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Abstract

We prove comparison theorems for norms of iteration matrices in splittings of matrices
in the setting of proper cones in a finite dimensional real space by considering cone linear
absolute norms and cone max norms. Subject to mild additional hypotheses, we show that
these comparison theorems can hold only for such norms within the class of cone absolute
norms. Finally, in a Banach algebra setting, we prove a comparison theorem for spectral radii
without appealing to Perron–Frobenius theory.
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1. Introduction

Extensive literature on the splitting of matrices satisfying various conditions goes
back about 50 years; see the books by Varga [22, pp. 94–103] and Axelsson [1, pp.
213–219]. Generally, splittings require a nonnegativity condition, classically with
respect to the nonnegative orthant (i.e. elementwise for the matrices involved), but,
more recently, with respect to a proper cone in finite dimensional real space; see
Marek [15], Marek–Szyld [16] or Climent–Perea [5], where some infinite dimen-
sional generalizations may also be found.

One topic of considerable interest concerns monotonicity properties for the spec-
tral radius of the iteration matrix of the splitting. Such results are usually called
comparison theorems. These appear in numerous places; see for example the books
cited above or the review paper by Woźnicki [23]. However for (right) weak regular
splittings, we have found only one result that proves a comparison theorem for a
norm of splittings, viz. Neumann–Plemmons [17, Lemma 2.2] or Frommer–Szyld
[9, Theorem 4.1], see also [3, Theorem 2.5], where applications are given. The norm
used in this theorem is a weighted max norm and the cone is the nonnegative orthant.
Here, we put this theorem into a cone setting, and one of our principal purposes is to
investigate to what extent its hypotheses are needed for its conclusion.

We now describe our paper in some detail. Among other preliminaries, in Section
2 we introduce the classes of cone absolute norms, cone linear absolute norms and
cone max norms in order to put our results in a setting of a proper, but otherwise
general, cone in finite dimensional real space. Our principal results are contained in
Section 3. Since we here consider left weak regular splittings, the norms we employ
are cone linear absolute. We prove a dual form of the theorem of [9,17] mentioned
above in this setting (Theorem 3.3) and we show (Theorem 3.4) that a cone abso-
lute norm must satisfy stringent conditions to yield a norm comparison theorem.
A sequence of results is summed up in Theorem 3.7. In Section 4 we obtain some
analogous results for right weak regular splittings which are the duals of the theorems
in Section 3. In Section 5 we derive a comparison theorem for spectral radii, and,
turning to a different approach, we give a proof of the well-known [22, Theorem
3.32] in a cone setting which relies on order and convergence properties of operators
without any appeal to Perron–Frobenius theory.

As one motivating application for some of our present concerns, we can consider a
processor serving a set of buffered input sources. If there is a setup time for switching
tasks, a ‘clearing round-robin’ policy is reasonable and (cf., e.g., [10,12]) the analysis
of system dynamics involves the convergence of powers of an iteration matrix for
what is in effect a regular splitting. However, for related settings, e.g., consideration
of a bank of processors (cf., e.g., [13]), one has a (somewhat random) product of
matrices rather than powers of a fixed matrix. To show system stability for these
more general settings (involving products of iteration matrices of different splittings)
one now needs to have a uniform norm inequality for the iteration matrices to ensure
suitable stability of these products; see the papers we have cited.
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2. Preliminaries on cones and norms

In the following, P will always be a ‘general’ proper cone, not necessarily sim-
plicial, in the real finite dimensional space X, that is P is a closed and convex subset
of X with P + (−P) = X, P ∩ (−P) = {0}. [We note that this implies that both P
and the dual cone P∗ = {ϕ : u ∈ P ⇒ ϕ · u � 0} in X∗ have nonempty interiors.]
Specification of P then induces a partial order � = �P for the space X so x � y
means x − y ∈ P. This also induces a partial order for K ×K matrices (viewed as
operators: X → X) so A � 0 means Au ∈ P for all u ∈ P and we have an induced
proper cone M+ = {A � 0} for such matrices. [Note that the cones M+ and M∗+ =
{B : ϕ ∈ P∗ ⇒ ϕB ∈ P∗} = {AT : A ∈ M+} are each again convex with nonempty
interiors.]

It is natural that the best known case takes P to be the nonnegative orthant RK+ ⊂
X = RK . (When we speak simply of RK we shall always assume that P = RK+ .) For
this case A � 0 just means that all the entries (aj,k) are nonnegative. In this context,
the relevant matrix norm for our questions will be that induced by the 	1 norm on
RK—or a weighted 	1 norm given by

ν(x) :=
K∑
k=1

wk|xk| for x = (x1, . . . , xK) ∈ RK (2.1)

with positive weights wk > 0. These norms belong to a well-studied class of norms
on RK (including all 	p norms) called absolute norms: by definition these are norms
satisfying

ν(x) = ν(|x|), (2.2)

where |x| = (|x1|, . . . , |xK |). It is well-known (see, [2] or [11, Theorem 5.5.10]) that
an absolute norm has the monotonicity property

|x| � |y| ⇒ ν(x) � ν(y). (2.3)

One would define |x| ∈ P as max{x,−x} = min{u : −u � x � u} and use (2.2) if
this min were always attained, but the max or min of two elements need not be
available for the order defined by a general proper cone and in order to generalize
to our setting we shall call a norm ν on X cone absolute (with respect to the proper
cone P) if, for all x ∈ X,

ν(x) = inf{ν(u) : −u � x � u : u ∈ P}. (2.4)

We note that a norm ν is cone absolute if and only if

ν(x) = inf{ν(v + w) : v,w ∈ P; v − w = x} (2.5)

as we may see by putting 2v = u + x, 2w = u − x giving u = v + w.

