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Abstract

We present new comparison theorems for the spectral radii of matrices
arising from splittings of different matrices under nonnegativity as-
sumptions. Our focus is on establishing strict inequalities of the spec-
tral radii without imposing strict inequalities of the matrices, but we
also obtain new results for non-strict inequalities of the spectral radii.
We emphasize two different approaches, one combinatorial and the
other analytic and discuss their merits in light of the results obtained.
We try to get fairly general results and indicate by counter-examples
that some of our hypotheses cannot be relaxed in certain directions.
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1 Introduction

We study comparison theorems between nonnegative splittings of two differ-
ent matrices. Our focus is on strict inequalities for the spectral radii, while
the inequalities in the hypotheses (with respect to the nonnegative cone of
matrices) are not strict.

We present two fundamentally different approaches to this topic. The
first one is combinatorial in nature and makes explicit use of the graph of
the matrix involved. The second approach is analytic in nature and relies
on topological and algebraic arguments. Both these approaches are inter-
esting by their methodology. They usually complement each other. For
example, in [13] and [14] graph theoretical arguments were used to prove
certain results, while in [9] analytical arguments were used for the same
results. In our comparison theorems here it turns out that the graph theo-
retical approach is somehow restricted to considering M-matrices, whereas
the analytical approach allows us to obtain further results involving general
monotone matrices, i.e., matrices with nonnegative inverses.

Comparison theorems between the spectral radii of matrices are a use-
ful tool in the analysis of the rate of convergence of iterative methods or
for judging the efficiency of preconditioners. There is also a connection to
population dynamics; see, e.g., [7] and the references given therein.

The paper is organized as follows. In Section 2 we derive a strict inequal-
ity result using the combinatorial approach. We give two different versions
of this result. The first applies to iterative methods obtained through ma-
trix splittings, whereas the second is more appropriate, e.g., when studying
population dynamics. In Section 3 we then present several generalizations
of this result in the splitting formulation using an analytic approach. There,
we introduce and use various notions of nonnegative splittings. Further ex-
tensions are presented in Section 4. In particular, one can appreciate the
variety of comparison results that can be obtained for splittings of different
matrices. This section also contains a new result for non-strict inequalities.

2 The Combinatorial Approach

We use the notation A > A’ for two real matrices of equal size if each entry
of the difference A — A’ is nonnegative. We write A > A’ if each entry of
the difference is positive. A matrix A > O (A > O) is called nonnegative
(positive). We will often consider relations A > A’ with equality excluded
(A # A') for which we write A > A'.



A nonsingular M-matrix A is such that it can be written as A = ol —
T with T > O and o > p(T); see, e.g., [2], [15]. Alternatively, A is a
nonsingular M-matrix if it can be expressed as A = o(I — T") with o > 0,
T' > O and p(T") < 1.

Given a square matrix A, A = M — N is called a splitting if M is
nonsingular. A splitting is regular if M~! > O and N > O [15]. It is an
M-splitting if M is an M-matrix and N > O [13]; see further Definition 3.3.

We can state now our main theorem for splittings of M-matrices.

Theorem 2.1. Let A1 = My — N and Ay = My — N be M-splittings of A;
and As respectively, where

M1 g M2 and N Z 0. (].)

If Ay > O, then
0 < p(NMy™") < p(NM;71). (2)

The importance of this theorem is that (2) is strict while the hypotheses
(1) are not. As we shall see, Theorem 2.1 can be considered a reformulation
of part 2 of the following result.

Theorem 2.2. (i) Let T and F be square nonnegative matrices. Suppose
that the spectral radius satisfies p(T) < 1. Assume also that F # O and
that F + T is irreducible. Let Q = F(I —T)~'. Then, after a permutation

simalarity,
_ (Qu Q2

where Q11 ts a nontrivial irreducible nonnegative matriz, Q12 s a nonneg-
ative matriz every column of which has a positive entry, and the zero rows
of Q correspond to the zero rows of F, if any. Further p(Q) > 0.

(ii) In addition, let O < T' < T, and put Q' = F(I —T')"L. Then, after the
same permutation similarity and partitioning,

!/ /
I _ 11 12

where Q1 £ Quu and p(Q') < p(Q).

