterexample to Theorem 5.7, but does indicate
the necessity for that theorem of our hypothesis of P-completeness.

Example 6.7. Let A0 = L2(R) ∩ L∞(R), topologized as a subset of L2(R). There is no unit
in A0 so we adjoin one, letting A = R⊕A0, viewed as the set of functions on R of the form
x(t) = a + x0(t) with x0 ∈A0. The operations and positivity are taken in the usual sense of
‘pointwise a.e.’

Since these are bounded functions, products are again in A so we have [H1]. It is also clear
that the positive cone is closed; on the other hand, it is easy to find counterexamples to the general
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continuity of multiplication. Nevertheless, we easily verify this continuity when the factors are
constrained to order intervals and so satisfy uniform L∞ bounds; thus we also have [H2].

Remark 6.8

1. The algebra of Example 6.7 is P-complete.

Suppose {xk} is a sequence of functions in A and {cN } is a sequence of nonnegative
functions in A such that

0 � cN(s) � cN−1(s) for a.e. s ∈ R and N = 2, . . .

‖cN‖ → 0 as N →∞ (L2-norm)∣∣xj (s)− xk(s)
∣∣ � cN(s) for a.e. s ∈ R and j, k � N = 1, 2, . . .

It follows that
∥∥xj − xk

∥∥ � ‖cN‖ → 0 so {xk} is a Cauchy sequence and so convergent
in L2(R) to some L2 function x̄(·). Since (for each k and a.e. s ∈ R) one has |xk(s)| �
|x1(s)| + c1(s) � bound, it follows in the limit that x̄(·) is bounded so the L2-convergence
xk → x̄ is actually convergence in A and we have P-completeness as desired.

On the other hand,A0 is not complete in the usual sense with respect to its own metric topology,
so it is not a Banach algebra. Further, one easily sees that there can be no renorming which
makes this a Banach algebra, since one can find convergent sequences for which the product
sequences do not converge.

2. This example also clarifies the distinction between norm boundedness and P-boundedness.

If we set xλ(s) = {1 if |s − λ| � 1; 0 else}, then ‖xλ‖ =
√

2 so A = {xλ : λ ∈ R} is norm
bounded—but to have every xλ ∈ [−u, u] would require u(s) � 1 for all s: impossible for
u ∈A ⊂ L2(R).

Example 6.9. Let A be 	1 (A0), i.e., the set of sequences x = (x0, x1 . . .) with each entry xj

taken from the specified Banach algebra A0 and with ‖x‖ =∑
j ‖xj‖ <∞. If we take convolu-

tion as multiplication so xy is given by (xy)j =∑j

k=0 xkyj−k , then A itself becomes a Banach
algebra. We then take the usual componentwise partial order, assuming A0 is already partially
ordered by a positive cone P0, and A is then a partially ordered Banach algebra, satisfying
[H1], [H2]. One easily sees that if the norm of A0 is semimonotone with respect to P0 (e.g., for
A0 = R), then the A-norm is also semimonotone so A is P-complete by Theorem 3.1.

Example 6.10. Consider the algebra F =FR of all functions f given by a power series f (ζ ) =∑
k ckζ

k with real coefficients and a radius of convergence Rf > R and say f is nonnegative
if each coefficient ck is nonnegative. We define convergence fk → f in FR as coefficient-wise
convergence (subject to the requirement that there is some r > R and some m > 0 for which one
has, uniformly, |ck,N | � mr−k).

Although we have presented the topology somewhat differently here, this example is quite
closely related to the function algebra used in Theorem 5.1 and essentially the same spectral
calculus Fx : f �→ f (x) =∑

n cnx
n applies here. We now note that the algebra homomorphism

Fx is order preserving if x � 0. We emphasize, on the other hand, that the order relation here
is quite different from that of Example 6.4 and note that this partially ordered algebra is clearly
P-complete.
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7. Comments and remarks

We note, borrowing somewhat from [6], that a well-known matrix result by Varga [7, Theorem
3.32] also holds in this setting. For this we define a regular splitting of an element z ∈A as a
pair [x, y] such that:

z = x − y with x invertible, both x−1 and y are nonnegative, and both x and p = yx−1 are
tame.

We refer to p as the iteration element for the splitting.

Theorem 7.1. Let A be a P-complete partially ordered algebra. Then, subject to a bound, the
mapping: x �→ ρ(p) is monotone increasing for regular splittings of a fixed element z. More
precisely, given regular splittings [x, y], [u, v] of the same z (y − x = z = v − u), one has

u � x implies ρ(vu−1) � ρ(yx−1) (7.1)
provided ρ(yx−1) � 1 or, alternatively, if z is invertible with xz−1 � 0.

Proof. Set p := yx−1 and q = vu−1.
Our first observation is that the alternative hypothesis z−1 � 0 already implies ρ(p) < 1 since

(1− p)−1 = xz−1 so positivity gives 1 ∈S(p) by Lemma 5.6, with strict inequality as in the
proof of Theorem 5.7 above.