While we are here taking (2.5) as a property of an already specified norm, we
remark at this point that (2.4) may be taken to define a norm ν on X once it is
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already given as a monotone, positively homogeneous, subadditive function on
the cone P.

It is easy to see that a cone absolute norm has the property

ν(u) � ν(u + v) for u, v ∈ P, (2.6)

which we shall call cone monotonicity. When X = RK (and P = RK+ ) we shall
simply refer to absolute and monotonic norms.1 Cone monotonicity of a norm does
not imply its cone absoluteness as can be seen by considering on R2 the norm:
max(|x1|, |x2|, |x1 + x2|).

The most striking property of a weighted 	1 norm on RK is that on P = RK+ it is
linear. Thus we shall call a norm ν cone linear (with respect to a proper cone P) if it
satisfies

For some fixed ϕ ∈ P∗ one has: ν(u) = ϕ · u for all u ∈ P. (2.7)

Clearly this ϕ must be in the interior of P∗ to ensure, as is required for a norm, that
ν(u) > 0 for 0 /= u ∈ P. A norm ν will be called cone linear absolute if it is both
cone absolute and cone linear.

The property (2.5) is sufficient to permit appropriate treatment of the induced
matrix norms as well: for positive matrices the matrix norm may be computed with
attention restricted to P.

Theorem 2.1. Let ν be a cone absolute norm on X (with respect to a proper cone
P) and let A : X → X be positive (A � 0 so Au ∈ P when u ∈ P). Then

‖A‖ := sup{ν(Ax) : x ∈ X; ν(x) � 1}
=NP(A) := sup{ν(Au) : u ∈ P; ν(u) � 1}. (2.8)

Proof. Let x ∈ X be such that ν(Ax) = ‖A‖ with ν(x) = 1. Since ν is an absolute
norm, there exists u ∈ P such that −u � x � u and ν(u) = ν(x) = 1 so ν(Au) �
‖A‖. Since A � 0, we have Au � 0 and −Au � Ax � Au. Hence, by (2.4), ‖A‖ =
ν(Ax) � ν(Au) and it follows that ν(Au) = ‖A‖. �

Given (2.6), it follows from Theorem 2.1 that the matrix norm corresponding to
any cone absolute norm will itself be cone monotone with respect to the matrix cone
M+:

‖A‖ � ‖A + B‖ for A,B ∈ M+. (2.9)

However, a matrix norm satisfying (2.9) need not be cone absolute.

1 This departs from the usual terminology in papers on matrix theory where the norms we simply call
‘monotonic’ are generally called ‘orthant monotonic’.
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This may be seen by considering the 	2 norm on R2 and the matrices

A =
(

1 −1
1 1

)
and |A| =

(
1 1
1 1

)
.

Although the 	2 norm is absolute, the matrices A, |A| have different norms (larg-
est singular values): respectively

√
2 and 2.

We also observe that the conclusion of Theorem 2.1 need not hold for all cone
monotonic norms.

To see this, consider the norm ν given by max{|x1|, |x2|, |x1 + x2|/2} on R2 and
the transformation T(x1, x2) = (0, x2). For x = (−2, 1) one would then have
ν(Tx)/ν(x) = 2 while ν(Tu)/ν(u) � 1 for all u � 0.

3. Inequalities for operator splittings

Throughout this section we assume that we have specified a proper cone P and
vector inequalities will be with respect to this cone while matrix inequalities will be
taken with respect to the induced cone M+ = M+(P). We say that the pair [M,N]
is a left weak regular splitting of the K ×K matrix T if M is invertible and

M − N = T with M−1 � 0, NM−1 � 0. (3.1)

Similarly, the pair [M,N] is called a right weak regular splitting of T if M is invert-
ible and

M − N = T with M−1 � 0, M−1N � 0. (3.2)

These splittings in (3.1) and (3.2) are also known as weak nonnegative splittings
of the first and second kind respectively; see [23] or [8]. The matrix NM−1 (alterna-
tively, M−1N) is known as the iteration matrix of the splitting.