Again, we observe that the point of the theorem is that the inequalities
on the spectral radii in parts (i) and (ii) are strict, since it is trivial that
O < Q' < Q and hence it follows by standard Perron-Frobenius theory that

0 < p(Q") < p(Q).



We will present a complete graph theoretic proof of Theorem 2.2, al-
though Part (i) was presented, in terms of the M-splitting of Theorem 2.1,
at the Linear Algebra meeting Oberwolfach in 1982 and appeared as Lemma
3.4 of [13]; see also [14] and [17].

Before starting the proof, let us introduce standard terminology for
graphs of nonnegative matrices; see, e.g., [13]. Let n be a positive inte-
ger. Then a path (without further qualification) will be a sequence p =
(¢(0),...,i(s)) of positive integers i(r), 1 < i(r) <mn,r =20,...,s. A path
is usually called an arc if s = 1. Let A be a nonnegative n x n matrix. We
call the path p an A-path or a path in A if a;._1) ;) > 0,7 =1,...,s and
we use similar terminology for arcs.

For any path p, the path product p(A) is defined by

p(A) = a(0),i(1) "+ Ti(s—1),i(s)-

Let F and T be two nonnegative n X n matrices and suppose the spectral
radius of T satisfies p(T) < 1. We are here concerned with the matrix
Q = F(I —T)™!, as essentially was [13] where QT was considered. Since
Q=F{+T+T?+---), the elements of Q are easily computed to be

¢ij = Zayp o(F)p(T), (3)

where the summation is taken over all arcs a = (i, %) and all paths p from
k to j or — considering only nonzero summands — over all F-arcs a = (i, k)
and all T-paths p from k to j, see [13, Theorem 2.7]. In view of this, we
call a path relevant if its first arc is an F-arc and all other arcs (if any) are
T-arcs. By (3), ¢;,; > 0 if and only if there is a relevant path from ¢ to j. If
q = (a,p) is a relevant path with first arc a, we define q(£,7) = a(F)p(T).
Hence (3) may be rewritten as

Gij = Sqem(i )9 (F,T) (4)

where PR(i, j) is the set of all relevant paths from i to j.
Our proofs depend on the following graph theoretic remark:

Remark 2.3. Let p be an (F' + T)-path that begins with an F-arc. Then
p may be decomposed as p = (q1,...,4qs), where each q¢, { = 1,...,s5is a
relevant path. As an additional condition, we may even impose that each qy,
(=2,...,s, begins with an F-arc which is not a T-arc. Since each gy begins
with an F-arc which corresponds to a positive element of (), it follows that,
if p is an (F + T)-path from i to j that begins with an F-arc, there is a
Q-path from i to j (and the converse also holds).



Proof of Theorem 2.2: Let B be the set of vertices which are the starts of
F-arcs and let R be the complement of B in {1,...,n}. Apply a permutation
similarity to all matrices so that B={1,...,k}, 1 <k < n. Note that B is
nonempty and partition Q) so that Q11 is k x k.

Let b be any vertex of B and let d be any vertex. Let a = (b,¢) be an
F-arc. Since F' 4 T is irreducible, there exists an (F' + T')-path t from ¢ to
d and let p = (a,t). Suppose that p = (q1,...,qs) is a decomposition into
relevant paths. In view of Remark 2.3 it follows that there is a ()-path from
b to d. Hence there is a nonempty path in @) from every vertex of B to every
other vertex. It follows that every column of [1; Q2] contains a positive
element. Now let d € B. Then every q¢, { =1, ..., s corresponds to a relevant
path beginning and ending at an element of ()1;. Hence there exists a QQ11-
path from b to d and it follows by a standard result that Q11 is irreducible.
Also, there is no relevant path from a vertex of R since there is no F-arc
that starts there. This proves that (Q2; = O and Q22 = O. Since Qq; is a
nontrivial irreducible matrix (viz. Q11 # O), we have 0 < p(Q11) = p(Q).
This proves Part (i).

