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Abstract. Let K1, K be closed, full, pointed convex cones in finite-dimensio-
nal real vector spaces of the same dimension, and let F': K1 — span K> be a
homogeneous, continuous, K>-convex map that satisfies F(O0K1) Nint K> =
and FK; Nint K> # (. Using an equivalent formulation of the Borsuk-Ulam
theorem in algebraic topology, we show that we have F(K;1\{0})N(—K2) =0
and K> C FK;. We also prove that if, in addition, G : K1 — span K> is any
homogeneous, continuous map which is (Ki, K»)-positive and K>-concave,
then there exist a unique real scalar wo and a (up to scalar multiples) unique
nonzero vector xo € K such that Gro = woF'ro, and moreover we have
wo > 0 and zp € int K; and we also have a characterization of the scalar
wo. Then, we reformulate the above result in the setting when K is replaced
by a compact convex set and recapture a classical result of Ky Fan on the
equilibrium value of a finite system of convex and concave functions.
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1. Introduction

In this paper we prove equilibrium theorems of Perron-Frobenius type for a pair
of nonlinear maps F' and G from a proper cone K; in a finite dimensional real
space to another finite dimensional real space ordered by another proper cone Ko;
namely, we determine conditions under which there is a unique positive scalar wq
and a unique fixed vector zo (up to scalar multiples) in K such that Gzg = woF'zo,
see Theorem 2.3. We also show that wy can be obtained as infimum or supremum
of analogs of the Collatz-Wielandt sets further discussed in our last section. In
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Theorem 2.4 we derive a version of our equilibrium theorem with a compact convex
set as the domain space.

Our motivation is [8] Theorem 1, due to Ky Fan on the equilibrium value of
a finite system of convex and concave functions which we state at the beginning
of next section. However, we do not use this theorem in deriving our main results,
Theorems 2.3 and 2.4, which may be considered as its extensions. Instead, we use
the Borsuk-Ulam theorem to establish a geometric result about a nonlinear map
(see Theorem 2.1) and then use it to deduce our main results. Ky Fan’s theorem
can be recovered from our extension by means of Sperner’s Lemma [15].

Our paper continues a long tradition of generalizations of the Perron-Frobe-
nius theorem. While the setting of our work is strictly finite dimensional (which
is natural in view of our use of the Borsuk-Ulam theorem and Sperner’s Lemma),
many generalizations are to operators in a Banach space which leave a cone in-
variant. We point to recent linear and nonlinear generalizations in [11], [12] and
[13], and to the recent surveys [5], [18], [16] and books [2], [10] and [9] for different
aspects of the theory and many further references.

2. Statements of Main Results

In [8, Theorem 1], Ky Fan obtained the following result discussed in our introduc-
tion.

Ky-Fan’s Theorem. Let S denote the standard (n — 1)-simplex of R, i.e., S =
{(&1,-..,&) € Ry - Z;’:lfj = 1}, and let S; = {(&,...,&) € S : & = 0}
fori=1....n. Fori=1,....n, also let fi,..., fn, 91,---,9n be 2n real-valued
functions defined on S that satisfy the following:

(a) Each f; is continuous and convez on S,

(b) fi(x) <0 for each x € S;;

(c) For each x € S there is an index i for which f;(z) > 0; and

(d) Each g; is continuous, concave and positive on S.
Then there exist a unique real number \ and a unique point & € S such that for
every i, g;(%) = Mfi(&). Moreover, we have A > 0, & has positive components, and

1 fi@) _ i i@
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Notice that under the hypotheses of Ky Fan’s theorem, if we define a map
f:8 =R by f(z) = (fi(x),..., fu(z)), then f is a convex map in the sense
that, for any scalar \, 0 < A < 1, and z, y € S, we have f((1 — )z + \y) <
(L =X f(z)+ Af(y), where the ordering is componentwise. Similarly, if we define
g: S = R" by g(z) = (g1(2),...,gn(z)), then g is a concave map (i.e., —g
is a convex map). The conclusion of Ky Fan’s theorem can now be restated as:
9(Z) = Af(&) for some real number X\ and € S. In this case, we say that A is an
equilibrium value and & is an equilibrium point for the system (g, f). The concepts
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of equilibrium value and equilibrium point come from economic models (see, for
instance, [2].

As already noted in [8], if A = (a;;) is an n X n (entrywise) positive matrix,
and if we define f;,9; (1 <i<mn)on S by fi(z) =& and g;(z) = Y, a;;&; for
x = (&,...,&) € S, then conditions (a), (b), (c) and (d) of Ky Fan’s theorem
are satisfied. In this case, the first part of Ky Fan’s theorem becomes the classical
Perron’s theorem on positive matrices (with A being the spectral radius and &
the Perron vector of A). The last part of Ky Fan’s theorem becomes Wielandt’s
extremal characterization of the spectral radius.

In Aubin [1] one may find extensions or variants of Ky Fan’s theorem in the
setting of a pair of multi-valued maps. In [14, THeorem 4.1], Simons generalized the
first part of Ky Fan’s theorem in such a way that the finite systems of functions
are replaced by two (single-valued) maps whose common range space is a real
vector space with a given sublinear (i.e., positively homogeneous, convex) function,
referred to as a sublineared space, and which are convex or concave in a certain
generalized sense defined with respect to the sublinear structure, and moreover the
domain space is not restricted to an (n — 1)-simplex. In fact, Simons obtained first
a continuity result about a pair of multi-valued maps that involve a sublineared
space and used it to deduce the aforementioned result and also to obtain a result
that generalizes [1, Theorem 2], and hence the last part of Ky Fan’s theorem, in
the setting of a pair of multi-valued maps. In this paper, we give a generalization
in a different direction. We first examine conditions (a)—(c) of Ky Fan’s theorem
in the setting of a homogeneous map on a proper cone.