We shall assume that the norm ν is cone linear absolute with defining functional
ϕ. Where needed, we impose on the functional ϕ of (2.7) the hypothesis that it is not
only in the interior of P∗, as is necessary for ν to be a norm, but that in addition we
also have

TTϕ � 0 : ϕ · Tv � 0 for all v ∈ P, (3.3)

or the still stronger property

TTϕ > 0 : ϕ · Tv > 0 for all v ∈ P, v /= 0. (3.4)

Note that, without further assumptions, even (3.4) is much weaker than asking
that TT � 0 which would mean that TTϕ � 0 for all ϕ ∈ P∗, not only the particular
ϕ of (2.7). We do note, however, that when T is nonsingular and has a left weak
regular splitting [M,N] (whence TT has the right weak regular splitting [MT,NT]),
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then the existence of a functional satisfying (3.3) is equivalent to (T−1)T � 0 and
to ρ(NM−1) � 1, as is shown by an easy modification of the proof of [20, Lemma
1]. Further, the nonsingularity of TT is guaranteed under condition (3.4), which also
yields ρ(NM−1) < 1; see [20, Lemma 1] and see [6, Theorem 2.11] for a related
result. These remarks rest on Perron–Frobenius theory, but our next theorem shows
that one can parallel the above results without any overt appeal to that theory.

Theorem 3.1. Suppose the pair [M,N] is a left weak regular splitting of a K ×K

matrix T so we have (3.1) with respect to the ordering of P. Let the norm ν be a
cone linear absolute norm given by the functional ϕ (so that (2.4) and (2.7) hold).

1. If the defining functional ϕ of ν satisfies (3.3) with respect to this T, then, with
the operator norm induced by ν, we have

‖NM−1‖ � 1. (3.5)

2. When ϕ satisfies (3.4) one has the strict inequality

‖NM−1‖ < 1. (3.6)

3. If either (3.6) holds or (3.5) holds and T is assumed to be nonsingular, then

T−1 � 0. (3.7)

4. If T−1 � 0, then there exists a functional ϕ′ > 0 such that the strict inequality
(3.4) is satisfied for the cone linear absolute norm given by ϕ′ and hence (3.6)
holds for the induced norm.

Proof. (1) Since (3.1) gives NM−1 � 0, we may apply Theorem 2.1. Thus it is suffi-
cient for (3.5) to show that ν(NM−1u) � ν(u) for each u ∈ P. Noting that TM−1 =
I − NM−1 and using (2.7), we have

ν(u)− ν(NM−1u) = ϕ · [u − (I − TM−1)u] = ϕ · T(M−1u), (3.8)

which is nonnegative by (3.3) since M−1 � 0 gives v = M−1u ∈ P.
(2) For this assertion we observe that in the argument above we need only con-

sider the set P′ consisting of u ∈ P for which ν(u) = 1. This set is compact so, by
continuity, ϕ · T(M−1u) attains its minimum over u ∈ P′, necessarily positive since
it follows from (3.4) that ϕ · T(M−1u) > 0 for each such u. Thus, (3.6) follows from
(3.8).

(3) We now observe that if P = NM−1 satisfies (3.6), then the Neumann series
expansion of (I − P)−1 converges and we obtain (I − P)−1 � 0 since the cone M+
is closed. If (3.5) holds then we can apply the same argument to αP with 0 < α < 1
and use continuity of the inverse to obtain (I − P)−1 � 0. In either case, T−1 =
M−1(I − P)−1 � 0.

(4) Suppose T−1 � 0 so also (TT)−1 � 0. Then for any choice of ψ > 0 one has
ϕ′ := (TT)−1ψ > 0 and Tϕ′ > 0. The conclusions now follow by Part (2) of the
theorem. �
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While we have used (3.3) to obtain (3.5) for every left weak regular splitting, we
may remark that for any one such splitting it is sufficient that (M−1)T takes TTϕ into
P∗.

On the other hand, if T is singular, then (3.5) does not imply the existence of a
functional ϕ > 0 such that (3.3) holds, as is shown by the following example.

Example 3.2. Consider the left weak regular splitting

T =
(

2 −1
0 0

)
= M − N =

(
2 −1

−1 2

)
−

(
0 0

−1 2

)

so NM−1 =
(

0 0
0 1

)
.

For the usual 	1 norm, (3.5) is satisfied, yet there cannot be any positive functional
ϕ for which TTϕ is also positive, to yield (3.3).

Theorem 3.3. Suppose [M,N] and [M̂, N̂] are both left weak regular splittings of
the sameK ×K matrix T. Assume the defining functional ϕ of the cone linear abso-
lute norm ν satisfies (3.3). Then, with the operator norm induced by ν, we have

M−1 � M̂−1 implies ‖N̂M̂−1‖ � ‖NM−1‖, (3.9)

i.e., the mapping: M−1 �→ ‖NM−1‖ is antitone for left weak regular splittings of T.
Further, if ϕ satisfies the stronger condition (3.4) and also

u � 0, [M̂−1 − M−1]u = 0 implies u = 0, (3.10)

then the conclusion of (3.9) becomes the strict inequality

‖N̂M̂−1‖ < ‖NM−1‖. (3.11)

Proof. Applying Theorem 2.1 for each of the operator norms, it is sufficient for the
desired norm inequality (3.9) to show that ν(N̂M̂−1u) � ν(NM−1u) for each u ∈ P
when M−1 � M̂−1. Since N̂M̂−1, NM−1 � 0, this is equivalent by (2.7) to showing
that ϕ · N̂M̂−1u � ϕ · NM−1u for all u � 0.