Since O <T" < T, there exists an arc (i,7) of 7' such that 0 < #; ; < ;.
Let b be any vertex of B and let (b, ¢) be an F-arc. Since F'+T' is irreducible,
there exists an (F' 4 T')-path p which begins with the arc (b, ¢), then contin-
ues through the arc (i,j) (repeating (b, c) if it happens that (b,c) = (i,7))
and continues back to b. We decompose the path p = (q1,...,qs) into rele-
vant paths that satisfy the additional condition that each q,, ¢ > 1 begins
with an F-arc which is not a T-arc. Then there is an ¢, 1 < ¢ < s such that
(4,7) is a non-initial arc of q, and qe(#,T") < q¢(F,T), since t; ; < t;;. The
relevant path g, begins and ends at vertices of B; say it is an (a,d) path.
Since for all relevant paths q we have q(F,T") < gq(F,T), it follows by (4)
that ¢/, ; < ga,q. This proves that @, < Qi1 and, since Q1 is irreducible,
it follows that p(Q') = p( 11) < p(Q11) = p(Q), and Part (ii) is proved. O

Remark 2.4. Above we have essentially proved one direction of the follow-
ing result: q;’d < Qq,a tf and only of there exists a relevant path from a to d
which contains a non-initial arc (i,j) such that t; ; <t; ;.

As a corollary of Part (ii) of Theorem 2.2 we have the following result
first proved as [7, Theorem 4.4].

Proposition 2.5. Let T and F' be square nonnegative matrices with F # O
and F + T irreducible. Suppose that the spectral radius p(T) of T satisfies
p(T) < 1. Then p(F(I —T)~%) > 0. Moreover, let s > p(T). Then p(F(I —



T)™) < p(F(I —=iT)7") if s <1 and p(F(I = T)7') > p(F(I = 11)71) iof
s> 1.

The above proposition has a direct interpretation in models from popu-
lation dynamics where T" and F represent the transition and fertility matrix,
respectively, and s is the growth rate. We refer to [7] for details.

We now turn to prove Theorem 2.1 using Theorem 2.2.

Proof of Theorem 2.1: Since M;, 1 = 1,2 is an M-matrix, we may write
M; = ci(I—Ti) where ¢; > 0, T; > O, p(ﬁ) < 1lfori=1,2. Letc=
max{cy, co} and write

C—Cj

Mi:ci(I—ﬁ-):c<I—< I+%ﬁ>>:c(I—Ti).

C

Here, T, = <% + 9T, > O and p(T;) = “% + %p(T;) < 1. Since

O < At =c¢Y(I - N —1Ty)7!, it follows that N + 73 is irreducible. Thus
the theorem is implied by Theorem 2.2 (where FF = N, T =T, T' =1T,). O

The proof just presented shows that Theorem 2.2 implies Theorem 2.1. If
we disregard the statement on the structure of Q and @’ in Theorem 2.2, the
converse also holds: Theorem 2.1 implies Theorem 2.2. This follows indeed
easily, since in Theorem 2.2 we may without loss of generality scale F' = N
by a positive constant so that p(F +T) < 1, which yields (I—F-T)~! > O.

We end this section with a couple of examples showing that the hypothe-
ses M; < My and A1_1 > O in Theorem 2.1 cannot be weakened.

First observe that for M-matrices M;, Mo, M; < My implies that
M;~1 > M5! but not conversely. It is tempting to assume that Theorem 2.1
remains valid if the hypothesis M; < M is replaced by M;~! > My~!, but
this is not so as is easily shown by the following example.

Example 2.6. Let

1 .5 1 .5 10

-1 _ -1 _ _
wit=(5 1) =i 1) v=(0 o)
Then M; ' > Myt and (M; — N)™' > O but NM; 1 = NM, L.

Remark 2.7. If we assume strict inequality M; ! > My~ !, the other as-
sumptions of Theorem 2.1 remaining unchanged, then the conclusion
p(NM;1) < p(NM[?') still holds. This can be seen by considering the
reducible normal form; see, e.g., [L5]. Observe that O < NM, ' < NM*
follows immediately from the assumptions, and NM; ! has at least one



positive diagonal element. So the reducible normal form of NAM, ! has
at least one non-trivial (irreducible) diagonal block. But all positive ele-
ments in each such block are strictly decreased when passing from NM !
to NM, L so the spectral radius of each block strictly decreases. This gives
p(NM[ 1) > p(NM; ') by standard Perron-Frobenius theory.