We call a nonempty subset K in a finite-dimensional real vector space V a
proper cone of V if K is a convex cone (i.e. «K + K C K for all «, 8 > 0), which
is pointed (i.e. K N (—K) = {0}), closed (with respect to the usual topology of
V') and has nonempty interior (or equivalently, span K, the linear span of K, is
V). We use >X to denote the partial ordering on span K induced by the proper
cone K, ie. x >¥ y if and only if 2 — y € K. For convenience, we also adopt the
following notation:

z >% 0 ifand only if z >¥ 0 and z # 0,
and z >% 0 if and only if z € int K.

Sometimes we also use >, > and > in place of >¥, >& and >, when there is
no danger of confusion.

We obtain the following result:

Theorem 2.1. Let K1, Ky be proper cones. Let F : K1 — span Ko be a homogeneous
map that satisfies each of the following conditions:

(a) For any z, y € K, there exist positive constants o, B (depending on x
and y) such that aFz + fFy >%2 F(z + y);
(b) F(OK;)Nint Ky = 0; and
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(¢) FKyNint Ky # 0.
Then F(K1\{0}) N (—K2) = 0. If, in addition, dim K; = dim K> and F is contin-
wous, then Ko C FK;.

Here we use int S (respectively, 8S) to denote the interior (respectively,
boundary) of S. A map T : D C V; — Vi, where V;, Vs are real vector spaces
and D satisfies AD C D for all A > 0, is said to be homogeneous (of degree one) if
T(Ax) = ATz for all A >0 and z € D.

To avoid trivialities, we assume that the cones Ki, K, considered in Theorem
2.1 are nonzero. The same remark also applies (sometimes to K) in the remaining
parts of the paper.

Note that, when K; = K, = K, condition (b) of Theorem 2.1 is weaker
than the following natural extension of condition (b) of Ky Fan’s theorem: For
any x € 0K, p € 0K*, where K* denotes the dual cone of K, we have p(Fz) <0
whenever p(z) = 0.

The proof of Theorem 2.1 relies on the use of an equivalent formulation of
the Borsuk-Ulam theorem in algebraic topology. A modification of the argument
used in the proof also leads to the following unexpected side-product:

Theorem 2.2. Let Ky, Ko be proper cones such that dim K71 > dim K5. Let F :
K, — span K> be a homogeneous, continuous map with the property that for any
x, y € Ky, there exist a, 3 > 0 such that aFz + fFy >52 F(x +v). If FK, N
int Ko # 0, then F(OK;) Nint Ko # 0 and moreover we have either F(K;\{0})N
(—KQ) 75 @ or int K2 N F(lnt Kl) g F((‘)Kl)

Theorems 2.1 and 2.2 can be restated as results about solvability of nonlinear
systems.

Using Theorem 2.1, we derive the following result which extends Ky Fan’s
theorem and also [8, Corollaries 1 and 2] in the setting of homogeneous maps on
proper cones.

A map F: K; — span K is said to be Ky-convez (respectively, K»-concave)
if (1-N)Fz+AFy >E2 F((1-X\)z+M\y) (respectively, (1—-\)Fz+\Fy K2< F((1—
A)xz+Ay)) for all real scalar A, 0 < A < 1,and z, y € K1; Fis (K1, K2)-nonnegative
(respectively, (K1, K»)-positive) if FK; C Ko (respectively, F(K;\{0}) C int K>);
Fis (K1, Ky)-monotone (or, order-preserving, according to some authors) if y >%1
x implies Fy >%2 Fz. Clearly, if F' is homogeneous, K,-convex, then F possesses
the property that for any z, y € Kj, there exist «, f > 0 such that aF'(x) +
BF(y) >%2 F(z +y).

Theorem 2.3. Let Ky, K5 be proper cones such that dim K; = dim K>. Let F :
K, — span Ky be a homogeneous, continuous map that satisfies each of the fol-
lowing conditions:

(a) F is Ky-convez;

(b) F(OK1) Nint Ky = 0; and

(C) FK1 ﬂintK2 7é m
Then, for any homogeneous, continuous, Ka-concave and (K, K2)-positive map
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G : K, — span K, there exist a unique scalar wy and a (up to scalar multiples)
unique nonzero vector o of Ky such that Gxg = woFzy. We have, wg > 0, 9 €
int K1 and sup Q = inf X1 = wp, where

Q = {w>0:3>%0, Gz >F wFz})
and ¥, = {o>0:3>% 0, Gz *2< oFz}.
Moreover, for any x >51 0 and w,o > 0, we have

w < wo whenever Gz >X2 wFx and x is not a multiple of xo

and o > wy whenever Gz ¥2< oFx and x is not a multiple of .

In Theorem 2.4 below we give a reformulation of Theorem 2.3 in the setting
when the common domain K; of F' and G is replaced by a compact convex set.

For a convex set C, we use riC' and rbd C to denote respectively the rel-
ative interior and the relative boundary of C. A map g : C — W from a con-
vex set C' to a real vector space W ordered by a proper cone K is said to
be (C, K)-nonnegative (respectively, (C, K)-positive) if g(C) C K (respectively,
g(C) Cint K); K-convexity and K-concavity of g are defined in the same way as
in the case when C is a proper cone.