We next observe that TM−1 = I − NM−1 and TM̂−1 = I − N̂M̂−1 so we have
the identity

NM−1 − N̂M̂−1 = T[M̂−1 − M−1].
With M̂−1 � M−1 giving v = [M̂−1 − M−1]u ∈ P for u ∈ P, we have from (3.3)
that ϕ · Tv � 0. Thus, as desired, for each such u we have 0 � ϕ · T[M̂−1 − M−1]u =
ϕ · [NM−1 − N̂M̂−1]u.

If (3.4) and (3.10) hold then v = [M̂−1 − M−1]u is nonnegative and nonzero for
u � 0, u /= 0 whence the above argument shows ϕ · Tv > 0. As in the last part of
the proof of Theorem 3.1, this proves (3.11). �
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The condition (3.10) just asserts that the nullspace of [M̂−1 − M−1] intersects P
only trivially. Thus (3.10) holds if M̂−1 − M−1 > 0 (in which case the inequality
(3.11) follows even without the hypothesis (3.4). The hypothesis (3.10) occurs in
the context of theorems of the alternative; see Lemma 4.1 below. For X = RK and
P = RK+ , condition (3.10) is satisfied if and only if [M̂−1 − M−1] is a nonnegative
matrix with at least one positive element in each column.

We can now show that for cone linear absolute norms the additional hypothesis
(3.3) is necessary for (3.9)—at least if T has some left weak regular splitting [M,N]
as in (3.1) for which NM−1 is not only nonnegative, but is in the interior of the cone
M+ of nonnegative matrices.

Theorem 3.4. Suppose T has a left weak regular splitting [M,N] with NM−1 strictly
positive and that ν is a cone linear absolute norm with defining functional ϕ. Then
(3.9) can hold only if (3.3) holds.

Proof. For (3.3) to be false there must exist some v ∈ P such that ϕ · Tv < 0. Fixing
v, we define the dyad D = v ⊗ ϕ : x �→ (ϕ · x)v, noting that D � 0 and ‖D‖ = ϕ · v.
For small enough ε > 0, we can then define M̂ := (I + εMD)−1M, for which we
have

M̂−1 = M−1(I + εMD) = M−1 + εD so M̂−1 � M−1 � 0.

Further,

N̂M̂−1 = I − TM̂−1 = I − T(M−1 + εD) = NM−1 − εTD,

whence one has convergence N̂M̂−1 → NM−1 as ε → 0 so N̂M̂−1 � 0 for small
enough ε > 0. Thus, [M̂, N̂] is again a left weak regular splitting of T and we have
M̂−1 � M−1 as in (3.9).

Since NM−1 � 0, we may apply Theorem 2.1 and note that, by continuity and
compactness, the sup in the definition (2.8) of NP(NM−1) must be attained. Thus
there exists some u ∈ P with ϕ · u = ν(u) = 1 and

ϕ · NM−1u = ν(NM−1u) = NP(NM−1) = ‖NM−1‖.
For this u we have Du = v and

‖N̂M̂−1‖ � ν(N̂M̂−1u) = ϕ · N̂M̂−1u = ϕ · [NM−1u − εTDu]
= ‖NM−1‖ − εϕ · Tv > ‖NM−1‖ (as ϕ · Tv < 0)

so (3.9) then fails. �

In view of the nonnegativity of M−1, M̂−1 and the resolvent identity: M̂−1 −
M−1 = M̂−1(M − M̂)M−1, we note that having M̂ � M is a somewhat stronger
hypothesis than having M−1 � M̂−1. We now show that this strengthening is just
sufficient to compensate for the absence of (3.3).
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Theorem 3.5. Let both [M,N] and [M̂, N̂] be left weak regular splittings of the
same K ×K matrix T. With the operator norm induced by the cone linear absolute
norm ν, we assume that ‖NM−1‖ � 1. Then

M̂ � M implies ‖N̂M̂−1‖ � ‖NM−1‖, (3.12)

i.e., subject to (3.5), the mapping: M �→ ‖NM−1‖ is isotone for left weak regular
splittings of T even in the absence of (3.3).

Proof. We begin by noting the identity

N̂M̂−1 − NM−1 = T[M−1 − M̂−1] = (I − NM−1)(M̂ − M)M̂−1

for splittings [M,N], [M̂, N̂] of T. Assuming M̂ � M and ‖NM−1‖ � 1, we wish to
show that

ϕ · N̂M̂−1u � ϕ · NM−1u for each u � 0,

since this is sufficient for the conclusion of (3.12).
By the identity, we have ϕ · [NM−1 − N̂M̂−1]u = ϕ · v − ϕ · NM−1v with v :=

(M − M̂)M̂−1u ∈ P. Since ‖NM−1‖ � 1, we have ϕ · NM−1v = ν(NM−1v)
� ν(v) = ϕ · v. Thus, ϕ · [NM−1 − N̂M̂−1]u � 0 for each u � 0 and it follows that
‖N̂M̂−1‖ � ‖NM−1‖ as desired. �

The following reformulation of a special case of Theorem 3.5 is of interest.