It is also easy to see that we cannot omit the condition that A1_1 >0
from Theorem 2.1 (or, equivalently that F' + T is irreducible in Theorem
2.2).

Example 2.8. Let
00 1 -1
So (00 () et

NM;'=NM,"' = (8 2) :

Then

3 An Analytic Approach

The purpose of this section is to develop generalizations for Theorem 2.1. We
will be able to dispense with the M-splitting hypothesis by assuming more
general nonnegativity hypotheses. Section 4 will contain further generaliza-
tions together with a discussion of possible applications; see Remark 4.7.
Our approach is now analytical rather than combinatorial as exemplified by
the following auxiliary result.

Lemma 3.1. Let By, B; be two square nonsingular matrices such that
By < B andB[;1>O as wellastIZO. ThenB[;1>Bf1.

Proof. Define the family of matrices B, = (1 — «)By + aBy, « € [0,1].
Clearly, we have B, < Bg for a < 3. If B,, Bg are nonsingular, we also

have
B.' = B3' = B;' (Bs — Ba) B, . (5)

By continuity, there exists a small positive v € (0,1) such that B, is
nonsingular with B 1'> 0. Since B, — By is nonnegative with at least one
positive entry, the product B 1(B, — By) has at least one positive column.
Since BO_1 > O, the product B;l(BV - BO)BO_1 is therefore positive. From
(5) (with a =0, 8 = ) we therefore get

By' > B (6)
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We also have By — B, > O, and since Bfl > O,Bﬁy_1 > O we have
Byt > By, (7)

again from (5) (with a =, = 1). Combining (6) and (7) we obtain the
desired strict inequality B s B, L a

We also need the following, fairly standard auxiliary result; see, e.g., [8].
For the sake of completeness, we reproduce a proof here. Note that 1" needs
not be irreducible.

Lemma 3.2. Let T be a nonnegative matriz, let x be a nonnegative nonzero
vector and o a positive scalar.

(i) If Tx > ax then p(T) > «. Moreover, if Tx > ax then p(T) > «.

(ii) If Tx < ax then p(T) < a.

Proof. To show (i), assume that Tz > ax but p(T') < a. Then

(1-10)" =5 (1) 20

v=0

Therefore, 0 < (I — éT)_1 (Tx — aw) = —ax. Since we had = > 0 this
implies x = 0, a contradiction. This proves the lemma for the non strict
inequalities. If T'x > ax we can chose a; > « for which still Tx > ajz. By
what we have already proved we get p(T') > a1 which implies p(T') > a.

To show (i), note that # > 0. The matrix 17" then satisfies 2Tz < S
with 0 < § < 1. This implies

1 n
0§(—T> x< B, n=0,1,...
a

This shows that (éT)n tends to zero as every entry tends to zero, so that
p(T) < a. O

In order to formulate and appreciate the generalization of Theorem 2.1
let us recall the following - now near-standard - terminology; see, e.g., [3],
[16].

Definition 3.3. A splitting A = M — N is called

(i) weak nonnegative of first type ift M—* > O and M~'N > O,
(ii) weak nonnegative of second type it M—* > O and NM~! > O.
(iii) nonnegative, if it is weak nonnegative of both types.



Clearly, a regular splitting (and thus an M-splitting) is also weak non-
negative, and a weak nonnegative splitting is weak nonnegative of either
type.

The following known results on weak nonnegative splittings are very
important for our investigations. As it is usually done, we state these re-
sults in terms of the spectral radius of the “iteration matrix” M~'N. But
note that we could as well take NM ! (as we did in Theorem 2.1) since
p(M~IN) = p(NM1).

Theorem 3.4. Let A be a nonsingular matriz with A~" > O.

(i) Let A= M — N be a weak nonnegative splitting of either type. Then
p(M~IN) < 1.