Theorem 2.4. Let C' be a compact convex set in a finite-dimensional real vector
space, and let f: C' — W be a continuous map from C to a finite-dimensional real
vector space W ordered by a proper cone K such that dim W = dim C' + 1. Suppose
that f satisfies each of the following conditions:

(a) f is K-conver;

(b) f(rbd C)Nint K = 0; and

(¢) f(C)Nint K # 0.
Then, for any continuous, K-concave and (C, K)-positive map g : C — W, there
exist a unique real scalar wy and a unique point o of C' such that g(xo) = wof(xo)-
We have, wg > 0, xg € riC and sup 2 = inf X1 = wp, where

Q = {w>0:3xeC:gx)>K wf(z)}
and ¥, = {o>0:3rxeriC:g(zx) K< af(z)}.
Moreover, for any x € C' and w,o > 0, we have
w<wy whenever g(z) >X wf(zx) and x # xo

and o >woy whenever g(x) X< of(z) and x # x0.

3. Nonlinear Solvability Theorems

In this section we shall prove Theorems 2.1, 2.2 and make relevant remarks and
illustrative examples. Before we begin, we recall some facts from topology, which
we shall need.

We shall identify finite-dimensional real vector spaces with euclidean spaces.
Let B™, S™~! denote respectively the euclidean unit ball and unit sphere of R™.
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For a proper cone K in R", n > 2, we define a map nx from the set {(z,v) :
zeint KNSt ve S v#z—2}to KNS as follows: Let z,v €
Sn=! with z € int K and v # z,—z. Then span{z,v} N S"~! is a circle, and
span{z,v} N K NS" ! is a closed circular arc whose endpoints belong to opposite
semicircles determined by z and —z and constitute the set span{z, v}N(OKNS™~1).
We denote by 7k (z,v) the endpoint in the semicircle that contains v. Observe that
the point 7k (z,v) is uniquely determined by the property that it belongs to 0K
and can be expressed in the form Hiziz” for some A € R. That 7k is a continuous
map is probably known. We give a proof below, as we have not been able to find
any suitable reference.

Assume to the contrary that mx is not continuous at (z,v) for some z €
int K NS" ! and v € S"!, v # z,—z. Then there exist a sequence (z)ren in
int K N S™! converging to z and a sequence (vg)ren in S™ 1 converging to v such
that, for some fixed 6 > 0, we have ||7x(zk,vr) — T (2,v)]| > d for all k. Now,

for each k, we have, 7 (2, v) = Hi:j:ii;’:“ for some real scalar \,. Note that the

sequence (A )ren is bounded; otherwise, (zj + /\Izlvk)keN is a sequence in 0K with
a subsequence converging to z, which is a contradiction, as z € int K. Replacing
by a subsequence, if necessary, we may assume that (A;)ren converges to A. Then
we have limy_, oo 7 (2, 08) = IIxiZH‘ But limg—o 7k (2k, v) belongs to 0K, so
it is, in fact, equal to mx (z,v), which is a contradiction.

If z€intK, and z, # € 9K N S™ ! are such that z can be expressed as a
linear combination of x and T with positive coefficients, then we say that = and =
form a pair of antipodal points of OK N S™~ ! relative to z. Notice that the map
7K (2, -) takes each pair of antipodal points of the sphere (span{z})-NS" ! (which
can be identified with S™72) to a pair of antipodal points of 0K N S™ ! relative
to z.

Recall that two continuous maps fo, fi : X — Y between topological spaces
X, Y are said to be homotopic if one can be deformed continuously to the other,
i.e., fo and fi belong to a family of continuous maps f; : X — Y, ¢t € [0,1], so
that ® : X x [0,1] = Y given by ®(x,t) = fi(x) is continuous.

We shall make use of the following known results from algebraic topology:

Lemma A. A continuous map f : S*~' = Y, where Y is a topological space and
n > 1, is homotopic to a constant map if and only if f can be extended to a
continuous map from B™ to Y.

Theorem A. If f : S™ — S™, n > 0, is a continuous map which is homotopic to a
constant map, then there ezists x € S™ such that f(z) = f(—z).

Corollary A. If f : S™ — S™, where 0 < m < n, is a continuous map, then there
exists © € S™ such that f(z) = f(—x).

Lemma A is elementary and can be found in many textbooks of topology;
see, for instance, [6, p.316, 1.2(2)]. Theorem A is equivalent to the Borsuk-Ulam
theorem, which asserts that every continuous map f : S™ — R*, n > 1, sends at
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least one pair of antipodal points to the same points, and, in fact, equivalent to
them are also several other geometric results about the n-sphere, such as the Bor-
suk antipodal theorem, the Lusternik-Schnirelman-Borsuk theorem, etc. (see, for
instance, [7, Theorems 5.2 and 6.1]). Corollary A can be deduced from Theorem A
as follows: If m < n, we may regard S™ as lying in the equator of S™ and consider
the map f : S™ — S™ which is obtained from f by enlarging its range space to
S™. Since the image set f(S™) is included in the upper hemisphere S™ and S",
being homeomorphic to B, is a contractible space (i.e., one whose identity map
is homotopic to a constant map), the map f is homotopic to a constant map. By
Theorem A, it follows that there exists a pair of antipodal points of S™ with the
same image under f. Since f(z) = f(z) for all z € S™, we also have two antipodal
points with the same image under f.

Proof of Theorem 2.1. Assume to the contrary that there exists > 0 such that
Fz € —K,. By conditions (c) and (b), there exists w > 0 such that Fu > 0.
Since u € int Ky and —z ¢ K, there exists € > 0 such that u — ez € K. By the
homogeneity of F' and condition (a), we have

0K Fu<aF(u—eczx)+ peFx

for some a, 8 > 0. Thus, F(u —ex) > a *Fu—a 1BeFz > 0, as —Fz >0 and
Fu > 0. This contradicts condition (b).