Corollary 3.6. Suppose P = A + B with ‖P‖ < 1 and with both A,B � 0. Then,
subject to this, the map: A �→ ‖B(I − A)−1‖ is isotone.

Proof. Let T be the matrix I − P, let M = (I − A), and N = B � 0. One easily
sees that [M,N] is a left weak regular splitting of T. We first apply Theorem 3.5 to
compare this with the splitting [I,P] and see that we always have ‖B(I − A)−1‖ �
‖P‖ < 1. Theorem 3.5 then applies to give the isotonicity. �

While the proof above of Theorem 3.5 does use (2.7), the possibility remains
open that this apparent necessity is merely an artifact of the particular proof. We
now show that this is not the case: for a cone absolute norm ν (and indeed for any
cone monotone norm which satisfies (2.8)) the linearity on P is really needed for the
isotonicity (3.12).

In particular, when P is the usual positive orthant RK+ we cannot have (3.12)
when the matrix norm is induced by, e.g., a (weighted) 	p norm with p > 1.

Theorem 3.7. Assume the norm ν(·) is cone absolute (2.4). Then (3.12) holds only
if ν(·) is cone linear, even if we restrict attention to left regular splittings [M,N]
with ‖NM−1‖ � 1.
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Proof. Choose any u in the interior of P, normalized so ν(u) = 1. By the Hahn–
Banach theorem, e.g. [18, p. 58], there must be some ϕ ∈ X∗ such that

ϕ · x � ν(x) for all x ∈ X but ϕ · u = ν(u) = 1. (3.13)

We note that (3.13) together with (2.6) give ϕ ∈ P∗:

Given any v � 0, one has (u − sv) ∈ P for small enough s > 0 since u is in the
interior of P. Then (2.6) gives ν(u − sv) � ν(u − sv + sv) = ν(u) = 1, whence

1 − sϕ · v = ϕ · (u − sv) � ν(u − sv) � 1

so one must have ϕ · v � 0.

If ν is not cone linear, then (2.7) fails for this ϕ so there must be some v in
P for which ϕ · v �= ν(v), and by the continuity of the norm there must be such
a v in the interior of P. Normalizing v, this necessarily means ϕ · v < ν(v) = 1.
Again by the Hahn–Banach theorem, there is then some ψ ∈ P∗ with ν∗(ψ) = 1
and ψ · v = ν(v) = 1.

To obtain our counterexample for (3.12) we again work with appropriate dyadic
matrices. First, by our choice of v we can choose r so 0 � ϕ · v < r < 1 and we then
set

M := I, N := ru ⊗ ψ : x �→ r(ψ · x)u.

Since r > 0, u ∈ P, and ψ ∈ P∗ as noted above, this makes NM−1 = N � 0 so we
have (3.1). As ν(NM−1x) = r(ψ · x) � rν(x), we have ‖NM−1‖ = r so our choice
of r < 1 gives (3.5).

Next, we choose 0 < s < 1 small enough that (u − sv) ∈ P—possible since u is
in the interior of P—and then set

D := rsv ⊗ ψ : x �→ rs(ψ · x)v,

M̂ = M − D = I − rsv ⊗ ψ,

N̂ = N − D = r(u − sv)⊗ ψ.

Note that our choice of s ensures that D � 0 so M̂ � M and that rs < 1 so M̂−1 � 0.
Further, since (u − sv) ∈ P we have N̂ � 0 so N̂M̂−1 � 0 and [M̂, N̂] is another left
weak regular splitting of T = M − N = I − ru ⊗ ψ .

Finally, we must show that ‖N̂M̂−1‖ > r = ‖NM−1‖ to see that this is, indeed, a
counterexample for (3.12). For any x we have

N̂M̂−1x = N̂y = r(ψ · y)(u − sv),

where y := M̂−1x. This gives x = M̂y = y − rs(ψ · y)v so

ψ · x = (ψ · y)− rs(ψ · y)ψ · v = (1 − rs)ψ · y
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and N̂M̂−1x = r
1−rs (ψ · x)(u − sv). Recalling that ϕ · u = 1 = ψ · v, we then have

‖N̂M̂−1‖ � ν(N̂M̂−1v) � ϕ · N̂M̂−1v

= r

1 − rs
(ψ · v)[ϕ · (u − sv)] = 1 − s(ϕ · v)

1 − rs
r.

Because we chose r > ϕ · v we now have 1 − s(ϕ · v) > 1 − rs for s > 0, so this
does give a counterexample for (3.12). �

Finally, we summarize some of the results in this section.

Theorem 3.8. Let ν be a cone absolute norm and suppose that T has a left weak
regular splitting [M̃, Ñ] with ÑM̃−1 > 0. Then the following are equivalent:

1. The norm ν is cone linear absolute defined by a functional ϕ such that (3.3) holds.
2. For left weak regular splittings [M,N] and [M̂, N̂] with ‖NM−1‖ � 1, the impli-

cation (3.12) holds.