(ii) If the splitting A = M — N is weak nonnegative of second type, there
exists a vector v > 0 such that M~'Nx = p(M~'N)x and Az > 0 as well
as Nao > 0.

Proof. For the first type, part (i) goes back to [11], whereas for second
type splittings it was given in [16]. The major part of (ii) was proved in [1,
Lemma 2.8] except for the inequality Nx > 0. To prove this, let us write
p = p(M~IN). Note that we have No = pMx which gives Ma = (1/p)Nux.
Therefore, we obtain

1 _
0<Ar=MI-M'N)z=(1-pMe=—LNaz
P

with a positive factor (1 — p)/p since p < 1. So Nz > 0, and equality is
excluded because otherwise Ar = 0 with z # 0 which is impossible. a

We now turn to the announced generalization of Theorem 2.1.

Theorem 3.5. Assume that A1 = My — N, Ay = My — N are two weak
nonnegative splittings of different type of nonsingular square matrices Ay, Ao
with N # O. Assume that Ay < Az (or, equivalently My, < Ms) and that
AT > 0,451 > 0. Then p(My, 'N) < p(M{'N) < 1.

Proof. By Theorem 3.4(i) we know that p(Ml_lN) < 1 and
p(M{lN) < 1. Denote G7 = AIIN, Gy = A;IN and G| = NA;17G2 =
NAZ_I. We have

Gi = A7'N=(I-MT'N)YMN), i=1,2,

G; = NA7'=NM'I-NMYH1 i=1.2



Now first assume that A1 = M; — N is of first type whereas Ay = My — N is
o~f second type. We thus have MI_IN > O and ]\[Mz_1 > O so that G1 and

G2 are nonnegative matrices. Since p(G;) = p(G;) and since the function
f:t—t/(1 —t) is strictly increasing on [0,1), we have

p(Gi) = p(Gi) = p(M]'N) /(1 = p(M['N)) = p(NM) /(1 = p(NM))

for i = 1,2. Thus all we need to show is p(G2) < p(G1). By Theorem 3.4(ii)
there exists a vector x > 0 such that M; 'Na = p(M;'N)z and Nz > 0.
By Lemma 3.1 we have Afl > A;l, so that together with Afl > O we get

Gir = AT'Nz > A7 Na = Gyx = p(Gy)w. (8)

Whence p(G2) < p(G1) by Lemma 3.2(i).

If NMl_1 > O and MZ_IN > O then él and G2 are nonnegative matrices.
Again by Theorem 3.4(ii) there exists a nonzero nonnegative vector z such
that M *Nz = p(M;*N)z and Nz > 0. Thus

p(G1)z =Gz = A "Nz > ANz = Gyz, (9)

and we obtain p(G2) < p(G1) by Lemma 3.2(ii). O

As a first comment, let us note that in the proof we only made use of the
inequality A;l — A;l > O, but not of A; < As. In the light of Lemma 3.1 a
slightly more general version of the theorem therefore arises if one replaces
the assumption A; < Ay by A;l — A;l > 0.

In the following corollaries we now emphasize two special cases of The-
orem 3.5. In particular, these corollaries resemble Theorem 2.1 where the
hypothesis of M-splittings has been replaced with the hypothesis of either
regular or nonnegative splittings.

Corollary 3.6. Assume that Ay = My — N, Ay = My — N are two reqular
splittings of square nonsingular matrices Ay, As with N # O. Moreover, let
Ay < Ay (or, equivalently, My < Ms) and assume that Afl >0, A;l > 0.
Then p(My'N) < p(M7'N) < 1.

Corollary 3.7. Assume that Ay = My — N, Ay = My — N are two nonneg-
ative splittings of square nonsingular matrices Ay, Ay with N # O. More-
over, let A1 < Ag (or, equivalently, My, < Ms) and assume that A1_1 > 0,
A1 > 0. Then p(My;'N) < p(M;'N) < 1.

We comment now on how some of the hypotheses of the results in this
section cannot be weakened.

10



For regular splittings, we cannot weaken the assumption Afl > O by
replacing it by the hypothesis that A1_1 is irreducible, for in Example 3.8
below A1_1 is irreducible and indeed has precisely one element equal to 0.

