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Abstract

We mainly investigate the behavior of the subdominant eigenvalue
of matrices B = (b;;) € IR™"™ whose entries are independent ran-
dom variables with an expectation E (b; ;) = 1/n and with a variance
Var(b; ;) < ¢/n? for some constant ¢ > 0. For such matrices we show
that for large n, the subdominant eigenvalue is, with great probability,
in a small neighborhood of 0. Actually, we also show that for large
n, the spectral radius of such matrices is, with great probability, in a
small neighborhood of 1.

1 INTRODUCTION AND MAIN RESULT

Let K € R™", the space of all real n X n matrices, and denote the spectral
radius of K by p(K). Let (Aq,..., ;) be any arrangement of the eigenvalues
of K in which |\;| = p(K) Then a subdominant eigenvalue of K is any
eigenvalue y of K for which

Il = max il
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In linear iterative methods in which the powers of the iteration matrix
converge, but to a nonzero limit, so that necessarily the spectral radius of
the iteration matrix is 1, it is well known the magnitude of a subdominant
eigenvalue determines the asymptotic rate of convergence of the process, see,
for instance, Berman and Plemmons [3, p.199]. An important example of
an application of such iterative methods occurs in the problem of finding
the stationary distribution vector of a finite homogeneous Markov chain by
iteration. Because it is this type of an application that has served in part
as the motivation of our present study, we now describe this application in
more detail. Suppose that P = (p; ;) is a (row stochastic) transition matrix
for a finite ergodic homogeneous Markov process on n states and let v(P)
be the magnitude of a subdominant eigenvalue of P. Let e be the n—vector
of all I’s and let v be the stationary distribution vector for the chain, in
which case v/’ P = v! and v’'e = 1. In Seneta [16, p.9], it is shown that if
v(P) # 0, then, as k — oo,

Pt = e’ +0 (ksyk(T)) ,

where s is one less than the largest multiplicity of any subdominant eigen-
value of P.

To avoid having to compute y(P), various estimates have been developed
in the literature. One estimate, due to Ostrowski [14] is that

M—-—m
P) <

where M = maxi<;j<npi,; and m = minj<; j<, p;j. A second estimate is
that

1 n

v(P) < 3 123’5(71; [Pis — Djs]- (1.1)
This estimate was found by Bauer, Deutsch, and Zenger [2]. Actually, the
right hand side of (1.1) is also a special case of a coefficient of ergodicity of P
which can be found in Dobrushin [5, p.335] and which was used and studied
by many others, see, for example Paz [15] and Seneta [17]. Specifically, let
v be a norm on IR". Then the coefficient of ergodicity of P with respect to
v is given by

v(P) = max  v(z! P).
v(z)=1, zTe=1

It is known, see Tan [19], that v(P) > v(P) and that, in the case when v is
the 1-vector norm, v(P) is equal to the right hand side of (1.1).



As a more immediate motivation for the numerical experimentation
which we carried out and which lead subsequently to the investigation in
this paper we mention the problem of the weak ergodicity of an infinite
product of of stochastic matrices, see Neumann and Schneider [13]. This is
the case when the infinite product of stochastic matrices may not converge,
but approaches a rank 1 matrix (see also Seneta [16, Definition 3.3]).

For background material on the statistical concepts used in the paper see
Feller [9] and for background material concerning nonnegative matrices and
applications to Markov chains see Berman and Plemmons [3] and Campbell
and Meyer [4].

In this paper we shall mainly prove results concerning the distribution
of the subdominant eigenvalues of n x n matrices B = (b; ;) whose entries
are independent random variables from any distribution, provided that the
entries have an expectation E(b; j) = 1/n and a variance bounded by ¢/n?,
for some constant ¢ > 0. Our results here were motivated by numerical
experiments which we carried out before hand and in which the elements of
the matrices B were mutually independent and uniformly distributed in the
interval [0, 1] and by unpublished results of Friedman [8] from 1983 concern-
ing the distribution of the singular values of such matrices. Friedman stated
that the singular values of B other than ||B||2 are uniformly distributed in
the interval [0, || B||2/+v/n ]. We comment that our approach to the proof of
our main result, Theorem 1.1, is quite different from the approach taken in
Friedman notes and that our results are not implied by his since, in general
and even for stochastic matrices, the second largest singular value does not
necessarily dominate the subdominant eigenvalues of a matrix.