Now suppose, in addition, that F'is continuous and K, K5 have the same di-
mension. There is no loss of generality in assuming that R" = span K; = span Ks.
The case n = 1 is trivial. Hereafter, we assume that n > 2. Let f : K; N S™! —
S~ be the map given by: f(z) = Fz/||Fz||, where ||-|| denotes the euclidean norm
of R". Note that f is well-defined, as Fz # 0 for all z € K7\{0}, and is also contin-
uous. Since F' is homogeneous, it suffices to show that Ko NS™™ ! C f(K;NS™ ).

Assume to the contrary that there exists y € Ky N S™ ! such that y ¢
f(Ky N S™ 1), Since the set f(K; N S™ 1) is compact and hence closed, we may
choose y so that y € int K». Let 6, : 0K1NS" ™! — 0K,NS™ ! be the map defined
by: 8, (v) = Tk, (y, fv), where 7k, : {(z,0) : 2 € It Ko N S*" 1, v € S v #
z,—2} — 0Ky N S™! is the continuous map that we have introduced at the
beginning of this section. Since y, —y ¢ f(K1 N S"1), 6, is a well-defined map.
Indeed, for the same reason, we can extend the domain of 6, to K3 N.S"~!, using
the same formula for definition. Of course, 6, and its extension are continuous
maps. But there is a homeomorphism from K; N S™~! onto B®~! which takes
OK; N S™ ! onto S"2, so by Lemma A, it follows that the map 6, is homotopic
to a constant map. Now we are going to obtain another map from K; N S™~! to
O0K,NS" ! which is homotopic to 8y, as follows. By conditions (c) and (b), there
exists a vector u € int K;NS™ ! such that fu € int KsNS™ 1. Denote fu by z and
define the desired map 6, by 6.(v) = 7wk, (z, fv). Clearly, 8. is well-defined and
continuous. Moreover, the continuous map ® : (0K;NS"~1) x [0,1] = dK,NS™~!
given by ®(v,t) = mk, (y(¢), fv), where y(t) = Dyt actablishes a homotopy

= I(t=ty)+tz]
of 8, to 8,. Since 8, is homotopic to a constant map, so is #,. On the other hand,
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the continuous map 7, (u, -) takes the compact set (span{u})-NS™ ! one-to-one,
and hence homeomorphically, onto 0K; N S™ ! and moreover it sends each pair
of antipodal points of the sphere (span{u})* N S"~! (which can be identified with
S"=2) to a pair of antipodal points of 0K; N .S™"~! relative to u. Also, 9K, N S™~!
is homeomorphic with S”~2. In view of Theorem A, it follows that there exists a
pair of antipodal points z, Z of K; N S™~! relative to u such that 6,(z) = 6,(Z).
The fact that z, Z are antipodes clearly implies that there exist v, n > 0 such that
u = vz + nZ. By the homogeneity of F' and condition (a), we have

avF(z) + BnF(z) > F(vz +nT) = F(u) > 0
for some «, 8 > 0. On the other hand, the condition 6, (x) = 0.(Z), which amounts
to 7k, (z, fx) = Tk, (2, fT), together with the fact that Fx, FZ ¢ int Ko, clearly

implies that AF(z) + pF'(Z) ¢ int K for any A, u > 0. So we arrive at a contra-
diction. m

It can be readily checked that in Theorem 2.1 if we assume that F' is homo-
geneous of degree p, where p is a positive number possibly different from 1, then
the result is still valid.

The following examples illustrate the irredundancy of condition (a) of Theo-
rem 2.1.

Example 3.1. Let K be the proper convex cone in R? given by:
K ={\(cosf,sinf) : A\ >0,—7/4 <0 <=w/4},

and let F: K — R? be the map defined by: F(\(cos#,sinf)) = A(cos 36, sin 36).
Then F' is homogeneous, continuous and satisfies conditions (b) and (c) of Theorem
2.1 (with K1 = Ky = K). However, F(K\{0}) N (=K) # 0, as F(1,1) = (1,-1) €
—K. (But we do have FK D K in this case.)

Ezample 3.2. Let g be any real-valued concave continuous function defined on the
closed interval [0,1] such that g(0) = g(1) = 0 and ¢(¢) > 0 for all ¢t € (0,1). Let
F: R2 — R? be the homogeneous map determined by: F(1—t,t) = g(t)(3, 3) for all
t € [0,1]. Then F is continuous, R -concave (but not K3 -convex). Also, conditions
(b) and (c) of Theorem 2.1 are satisfied. However, we have F(R%.\{0}) N (-R3 ) =

{0} #0 and B2 ¢ FR? .

Ezample 3.3. Let F : R3 — R? be defined by: F(&,&) equals (&,&) if & > &
and equals (&,&;) if & < &. Then F is homogeneous, continuous and we have
F(ORZ) NintRE =0, FRE Nint R} # 0 and F(R3\{0}) N (—R3) = 0. However,
R2 ¢ FR3. So, in Theorem 2.1, when F is continuous and dim K; = dim K>,
without condition (a), we cannot infer that Ko C F K1, even if we add as an extra
assumption the condition that F(K;\{0}) N (—K3) = 0.