Example 3.8. Let

20 —10 —10 20 —10 —10
Mi=|-10 15 -9, M=]|-10 15 -6,
10 5 15 10 5 15
00 0
N=1{00 0],
00 2

and put Ay = My — N,As = My, — N. Here M has just one positive off-
diagonal element. Then, as we show explicitly below, M{17 Mfl, and A;l
are nonnegative and only the (3,2)-element is 0 in each case.

L (12 4 12
A;1:% 11 8 14,
5 0 10
L (27 10 24 L [P 20 42
M '=—124 20 28 M;yl=——142 40 44
' 200 100207 ’ 400 V99 o 40

But p(M]'N) = p(M;'N) =1/5.

4 Further results

The purpose of this section is to formulate additional comparison results
for splittings Ay = My — N1, Ay = M, — Ny with two possibly different
matrices N1, No. Before we do so, we take a closer look at known results
for two splittings of a single matrix A which we summarize in the following
theorem.

Theorem 4.1. Assume that A is a nonsingular matrix such that
A7V > O and let A = M; — Ny, A = My — Ny be two splittings of A.
Then p(M{'Ny) < p(My ' Ny) in the following cases:

(i) both splittings are reqular, N1 # 0 and M; < My or, equivalently,
N1 < Ny (Varga [15, Theorem 3.32]).

(ii) both splittings are reqular and My ' > Myt (Woznicki [16, Theorem
3.6], see also [4]).

11



(iii) both splittings are weak nonnegative splittings of different type and
M;' > M5! (Climent and Perea [3, Theorem 7]).

Clearly, part (iii) contains the other two as well as an additional com-
parison result by Elsner [5] where one splitting is regular and the other is
weak nonnegative of first type.

Note that part (i) uses the same hypothesis M; < My as we used in
Theorem 3.5, but it establishes the reverse inequality between the spectral
radii. This is no contradiction though, since in Theorem 3.5 the assumption
A; < Ay excludes equality between A; and As.

Taking Theorem 4.1 as a source of inspiration, and as was done in [8],
[10], we will now formulate comparison theorems for two splittings A4; =
My — Ny, Ay = Ms — N of different matrices with similar hypotheses as
in Parts (i) and (iii). As before, the emphasis is on strict inequality of the
spectral radii, without always having strict inequalities in the hypotheses.
As it turns out, requiring My — My > O or My — M5 > O does not suffice.
We need to bound these differences by A, — A; and Afl — A;l, respectively.

Theorem 4.2. Assume that Ay = My — N1, Ay = My — Ny are two weak
nonnegative splittings of different type of nonsingular matrices Ay, As with
N1, Ny # O. Assume that Al_1 — Az_l > O and that Al_1 > 0, A2_1 > 0.

(i) If
Mg—Ml SAQ—AI, (]_0)
then

p(M5'Ny) < p(M{'NY) < 1. (11)

(ii) If p(M; *Ny) > 0 and

M7 =Myt > A= Ay (12)

then
p(M7INY) < p(M5N;) < 1. (13)
Proof. By Theorem 3.4(i)) we know p; = p(M['Ny) < 1,

p2 = p(M, ' N3) < 1. So we only have to prove the first inequalities in (11)
and (13). To prove Part (i) note first that (10) is equivalent to N7 > No.

12



We can therefore repeat the proof for Theorem 3.5 step by step, except that
in (8) we have to use one additional inequality to obtain

Gix = Al_lNlm > A2_1N11: > AZ_INQ.T = Gaox = p(Gy)z,

and similarly for (9).

To prove Part (ii), assume first that A; = My — Ny is of second type and
Ao = My — N> is of first type, so that Nlel > 0O and M{lNg > 0. Using
(12) we obtain

My *No A = My Y(My — Ap)Ay 7 = AT — M,
AT = Myt = M7 (M - Ay AT
MINyAT?

= AT'N M > 0.

v

Now let x > 0 and y > 0 be two vectors such that
NiM{ e = prw, y" My Ny =y po.
These exist by standard Perron-Frobenius theory. Thus

pgyTAglm = yTMglNgAglm > yTAlelelx = plyTAflm.