Proof. (1) ⇒ (2). Since M̂ � M implies M−1 � M̂−1, the result follows from The-
orems 3.3 and 3.5.
(2) ⇒ (1). By Theorems 3.7 and 3.4. �

We leave open the question as to whether (3.12) in (2) of Theorem 3.8 can be
replaced by (3.9).

4. Dual results

We now wish to consider right weak regular splittings of T:

M − N = T with M−1 � 0, M−1N � 0. (4.1)

By considering dual spaces, dual norms and dual cones, we obtain results analogous
to those of the previous section since the induced norm of the transpose of an operator
with respect to the dual of a norm equals the induced norm of the original operator
with respect to the original norm.

Note that the dual norm for a cone linear absolute norm as in (2.4) and (2.7) is a
cone max norm on X having the form

ν(x) = inf{t : −tw � x � tw}, (4.2)

where w is a fixed vector in the interior of the proper cone P ⊂ X.

For ν given as in (2.4) and (2.7) the dual norm ν∗(ξ) := sup{ξ · x : ν(x) � 1} is
equivalently given by (4.2) with w = ϕ. To see this, we need only note that to
have −tϕ � ξ � tϕ in the sense of the dual order just means that ±ξ · u � tϕ ·
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u = tν(u). Writing x = v − w with v,w ∈ P and ν(x) = ν(v + w) as in (2.5),
we then have

ξ · x = ξ · v − ξ · w � tϕ · v + tϕ · w = tν(v + w) = tν(x),

whence ν∗(ξ) � t . We observe that a cone max norm is cone absolute. The
terminology ‘cone max norm’ comes from the fact that for the case of P =
RK+ the weighted 	1 norm (2.1) has, as dual, the weighted 	∞ norm, ν∗(ξ) =
maxk{|ξk|/wk}.

This dual norm ν∗ is not cone linear in the sense of (2.7) when ν is, but it is
cone absolute with respect to P∗ and hence does give (2.8). We note that AT is
nonnegative with respect to the cone P∗ if and only if A � 0 with respect to P.

In order to dualize the condition for strict inequality in Theorem 3.3, we need a
theorem of the alternative:

Lemma 4.1. Let W be a subspace of X and let P be a proper cone in X. Then
the interior of W ∩ P is nonempty if and only if W⊥ ∩ P∗ = {0}, where W⊥ is the
orthogonal complement of W and P∗ is the cone dual to P.

Proof. See, e.g., [4, Theorem 2.8] and the references given there. For the case P =
RK+ ; see [21, Lemma 1.2]. �

We now state the dual of Theorem 3.3 as follows.

Theorem 4.2. Let ‖ · ‖ be the matrix norm induced by a cone max norm determined
by a positive vector w as in (4.2) and consider a right weak regular splitting [M,N]
of T as in (4.1).

1. If Tw � 0, then ‖M−1N‖ � 1 and the map: M−1 �→ ‖M−1N‖ is antitone, i.e.,

M−1 � M̂−1 implies ‖M̂−1N̂‖ � ‖M−1N‖. (4.3)

If T is nonsingular, then T−1 � 0.
2. Further, suppose that Tw > 0. Then T is nonsingular with T−1 � 0. Also, we

have the strict inequality ‖M−1N‖ < 1 and, provided that

for some u > 0, [M̂−1 − M−1]u > 0, (4.4)

we have

M−1 � M̂−1 implies ‖M̂−1N̂‖ < ‖M−1N‖. (4.5)

3. Finally, if T−1 � 0 then there is a w′ > 0 such that Tw′ > 0 and hence the
inequality ‖M−1N‖ < 1 holds for the induced norm corresponding to the cone
max norm defined by w′.
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Proof. Applying Lemma 4.1 with W = Range[M̂−1 − M−1], shows that this the-
orem is precisely the dual of Theorems 3.1 and 3.3. �

Remark 4.3. In view of our proof of Part (2) of Theorem 3.1 we note that it is
possibly to prove Part (2) of Theorem 4.2 without any reference to the compactness
of the norm ball. We note as an immediate consequence of Theorem 2.1 that, for the
cone max norm given by w > 0, we have for a nonnegative matrix P that

P � 0 implies ‖P‖ = ν(Pw), (4.6)

see [19]. Hence, if Tw > 0, it follows that (I − M−1N)w = M−1Tw > 0. Thus for
some α > 1, we have αM−1Nw < w, which proves ‖M−1N‖ < 1.

We note that the first part of Theorem 4.2 has been shown directly by Neumann–
Plemmons [17, Lemma 2.2] and by Frommer and Szyld [9, Theorem 4.1] for the par-
ticular setting P = RK+ ; see also [3, Theorem 2.5]. For the strict inequality (4.5) these

references require the assumption M−1 < M̂−1, obviously a stronger requirement
than our condition (4.4).

We now state the duals of Theorems 3.4, 3.5, 3.7 and 3.8 without further proof.

Theorem 4.4. Suppose T has a right weak regular splitting [M,N] with M−1N
strictly positive and that ν is a cone max norm with defining vector w as in (4.2).
Then (4.3) can hold only if Tw � 0.