We comment that another, different, direction of investigation of the
behavior of eigenvalues of random matrices has lead to the so called em-
pirical spectral distribution and its consequence, the so called circular law.
Briefly they are as follow. Consider the n X n matrix =, whose entries
&k = (1/+/n)xy j, where the zy j;, k,j > 1, form an infinite double array
of independent, randomly distributed, complex random variables of mean 0
and variance 1. One then uses the eigenvalues Aq, ..., A, of Z, to construct

the two dimensional empirical distribution given by:

pn = # i <0 ROW) < 0,(00) <y}

In Bai [1] the following result (the circular law) is proved: Suppose that the



entries of X have a finite sixth moment and that the joint distribution of
the real and imaginary part of the entries has a bounded density. Then,
with probability 1, the empirical distribution p,(x,y) tends to the uniform
distribution over the unit disc in two—dimensional space. The paper [1] and
the working manuscript [7] by Edelman describe applications of large scale
random matrices in physics to quantum mechanics and in other disciplines.
We also refer the reader to the list [6] of some 200 papers on random ma-
trices and their applications compiled by Edelman which is available on the
web.

Let us begin by presenting some of our numerical results. We used the
random generator facility in MATLAB which supplies a random number
from (0,1) to generate n x n matrices of sizes n = 1,...,325. For each n
in this range, we generated 300 examples and averaged the values of the
subdominant eigenvalue as well as the spectral radius. Our first illustration
gives a plot of both the average subdominant eigenvalue (the dotted line)
and the average of the spectral radius (the more solid line) as functions of
n:
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The graph clearly shows that we may expect the subdominant eigenvalue to
be very small compared to the size of the matrix. Even more interesting is
the next graph:
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In this plot the bottom curve is the ratio of the subdominant eigenvalue to
the spectral radius in the graph above. The curve at the top is the plot
of the function 1/4/n. This paper will be devoted to proving some of the
phenomena which we observe in these graphs.

Let M = (m; ) be an n x n matrix with mutually independent elements
uniformly distributed in the interval [0,1]. One of the goals of this paper
will be to investigate the distribution of the subdominant eigenvalues of the
matrix

M
n/2’
Using Feller [9, p.5], we can easily find that the expected of each entry of

B is equal to 1/n, while the variance of each entry of B is equal to 1/(3n?)
Let us now rewrite the entries of B as

B =(bi;) =

1
bij = E"‘ai,ja 1<i,5 <n.

Then, obviously, E(a;;) = 0 and Var(a;;) = # Note that the a; ;’s are
not necessarily nonnegative. Furthermore, as the elements of M are mutu-
ally independent, so are the elements of the matrix A = (a; ;).

We are now ready to state the main result of this paper. Note that our
result does not actually require the restriction that the entries of B come
specifically from a uniform distribution nor do they require that the entries
of B are, themselves, nonnegative!



THEOREM 1.1 Let 0 < € < 1 and 0 < p < 1. Suppose that B =
(% + ai,j) 18 an n X n matriz whose elements are independent random vari-

ables with E(a; ;) =0 and Var(a; ;) < 75, for some nonnegative constant c,
1,7 =1,...,n. The the following hold:

(1) There is an integer N (e, p) such that for any n > N (e, p), with probability
of at least p, n—1 of the eigenvalues of B are in an open disc of radius
€ centered at the origin.

(ii) There is an integer Ni(e,p) such that for any n > Ni(e,p),
P (| p(B) —1|<€) > p, where p(B) is the spectral radius of B.