Since by assumption A1_1 > A5 ! and since z and y are both nonzero and

p1 > 0 we obtain

pay’ Ay e > pry" A e
Therefore

p(M;1NYy) < p(My1INy).

The case Ml_lNl > 0, N2M2_1 > O can be proved in a similar way. O

As a first comment, let us note that a special case of the assumption
Afl — A;l > O arises when A; < Ay as we know from Lemma 3.1.

Next, we note that Part (i) of the above theorem generalizes Theorem 3.5
since in the case N1 = N the assumption (10) is automatically fulfilled (and
equality holds there).

Let us further stress the fact that Part (i) establishes p(M;'Ny) as
the smaller quantity, in contrast to our previous results in Section 3 and
to Part (i). So we consider this part as being much more related to the

13



classical single splitting case of Theorem 4.1(iii). Since the conclusions
in both parts of Theorem 4.2 are incompatible, the theorem also shows
that the respective hypotheses are mutually exclusive. This can essentially
also been seen directly: For weak nonnegative splittings of either type we
have p(M;'N;) = p(N;M;!) < 1 so that A;7' = 3200 (M7'N;)" Mt =
M7, (NiMi_l)V which shows O < M ' < A7! for i = 1,2. Therefore,
if we assume (10), i.e., My — M; < Ay — A; we obtain

Mt — Myt o= My (M — My) Mt
Ay (My — M)A
= AyN(Ay— AnAL!

_ A;l —A517

IN

which is essentially the opposite of (12).

We now discuss examples which show that Theorem 4.2 no longer holds
when certain hypothesis are relaxed. First of all we note that the hypothesis
A1_1 > O can not be relaxed in Part (i), Example 3.8 representing a counter-
example.

Also, the following example shows that without bounds of the kind (10)
and (12) we cannot expect comparison results for the spectral radii.

Example 4.3. Let

1 -1 2 -1 10
2 -1 8 -1 6 0

AZ‘(—l 2>_<—1 2)‘(0 0>:M2_N2’
2 -1 4 -1 2 0

A3_(—1 2)‘(—1 2)‘(0 0>_M3_N3

All these splittings are M-splittings and

(21 L 1201
Al_(11>>A2_A3_3 12 )
and

1721 1721 1 /21
-1_ 1 -1_ 1 -1 _
My _3<1 2) > My 7(1 4) > My 15(1 8)'
WehaveMZ—MlZObutMg—MlﬁAg—AlaswellaSMg—Mlebut
Mg — My £ As— A;. So the pairs given by the first and second splitting and
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by the first and third splitting satisfy all hypotheses of Theorem 4.2, except
(10). But we have p(My'Ny) = 4/5 < p(M;'Ny) = 2/3 > p(M;'N3) =
4/7, showing that either inequality between the spectral radii may now oc-
cur. Note that we also have M, — M, ' > O but M; ' — M, " % A7 — A?
as well as M1_1 — M3_1 > O but Ml_1 — M3_1 7 A1_1 —Agl, i.e., neither pair
of splittings satisfy (12). Actually, we have Mfl — M{l < A;l — A;l and
Mt — M < AT' — AZ'. This shows that a modification of Part (i) with
reversed inequalities in (12) and (13) does not hold.

Example 4.3 can be modified slightly to show that Part (ii) of Theo-
rem 4.2 is not empty, i.e. that all hypotheses there can be met. To this
purpose, subtract a small positive quantity ¢ from the (1,2) entry of As
and add it at the same position in N3. If ¢ is small enough, we will get
Myt — M7t > AT — AT and A3 < Ay with A7 > O, A1 > O and both
splittings are M-splittings.

Remark 4.4. (i) Interestingly, there exists an obvious, but also new, counter
part of Theorem 4.2 with all strict inequalities replaced by non-strict ones.
(ii) It is possible to formulate a version of Theorem 4.2 where some inequal-
ities between matrices are replaced by less restrictive inequalities between
certain matrix vector products. The basic idea can be caught from Theo-
rem 4.5 below, so we do not give details here.