We would also like to point out that the last part of Theorem 2.1 is invalid
if we assume dim K; < dim K5 instead of the equality. Indeed, in this case, for
any map F : K; — span K> which is linear (i.e., F(az + fy) = aFz + §Fy for
all a,8 > 0 and z,y € K1) and satisfies conditions (a)—(c) of Theorem 2.1 (for
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instance, take K, = R}, K1 = pos{(1,0,0), (0,1,1)}, where we use pos S to denote
the positive hull of S, i.e., the set of all (finite) nonnegative linear combinations of
vectors in S, and F' : K; — span K5 to be the canonical injection), it is impossible
that the inclusion K> C F'K; holds.

On the other hand, if dim K; > dim K>, then we have Theorem 2.2 which,
rather surprisingly, indicates that for a homogeneous, continuous map F' : K; —
span K» which satisfies condition (a) of Theorem 2.1, conditions (b) and (c) of
Theorem 2.1 are incompatible !

Proof of Theorem 2.2. First, assume to the contrary that F(0K7)Nint K5 = (. As
done in the proof for the first part of Theorem 2.1, we have F(K1\{0})N(—K>) = 0.
Then we borrow part of the arguments used in the proof of the last part of Theorem
2.1, now assuming instead that span K; = R" and span K, = R™. The continuous
map f : K1NS"*~ ! — 8™~ can be defined in the same way as before, but we do not
introduce the map 6,. We do choose a vector u from int K1 N S™~! such that fu €
int K, NS™ ™!, denote fu by z and define the map 0. : 9K; NS™ ! — OK,NS™ 1
by 6.(v) = 7k, (2, fv). Note that z, —z ¢ f(OK; NS™1); so 6, is well-defined,
continuous. Since the sets 0K;NS? ! and 0K,NS™! are homeomorphic to S 2
and S™~2 respectively and m < n by our assumption, we can now apply Corollary
A to conclude that there exists a pair of antipodal points z, Z of 9K;NS™ ! relative
to u such that 6,(x) = 6,(Z). Then we can derive a contradiction in the same way
as before. So we must have F(OK;) Nint Ky # 0.

To prove the second half of the theorem, suppose that F'(K;\{0})N(—K>) =
(). Then the map f is well-defined. If, in addition, we have int K> N F(int K1) ¢
F(0K,), then we can choose a vector u from int K3 N S™~! such that 0 < f(u) ¢
f(OK; N S™~1). Then we denote f(u) by z, introduce the continuous map 6, :
OK;NS™ ! — 9K, NS™ !, and derive a contradiction in the same way as done
above. d

Below we give some “natural” conditions on a map F' : K; — span K5, which
guarantee that F' satisfies condition (a) of Theorem 2.1. The proof is straightfor-
ward.

A subset F of K is called a face of K if it is a convex cone and in addition
possesses the property that £ >% y >¥ 0 and € F imply y € F. For any
nonempty subset S of a closed, pointed convex cone K, we denote by ®(S) the
face of K generated by S, i.e., the intersection of all faces of K that include S;
equivalently, we have, ®(S) = {y € K : y ¥ < ax for some a > 0 and = €
pos S}, where pos S denotes the positive hull (i.e., the set of all nonnegative linear
combinations of vectors) of S. If S = {z}, where x € K, we denote ®(S) simply
by ®(z).

Remark 3.4. Consider the following conditions on a map T: K; — span K5, where

K, K, are proper cones in finite-dimensional real vector spaces.
a) T is Ky-convex.

(b) For any S C K1, T(®(S)) C &(TS).



10 Barker, Neumann-Coto, Schneider, Takane, and Tam IEOT

(c) For any S C Ky, T(posS) C ®(T'S).
(d) For any z, y € K; and A, p > 0, there exist o, § > 0 such that oTz +
BTy > T(\x + py).
(e) Forany x, y € Ki, there exist , # > 0 such that aTz+pTy >K2 T(z+y).
Conditions (c) and (d) are equivalent, and we always have the implications (b) =

(¢) = (e) and (a) = (e). When T is homogeneous, (d) and (e) are also equiva-
lent. When T is homogeneous and satisfies the condition that T'(®(z)) C ®(T'z) for
all z € K; (which is the case if T' is (K7, K3)-monotone), we also have (a) => (b).

4. Extensions of Ky Fan’s Theorem
We need the following, parts of which are undoubtedly known:

Remark 4.1. Let T : K1 — span K, be a homogeneous map.
(i) If T is (K1, K3)-monotone, then T'(0) = 0 and T is (K3, K2)-nonnegative.
(ii) The following are equivalent statements:
(a) T is (K, K»)-convex.
(b) For any =, y € Ky, Tx + Ty > T(x +y).
(c) x >y >E1 0 implies T'(z — y) >¥2 Ta — Ty.
A similar assertion also holds for Ks-concavity.

(iii) If T is Ky-concave and (K, K»)-nonnegative, then T' is (K1, K3)-mono-
tone.

(iv) If T is (K, K2)-monotone, then T is bounded, in the sense that it maps
bounded sets to bounded sets, or equivalently, there exists a positive constant M
such that ||Tz||» < M|z||; for all z >%1 0 and for some (and hence, for all) norms
[| - |l1 and || - ||2 of span K and span K- respectively.

Notice that the (K, K»)-monotonicity of T alone does not guarantee (K, K»)-
nonnegativity nor 7'(0) = 0. The point is, if T' is a (K, K2)-monotone map, then
the map S defined by Sz = Tz + y, where y is any fixed vector of K, is still a
(K, K»)-monotone map. However, if T' is homogeneous and (K, K»)-monotone,
then from 2.0 > 0, we obtain 27°(0) > T'(0) and hence T'(0) > 0. On the other
hand, from %.0 > 0, we also obtain T'(0) < 0. Hence, we have, T'(0) = 0, and then
by the (K, K»)-monotonicity of T', the (K, K»)-nonnegativity of T' follows. This
proves part (i) of Remark 4.1.