We can now choose α arbitrarily close to ᾱ = supS(p) = 1/ρ(p) > 1 such that 1 < α < ᾱ,
giving α ∈S(p) so we have

{[αp]k} bounded uniformly in k. If we can show that this choice of
α also gives P-boundedness of the set

{[αq]k} so α ∈S(q), then we will have sup {S(q)} � ᾱ,
giving (7.1).

To this end it is now convenient to introduce
a := 1− ux−1 = (x − u)x−1 � 0, b := p − a = vx−1 � 0,

zα := (1− αp)−1 � 0 qα = b(1− αa)−1 � 0,
(7.2)

where we note first that 0 � a � p so zα is well-defined and nonnegative for α < ᾱ by Theorem
5.2 and, similarly, (1− αa)−1 � 0 in view of Lemma 4.4-2. Note also that (1− a)−1 = xu−1 so
q1 = q and comparison of the (convergent) Neumann series shows that (1− αa)−1 is monotone
increasing in α here so q1 � qα for α � 1.

One can immediately compute the identities

zα = 1+ αazα + αbzα, bzα = qα (1+ αbzα) .

Multiply 1 = [1− αp + αa + αb] by zα and, after noting that b = qα(1− αa), multiply
1− αa = [1− αp + αb] on the left by qα and on the right by zα .

The first of these identities is the case N = 0 of the induction

zα =
N∑
0

(αqα)k + αazα + α (αqα)N bzα

=
N∑
0

(αqα)k + αazα + α (αqα)N qα(1+ αbzα)

=
N+1∑

0

(αqα)k + αazα + α (αqα)N+1 bzα. (7.3)
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Since each term in (7.3) is nonnegative, this shows that (αqα)k � zα for each k so α ∈S(qα) and
we have shown that supS(qα) � ᾱ so ρ(qα) � ρ(p). Since we took α � 1, giving 0 � q � qα ,
the desired result (7.1) follows by Lemma 4.4-2. �

Finally, we note here some open questions:

[Q1] If x is any tame element of a P-complete partially ordered algebra A, is it necessarily
strongly tame? We are asking whether uα in (2.6) can always be chosen in the maximal
commutative subalgebra generated by x so restriction to that subalgebra would preserve
tameness. [We do know this for x ∈ P by Lemma 5.6-1.]

[Q2] It is not really clear how much of [H2] is needed. Certainly our approach needs some notion
of convergence to work with the Neumann series at all and will need that [if un→ ū with
un ∈ P, then ū ∈ P], but it is not clear that any more is needed (or that we need a full
topology, other than consideration of some special sequences). Thus we ask whether it
might be possible to find a purely algebraic conditions (or quasi-topological conditions as
in [1]) which could still give the results of Section 5.

[Q3] If we have a weakened P-completeness condition

εn ↘ 0, ±[xm − xn] � εnu(m > n)⇒ ∃x̄ � xn→ x̄, (7.4)

does this already imply the stronger condition

un ↘ 0, ±[xm − xn] � un(m > n)⇒ ∃x̄ � xn→ x̄ (7.5)

which we have been using?—perhaps if it is also known that each xn is tame and/or that
the {xn} commute?

[Q4] In Example 3.5, if X satisfies (3.3), does it follow that for each x ∈A =L(X) there is
some u ∈ P with ±x � u? [This would imply that P+ [−P] =A.] Must we have (3.3)
for A? It would be even nicer if we could get this with ux = xu and ‖u‖ � C‖x‖.

[Q5] We note that any algebra A with identity (more generally: such that xy = 0 for all y

implies x = 0) is always (equivalent to) an algebra of linear operators on a vector space,
since A is, of course, itself a vector space and we may identify each element x with the
operator Tx : y �→ xy soA can be identified with a subalgebra of the algebra of all bounded
operators on A. Note that if we use the partial order of A for the vector space, then there
is an induced partial order for the operator algebra—and this coincides with the original
partial order of A. Can this be used—with some equivalent of compactness—to get some
version of the ‘positive eigenvector’component of the usual Perron–Frobenius Theory?

[Q6] If x is a tame element of a P-complete partially ordered algebra A, do we necessarily
have ρ(x) = ρ∗(x) = sup{|λ| : λ ∈ σ(x)}? [We have the inequality ρ � ρ∗ in general by
Theorem 5.2-2. and have equality for x ∈ P by Theorem 5.7.] It seems plausible to have
equality in general and we conjecture that an argument for this might be based on a spectral
calculus using formally the Cauchy Integral Formula

f (x) = 1

2πi

∮
C

f (z) (z− x)−1 dz

(reformulated to stay in R and necessitating the development of a corresponding version of
the Cauchy Integral Theorem). We have not attempted this here.
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