We finish with an additional result where the nonnegativity assumptions
on one of the splittings are kept to what we think is a minimum.

Theorem 4.5. Assume that A1 = M — N1, Ao = Mo — Ny are two splittings
of nonsingular matrices Ay, Ay with N1, Ny # O. Let M2_1N2 > O and
assume that there exists an eigenvector w > 0 corresponding to p(Mlel)
such that 0 < Ayw and

Ajw < Asw. (14)
Moreover, let O < Ml_1 < MZ_I. Then
p(My ' N3) < p(M'Ny). (15)

Proof. The hypotheses allow us to establish the following chain of
(in)equalities

p(Mlel)w = Mlelw = w— MflAlw > w— M{lAlw
> w— My 'A A M Asw = (I - My As)w = M, ' Nyw.

Since, by assumption, My "Ny > O this gives p(M; ' Ny) < p(M]'Ny) by
Lemma 3.2(ii). O
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Theorem 4.5 extends Lemma 2.2 of [10]; cf. also Theorems 3.13 and 3.15
of [8]. The following example shows that this theorem is not contained in
our previous ones.

Example 4.6. Let
(-1 43N\ (0 43N\ (1 0\ _ .,
A1_<4/3 —1)‘(4/3 0) (0 1>_M1 M
and

42 = < —51/8 _51/8 ) B ( —51/9 —51/9 )‘( 5/072 5/072 ) = M=l
Then

_ 0 3/4 81/56 45/56 4
< L < = )
0< M < 3/4 0 ) = < 45/56  81/56 ) M,

So both splittings are regular splittings. Moreover, w = (1,1)7 is a positive
eigenvector corresponding to the eigenvalue 3/4 (which is the spectral radius)

of
_ 0 3/4
1 _
M; N1_<3/4 / )
Finally, 0 < Ajw < Asw. So all assumptions of Theorem 4.5 are met, while
the condition My — M; < Ay — A; of Theorem 4.2 (i) is violated. We have
p(My ' Ny) = 5/32, p(M'Ny) = 3/4.

We have some observations concerning the hypotheses of Theorem 4.5.
We assume that the eigenvector w > 0, but the proof shows that the hy-
potheses imply w > 0. Moreover, since 0 < Ajw = (M; — Ny)w = M;(I —
MINDw = (1 — p(M7IN)Myw and Mt > 0, we get p(M;'Ny) < 1;
see [12, Lemma 1] for a similar argument in the special case of a weak non-
negative splitting of first type. By (15), we also have p(M; ' Ny) < 1 which
is equivalent to A, > O (see [15, Theorem 3.37]), because the splitting
Ao = My — Ny is weak nonnegative of first type.

Note that (14) is fulfilled if Ay — A; > O contains no zero rows. Note
also that by Theorem 3.4(ii) a vector w > 0 such that Ajw > 0 exists if the
splitting A; = My — N7 is weak nonnegative of second type.

In Theorem 4.5 the smaller spectral radius corresponds to the larger ma-
trix MZ_I. But M2_1 belongs to the splitting of the “smaller” matrix Az_l7
as the remarks above show. So, as illustrated by Example 4.6, this is yet
another situation, different from that of Theorem 4.2. Together with The-
orem 3.5 our theorems show the variety of possible results if one compares
splittings of different matrices.
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Remark 4.7. Comparison results for splittings of different matrices have
previously been used in several ways to study (non-stationary) iterative
methods for a (single) system of equations. Typically, one then models
the iteration by “macro-iterations” involving splittings of different “macro-
matrices”. Examples include the study of multisplittings in [10] (and several
subsequent publications) and the paper [6], where the effect of the granu-
larity in the block Jacobi method on its asymptotic rate of convergence is
studied. Comparison results on splittings of different matrices appear as
an important tool for the analysis in these situations; see, e.g., [10, Lemma
2,2]. The comparison results of the present paper are an attempt to de-
velop such comparison results in a systematic manner. We believe that they
will be useful as a tool in further investigations on non-stationary iterative
processes, including, e.g., inner-outer iterations.
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