Parts (ii) and (iii) of Remark 4.1 can be readily proved. To prove (iv), choose
any vector v € int Ky. By definition of interior, there exists ¢ > 0 such that
v+ex € K for all x € Vi with ||z|]; <1, where ||| is any norm of span K. Now
choose a norm || - |2 of span K> which is monotonic with respect to K»; that is,
0 K2< o K2< g implies ||z||2 < ||y||2- (For the existence of monotonic norms, see
[BP, pp.5-6, Exercise 2.24].) Consider any vector z € K; with [|z||; < 1. Clearly,
we have v — ex € K;. Since T is homogeneous and (K, K»)-monotone, we also
have 0 < Tz < Tv. By the monotonicity of || - |2, it follows that €||Tz||2 < ||Tv]|2
and e 1{|Tv||2 is the desired constant for the boundedness of T'.
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Proof of Theorem 2.3. First, we show that the set ) contains some positive ele-
ments. Take any v >%1 0. By the positivity of G, Gu > 0. So, for € > 0 sufficiently
small, we have Gu — eFu > 0, i.e., € € Q. Also, note that Q is bounded. Other-
wise, choose zp > 0, wr > 0 for £k = 1,2,... such that lim;_,, wr = oo and
Gz — wp Fxy, > 0 for each k. By the homogeneity of G and F', we may assume
that each zy is a unit vector (with respect to some norm of span K;). Replacing by
a subsequence, if necessary, we may also assume that (zj)ren converges to Z. By
Remark 4.1(iii) and (iv), the sequence (Gxy)ren is bounded. Rewriting the above
inequalities, we have w,;lG:rk > Fuxy, for each k. Letting kK — oo and making use
of the continuity of F' at &, we obtain —F'Z > 0. On the other hand, since F' is
Ks-convex, by Remark 3.4, F satisfies condition (a) and hence the assumptions
of Theorem 2.1. So by Theorem 2.1, we have F(K;\{0}) N (—K>) = (). Hence, we
arrive at a contradiction.

Denote sup 2 by wg. Clearly wp > 0. By a modification of the above argument,
it is clear that there exists g > 0 such that Gxg — woFzg € OK,. We are going
to show that Gxg = woF'zg.

In view of the last part of Theorem 2.1, there exists z > 0 such that Fz =
Gzg. By the positivity of G and condition (b), clearly z > 0. Since —zo ¢ K;,
there exists A > 0 such that z — Azxg € OK;. If A < wyp, then by the convexity and
homogeneity of F' and the choice of z, we have

A A
F(z—Azg) > Fz—AFxo = Gzg— AFzo = (1 — —> Gzo+—(Grog—wFzo) > 0,
wo wo
which contradicts condition (b). So, we must have A > wp. Then, since G is concave,
positive, and z — woxg > z — Axg > 0, we have

Gz —woFz =Gz —woGzo > G(z — woxp) > 0.

If z — wozy > 0, then by the positivity of G and the above, we would obtain
Gz —woFz > 0, which clearly contradicts the maximality of wg. So we must have
z —wpxo = 0, and from the above we obtain A\ = wy and z = wyxg. Hence,

Gy — woFzg = Gxg — woF(wO_lz) =Gzrg—Fz=0,

which is what we want. Since xg is a positive scalar multiple of z, we also have
To > 0.

From the above, clearly wy € Q2 N X;. In order to establish the equalities
sup Q = inf ¥; = wy, it suffices to prove that ¢ > w for any ¢ € ¥; and w € Q.
We are going to show that the latter assertion is true even if we replace 3; by X,
which is defined by ¥ = {o > 0: 3z >1 0, Gz *2< ¢Fz} (and, in fact, as the
proof will show, in this case we have ¥; = %). Let = >%1 0, y > 0 be such that
Gr K2< oFx and Gy >2 wFy. By the (K, Ky)-positivity of G and condition
(b), the first inequality clearly implies that ¢ > 0 and z € int K. So there exists
€ > 0 such that z —ey € 0K;. Assume to the contrary that o < w. Then z—ey # 0
(otherwise, we would have ¢ = w) and by the given properties of F and G, we
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have
F(x—ey) > Fr—cFy > o ' (Gx —cow™'Gy) > 07 (Gx —eGy) > 07 'G(z —ey),

which is a contradiction, as G(z — ey) € int Ky and F(z — ey) ¢ int K,

The uniqueness of wy and z¢ (up to positive multiples) will follow once we
establish the last part of our result.

Last part. Let y > 0 and w > 0 be such that Gy > wFy. Then w € Q and, by
what we have proved, w < wg. If the strict inequality does not hold, then from the
above argument (with = z and y = y), we obtain F(zo —ey) > wy ' G (20 — €y)
and with zg — ey € 0K, for some € > 0, which is not possible, unless xy = ey.

Similarly, we can also show that if ¢ > 0 is such that Gz < oFx for some
x € K1\{0}, which is not a multiple of zq, then o > wy. O

With some hindsight, we can give a few remarks on the relevance of conditions
(a)—(c) of Theorem 2.3. First, the conclusion of Theorem 2.3, namely, Gzg = wFz,
where g > 0, w > 0, together with the assumption that G is positive, forces
the necessity of condition (c¢). But conditions (a), (b) together do not guarantee
condition (c); for instance, if we take K1 = Ky = K and F to be a linear map
that maps K into 0K, then F satisfies (a) and (b) but not (c¢). That is why we
impose the condition. Next, according to Theorem 2.1, conditions (a)—(c) and the
assumption that dim K; = dim K>, together with the continuity and homogeneity
of F', guarantee two conditions, namely, F(K;\{0}) N (—K>) =0 and FK; D Ko.
In the proof of Theorem 2.3, the former condition is needed to guarantee the
boundedness of (2. The latter condition is also crucial for our desirable conclusion.
For, if FK; 5 int K,, then we can choose z € int K»2\FK; and find a positive
linear map G which maps K; onto the ray generated by z. For any such G, it is
clear that the system (F,G) has no equilibrium point.