Theorem 4.5. Let ‖ · ‖ be the matrix norm induced by a cone max norm ν(·) as
in (4.2) and consider splittings of T as in (4.1). If ‖M−1N‖ � 1, then the map:
M �→ ‖M−1N‖ is isotone, viz.

M̂ � M implies ‖M̂−1N̂‖ � ‖M−1N‖. (4.7)

Theorem 4.6. Assume the norm ν(·) is cone absolute (2.4). Then (4.7) holds only
if ν(·) is a cone max norm, even if we restrict attention to right regular splittings
[M,N] with ‖M−1N| � 1.

Theorem 4.7. Let ν be a cone absolute norm and suppose that T has a right weak
regular splitting [M̃, Ñ] with M̃−1Ñ > 0. Then the following are equivalent:

1. The norm ν is cone max defined by a vector w such that Tw � 0.
2. For right weak regular splittings [M,N] and [M̂, N̂] with ‖M−1N‖ � 1, the impli-

cation (4.7) holds.

Again the question arises as to whether (4.7) in (2) of Theorem 4.7 can be replaced
by the assumption (4.3).
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5. Comparison for spectral radii

We begin this section with a corollary to Theorem 4.2. For P = RK+ , this is found
in [17,9], except that (as already noted after Theorem 4.2) we have weakened the
hypothesis required for the strict inequality.

Corollary 5.1. Consider a splitting [M,N] of T as in (4.1) for which M−1N has a
Perron vector w (i.e., M−1Nw = ρ(M−1N)w) such that

w > 0 with Tw � 0. (5.1)

Then

M−1 � M̂−1 implies ρ(M̂−1N̂) � ρ(M−1N), (5.2)

i.e., the map: M−1 �→ ρ(M−1N) is antitone. The conditions for strict inequality are
the same as in Theorem 4.2.

Proof. Let ρ = ρ(M−1N) and let ‖ · ‖ be the cone max norm determined by w
as in (4.2). For 0 � x � w, we have 0 � M−1Nx � M−1Nw and M−1Nw = ρw. It
then follows from Theorem 2.1 that ‖M−1N‖ = ρ and as ρ(M̂−1N̂) � ‖M̂−1N̂‖, we
obtain (5.2).

The strict inequality follows as in Theorem 3.1. �

The additional conditions (5.1) imposed in Corollary 5.1 to obtain the spectral
radius inequality correspond to the condition (3.3) used in Theorem 3.1. In view
of Theorem 3.4 we expect that this cannot simply be omitted and adapt here an
interesting example due to Elsner [7, p. 283]. In our example the Perron vector of
M−1N does not satisfy (5.1), but, for a different w, (3.3) is satisfied, which leads to
inequality of spectral radius and norm in opposing directions. The last part of this
example illustrates Theorem 4.4 and shows that the assumption Tw � 0 is really
needed for the conclusion (4.3).

Example 5.2. Consider the right weak regular splittings

T =
(

1 −1
−1/2 1

)
= M − N =

(
3/2 −1

−3/4 1

)
−

(
1/2 0

−1/4 0

)

= M̂ − N̂ =
(

7/5 −3/5
−7/10 4/5

)
−

(
2/5 2/5

−1/5 −1/5

)

for which we have

M−1 =
(

4/3 4/3
1 2

)
, M−1N =

(
1/3 0
0 0

)
,

M̂−1 =
(

8/7 6/7
1 2

)
, M̂−1N̂ =

(
2/7 2/7
0 0

)
.
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Here the Perron eigenvector w := (1, 0)T for M−1N is not strictly positive and, more
significantly, Tw = (1,−1/2)T � (0, 0)T so the hypothesis (5.1) does not hold for
this example. We then observe that M̂−1 � M−1 in the sense of the usual R2+ order-

ing, but ρ(M̂−1N̂) = 2/7 � ρ(M−1N) = 1/3 so (5.2) fails. Of course, (consistent
with Theorem 3.3, noting that T(1, 1)T is nonnegative) we do have ‖M̂−1N̂‖ >
‖M−1N‖ with the usual 	∞ norm (even though (4.4) does not hold). However, if
we use w′ = [1, 100]T as defining vector for our norm, and P = diag(w′), we obtain

‖M̂−1N̂‖′ = 1/3 > 2/7 = ‖M−1N‖′,

where ‖ · ‖′ = ‖P · P−1‖ is the operator norm induced by the weighted max norm
given by w′. We note that Tw′ � 0.

Comparison theorems for spectral radii of splittings of matrices have been gener-
alized to bounded operators in Banach space, see [15,16,5]. In these papers additional
conditions are imposed on positive operators, specifically the existence of a Perron
vector is assumed.

We here adopt a different approach. For our final result, we use series domination
in a Banach algebra setting to generalize the well-known result [22, Theorem 3.32].
We employ convergence properties of series so this applies to infinite dimensions
without any appeal to the Perron–Frobenius theory of positive operators.

Thus we consider a real Banach algebra A (see [18, p. 245]) partially ordered by
a proper cone P (with interior) consistent with addition and multiplication, viz.