Remark 4.2. Let K be a proper cone. If F': K — span K is linear and satisfies
conditions (b) and (c) of Theorem 2.3, then for any homogeneous, continuous,
(K, K)-nonnegative map G : K — span K, there exist a positive scalar w and
a nonzero vector z of K such that Gz = wFz. However, the uniqueness of the
equilibrium point is not guaranteed, even if we assume, in addition, that G is
linear and K-irreducible (i.e. GK C K and G leaves invariant no faces of K other
than {0} and K itself).

To show the existence of an equilibrium point for the system (F,G), we first
note that F' can be readily extended to a linear map on span K. We still use the
same symbol to denote its extension map. By Theorem 2.1, we have, FK D K.
Since K is a full cone in span K, this implies that F' is nonsingular and we have
F~1K C K. Then one can readily verify that the map F~'G : K — span K
is homogeneous, continuous and (K, K)-nonnegative. But any such map has a
(necessarily, nonnegative) eigenvalue and a corresponding eigenvector in K (as
can be proved by applying the Brouwer fixed-point theorem to the continuous
map T : C — C given by Tz = (f(F'Gx)) ' F Gz, where f is any fixed vector
chosen from the interior of the dual cone of K and C' is the compact convex full
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cross-section of K given by C = {z € K : fz = 1}, assuming that Gz # 0 for all
r € K\{0}). If w is an eigenvalue and = >¥ 0 is a corresponding eigenvector of
F~1@, then w is an equilibrium value and z is an equilibrium point for the original
system (F,G).

To see that uniqueness of the equilibrium point is not guaranteed, just take
K =R and choose F, G to be the same and be the restriction to R%. of the linear

map determined by the matrix [ (1) (1) } .

We would also like to add the following, which extends [8, Theorem 3]:

Corollary 4.3. Let K1, K> be proper cones such that dim K1 = dim K5. Let F,G :
K, — span Ko be maps that satisfy the hypotheses of Theorem 2.3. Also let wy
denote the positive number which has the same meaning as given in the theorem.
Then the following are equivalent conditions on a real number o :

(a) 0 > wop;

(b) For all y >%2 0, there exists x € K| (which, necessarily, lies in int K )
such that (oF — G)x = y;

(c) For somey >%2 0, there exists x € K1 (which, necessarily, lies in int K )
such that (ocF — G)x = y.

Proof. (a) = (b): It is easy to see that, when ¢ > wyp, the map ¢F — G is ho-
mogeneous, continuous and satisfies conditions (a), (b) of Theorem 2.1. Since
(0F — G)xg = (0 —wo)Fzo > 0, the map also satisfies condition (c). So, by
the last part of Theorem 2.1, our assertion follows. [Since G is (K, K2)-positive
and F satisfies condition (b) of Theorem 2.3, it is clear that the solution vector z
must lie in int K7 .]

(b) = (c): Obvious.

(c) = (a): Suppose that condition (c) holds. If x is a multiple of xq, then we
have 0 < (¢0F — G)z = (0 — wo)F, which implies 0 > wp, as Fz = wy ‘Gz > 0.
If z is not a multiple of zy, then by the last part of Theorem 2.3 we also obtain
o > Wo. O

In order to obtain Theorem 2.4 from Theorem 2.3, we need to make use of
the following lemma (except for its last part, which has interest of its own).

Lemma 4.4. Let C' be a compact convex set in a finite-dimensional real vector
space and let f : C — W be a map from C to a finite-dimensional real vector
space W ordered by a proper cone K. Suppose that 0 is not in the affine hull of
C and let F : posC — W be the homogeneous map defined by F(A\x) = \f(x)
forz € C and X\ > 0. Then f is continuous (respectively, K -convezx, K -concave,
(C, K)-nonnegative, (C, K)-positive) if and only if F' is continuous (respectively,
K -convez, K-concave, (pos C, K)-nonnegative, (pos C, K)-positive). Furthermore,
F is (C, K)-monotone if and only if for any x, y € C andt > 1, (1—t)z+ty € C
implies f(y) > (1 — 1) f(x).
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Proof. First, note that since 0 ¢ aff C, each nonzero vector y of posC can be
expressed uniquely as Az, where x € C and A > 0. So F' is a well-defined map. By
definition of F', it is clear that F' is always homogeneous. Since f is the restriction
of F to C, clearly f is continuous (or, convex, concave, nonnegative, positive),
whenever F is. It is also easy to show that if f is continuous (respectively, non-
negative, positive), then so is F'. We are going to show that if f is convex, then so
is F, the proof for the corresponding concavity part being similar.

Suppose that f is convex. Since F' is homogeneous, to establish the convexity
of F, it suffices to show that for any v, w € posC\{0}, we have F(v + w) <
F(v) + F(w). Express v, w and v + w in terms of vectors in C, say, v = au,
w = Py and v + w = yz, where a, #, v > 0 and =z, y, z € C. Rewriting, we
have z = ax + by, where a = a/v, b = /v are both positive. Since aff C' does
not contain the origin 0, we can choose a nonzero vector e such that the inner
product between e and each vector in aff C' equals 1. Taking inner product of e
with vectors on opposite side of the relation az + fy = vz, we obtain a + b = 1.
So by definition of F' and the convexity of f, we have

Fv+w) = F(yz) = vf(2) = vf(az + by) < yaf(x) +7bf(y) = F(v) + F(w).