P,Q ∈ P implies P + Q,PQ ∈ P.

We also assume that the norm on A is monotone2 on P.
In this setting we note that the spectral radius ρ is given by the formula

ρ(A) = lim
n→∞ ‖An‖1/n, (5.3)

which is consistent with the usual definition on M+. It is well known (see, e.g., [18,
p. 263]) that (5.3) is equivalent to

ρ(A) = inf
n�1

‖An‖1/n (5.4)

and easy to see that it is also equivalent to

1/ρ(A) = sup{α : {‖[αA]k‖} bounded in k}. (5.5)

2 With small verbal changes, our proof below holds if the norm is semi-monotone, i.e.,

There is a c > 0 such that 0 � x � y ⇒ ‖x‖ � c‖y‖.
This is a common assumption in this area; see, e.g., [14, p. 37] or [6].
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A splitting [M,N] of T ∈ A is called regular if T = M − N where M−1 � 0 and
N � 0.

Theorem 5.3. With the properties of the Banach algebra A as above, either sup-
pose that ρ(NM−1) < 1 or suppose that T is invertible with T−1 nonnegative.

1. If [M,N], [M̂, N̂] are regular splittings of T, then

M̂ � M implies ρ(N̂M̂−1) � ρ(NM−1) � 1, (5.6)

i.e., the spectral radius of the iteration matrix is then isotone with respect to M.

2. Further, suppose that, for P � 0, the sequence I + P + · · · + Pk + · · · converges
whenever its partial sums are uniformly bounded (viz., I + P + · · · + Pk � Q for
some Q and all k). Then T−1 � 0 already implies that ρ(NM−1) < 1.

Proof. (1) We begin by setting P = NM−1 and ρ = ρ(P). With M − M̂ � 0, we
also introduce

A = I − M̂M−1 = (M − M̂)M−1 � 0

and note that A = (N − N̂)M−1 so B = P − A = N̂M−1 � 0—i.e., 0 � A � P. Fi-
nally, we introduce

C = (P − A)(I − A)−1 = N̂M̂−1 � 0.

Our first observation is that the condition T−1 � 0 implies ρ � 1. To see this,
note that T = (I − P)M so invertibility of T (and of M) gives existence of (I − P)−1.
Since (I − P)(I + P + · · · + Pk) = I − Pk+1 it follows that

Pk � [I + P + · · · + Pk] + Pk+1(I − P)−1 = (I − P)−1 (5.7)

for all k. Thus, each Pk � (I − P)−1 whence, since the norm is monotonic, we de-
duce that for α = 1, {‖[αP]k‖} is uniformly bounded by ‖(I − P)−1‖, giving ρ � 1
by (5.5). We can now choose α � 1 arbitrarily close to 1/ρ—of course taking α = 1
if ρ = 1—and have {‖[αP]k‖} uniformly bounded.

To show (5.6) as desired means showing ρ(C) � ρ for which, by (5.5), it is suf-
ficient to show that {[αC]k} is uniformly bounded for α as here. We now define the
nonnegative matrices

Zα := (I − αP)−1, Cα := B(I − αA)−1.

When ρ < 1 we always take α < 1/ρ so we have convergence of the Neumann
series in each case, noting the comparison 0 � A � P. Note that comparison of the
Neumann series gives C = C1 � Cα for α � 1, as we are assuming. [If we were to
have ρ = 1 so α = 1, then Zα = Z1 = (I − P)−1, whose existence and nonnegativ-
ity have been assumed, and Cα = C � 0.]

One can immediately compute the identities

Zα = I + αAZα + αBZα, BZα = Cα(I + αBZα)
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—multiply I = [(I − α[A + B])+ αA + αB] by Zα and, after noting that B =
Cα(I − αA), multiply I − αA = [(I − α[A + B])+ αB] on the left by Cα and on
the right by Zα . The first of these identities is the case N = 0 of the induction

Zα =
N∑
0

[αCα]k + αAZα + α[αCα]NBZα

=
N∑
0

[αCα]k + αAZα + α[αCα]NCα(I + αBZα)

=
N+1∑

0

[αCα]k + αAZα + α[αCα]N+1BZα. (5.8)

Since each term is in M+, this shows that

[αC]k � [αCα]k � Zα independently of k

for each such α so, as above, {‖[αC]k‖}∞0 is bounded. Choosing α arbitrarily close
to 1/ρ, this gives ρ(C) � ρ, completing the proof of 1.

(2) We have noted that the partial sums [I + P + · · · + Pk] are uniformly (order)
bounded by (I − P)−1 so, under our additional hypothesis, the series converges. Of
course the individual terms then go to 0, so certainly ‖Pk‖ < 1 for large k whence,
using (5.4), we have ρ(P) = infk{‖Pk‖1/k} < 1. �

We remark that the condition in 2 of Theorem 5.3 is satisfied when A = M+,
since all linear topologies are equivalent to the Euclidean norm in finite dimensions.
In this finite dimensional case we have thus obtained the full force of Varga’s Theo-
rem 3.32 in [22] without any appeal to Perron–Frobenius theory.
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