Last Part. Suppose that F' is monotone. Let x, y € C, t > 1 be such that
(L—t)z +ty € C. Then y > (1 — })z and by the homogeneity and monotonicity
of F, we have, F(y) > (1— 1)F(z), hence f(y) > (1 — 1) f(a).

Conversely, suppose that f possesses the given property. Consider any vectors
u, v € posC\{0} with v > wu. Express v, v and v — u in terms of vectors in C,
say, v = By, u = ax and v — u = yz where z, y, z € C and a, 3, v > 0.
Set t = /7. After some manipulations (and again making use of the fact that
(z,e) = (y,e) = (z,e) = 1, where the vector e has the same meaning as above),
we obtain (1 —t)z +ty = z € C and ¢t > 1. By the property of f, we have
fy)y>@1- %)f(:r) Rewriting the latter inequality in terms of u, v (and «a, 3, )
and simplifying, we obtain F(v) > F(u). This shows that F' is monotone. O

Proof of Theorem 2.4. We may assume that 0 ¢ aff C. Otherwise, choose a one-to-
one affine map that takes C' onto some compact convex set C' for which 0 ¢ aff C,
define maps f, § corresponding to f, g in the natural way, and work with C f
and g instead.

Let F : posC — W be the map defined by F(y) = \f(z) for y € posC,
where y = Az, ¢ € C and A > 0. Since f is continuous, convex on C', by Lemma
4.4, F is continuous, convex on pos C. In view of (b) and (c) (and the homogeneity
of F), it is clear that, we have, F(9(posC)) N K = {§ and F(posC) Nint K # 0.
Now let G : posC — W be the homogeneous map defined in a similar way (in
terms of g). By Lemma 4.4 again, G is a continuous, concave positive map. Since
the restriction of F' (respectively, G) to C equals f (respectively, g) and 0 ¢ aff C,
we can apply Theorem 2.3 to the pair (F,G) to draw the desired conclusions. O

With the aid of Sperner’s Lemma (and by adapting the proof of [8, The-
orem 1)), one can derive the first part of Ky Fan’s theorem from the first part
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of Theorem 2.4. The last part of Ky Fan’s theorem can also be deduced from
the identity supQ = inf¥; = wp (of Theorem 2.4) by making use of the fol-
lowing readily-proved facts: sup Q@ = max,es r(z), inf ¥ = minges R(z), ¥ = ¥4
in this case, and for any z € S, r(z)™' = maxi<i<p fi(2)/9i(z) and R(z)™" =
mini<i<n fi(*)/gi(z), where

r(z) = max{w >0:g(z) >wf(z)},

R(z) = min{o >0:g(z) <of(z)} (by convention min{) = co),

and ¥ = {0 >0:3z € C,g(z) K< o f(z)}.
Actually, Theorems 2.3 and 2.4 are equivalent. Also, Theorem 2.1 admits the
following equivalent formulation with K replaced by a compact convex set:

Theorem 2.1°. Let C' be a compact convex set in a finite-dimensional real vector
space, and let f : C — W be a continuous map from C to a finite-dimensional
real vector space W ordered by a proper cone K such that dimW = dimC + 1.
Suppose that [ satisfies each of the following conditions:

(a) f is K-conver;

(b) f(xbdC)N K = 0; and

(¢) f(C)Nint K # 0.
Then f(C)N(—=K) =0 and K C J,5qAf(C).

Note that if C' is an (n — 1)-dimensional compact convex set whose affine
hull does not contain the origin, then posC' is an n-dimensional closed, pointed
convex cone. Then C (respectively, rbd C') is homeomorphic with (pos C) N S™~!
(respectively, d(pos C) N S™~1), after identifying span C' (= span(pos C)) with R™.
Indeed, we could have introduced the concept of a pair of antipodal points of rbd C'
relative to a relative interior point of C, and also could have derived Theorem 1’
directly (using an argument similar to that for Theorem 2.1) and then used it to
prove Theorem 2.4.

Certainly we can also reformulate Corollary 4.3 in the setting when the com-
mon domain of F' and GG is a compact convex set.

5. Final Remarks

In Theorem 2.3, if Ky, K> are the same and equal to a proper cone K, F' equals
the identity map on span K and G equals a linear map A that preserves K (i.e.
AK C K), then the sets 2 and ¥; considered in the theorem become two of the
four Collatz-Wielandt sets associated with the cone-preserving map A. Collatz-
Wielandt sets were first introduced by Barker and Schneider [4]. The greatest
lower bound and the least upper bound of the Collatz-Wielandt sets are studied
in [17]; in particular, it is proved that, for any linear map A that preserves K,
we have sup Q2 = inf ¥; = p(A), where p(A) denotes the spectral radius of A. For
more recent developments of the topic, we refer the reader to the review paper
[16]. In the book [12] chapter 11, Aubin has also elaborated on the results of [8]
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in the setting of a pair of maps F, G from the standard simplex of R" to R™
and with the continuity assumptions on F, G replaced respectively by the lower
and upper semi-continuity assumptions. The study of the Collatz-Wielandt sets
associated with a pair of nonlinear maps (in particular, the determination of when
sup Q and inf ¥; are the same and equal to an equilibrium value, etc.), and also
the introduction and study of the concepts of lower or upper semicontinuity of
a map with respect to a proper cone seem worthwhile and will form the subject
matter of future work.
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