We shall devote the next section to the proof of the Theorem 1.1. The
conclusion of the theorem is a consequence of several results which are of
independent interest. A main idea in the proof is to split the characteristic
polynomial pg(A) of B into two parts: the principal part which equals \" —
A"~ and which is also shown earlier to be the expectation of pg(A) and the
remainder gg(\) = pp(\) — (A" — A"~ 1). We then use (i) the reverse case
of Chebyshev’s inequality (which says that if X is a random variable, then
P(|X| <€) > 1— E(X?)/e?, see, for example, Manoukian [11, p.11, (iv)-
(v)]), (ii) Rouché’s theorem (which says that if f and & are analytic functions
in a domain containing the track and the interior of a closed Jordan contour
v and |h(z)| < |f(z)] on v, then f and f + h have same number of zeros
inside v, see, for example, Tall [18, p.38]), and (7ii) a sequence of estimations
on the expected values of squares of sums of determinants to show that as
n — 0o, with great probability, the characteristic polynomial of B has in any
disc of radius € # 1 as many roots as the polynomial A\ — A"~ 1. From this
it follows that for n large enough, with great probability, all the eigenvalues
of B with the exception of spectral radius are in a small neighborhood of 0,
whereas the spectral radius of B is in a small neighborhood of 1.

2 PROOF OF THEOREM 1.1

As mentioned in the introduction, the proof of the Theorem 1.1 is a conse-
quence of auxiliary results, some of which are of interest in their own right.
As several of these results will require the same set of assumptions, let us
formulate the common assumptions now and refer to them in the section
when they are required simultaneously:

ASSUMPTIONS 2.1 The entries of the real matriz A = (a; ;) are inde-
pendent random variables such that E (a; ;) = 0 and such that E (a%yj) <5
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We begin with the following simple lemma concerning the expected value
of the determinant. No originality is claimed for this lemma and it could
be deduced from works of Mehta [12] and Girko [10], but as its latter part
serves as a motivation for the splitting of the characteristic polynomial of
B into a sum of the principal part and the remainder, which are concepts
mentioned in the introduction and which will be precisely defined later, it
is presented here for the sake of completeness.

LEMMA 2.2 Let B € R™" be matriz whose elements are independent
random variables with finite expectation. Then

E(det(B)) = det(E(B)).

In particular, if B = (b; ;) € R™ is a matriz whose elements are indepen-
dent random variables with E(b; ;) = %, then the expectation of the charac-
teristic polynomial is X — X\~

Proof: Using the independence of the entries of B we have the following
sequence of equalities:

E(det(B)) = E (Zaesn Sign(g)bl,o(l)"'bn,o(n))
= Yoes, B (Sign(U)bLau) e bn,o(n))

= Soes, Sign(0)Bbrom) - E (bmom) = det (B(B)).

The second part of the lemma follows as now E(B) is a rank 1 matrix
whose only nonzero eigenvalue is its constant row sum, namely, 1. a

In some of our estimates on the maximum of the remainder of the char-
acteristic polynomial takes on the boundary of discs of radius € we shall also
require the following estimate:

LEMMA 2.3 Let A be a k x k matriz whose elements are independent
random variables such that E (a;;) =0 and E (a%yj) < 5. Then
F k!

E (det2(A)) < -



Proof: We can write that

E((det(A))?)
(( ves, Sign(o)a 51y - - .ak,g(k)) (ETESk sign(7)ay(1) - - - akr(k)))

= E (X ses,,res, Si8n(0)ay o(1) - - - Gk o(k)Sign(r)as +(1) - - - a’k,’l‘(k))

(=
=L ( > oeSy,res, sign(o)sign(r) (01,0(1)01,7(1)) e (ak,a(k)ak,r(k)))

= Yoesires, Elsign(o)sign(r) (01,0(1)01,7(1)) (ak,o(k)ak,r(k))

= Yoes,,res, sign(o)sign(r)E (ala,(l)al,r(l)) B (ak,o(k)ak,r(k)) :
(2.1)
The last line in (2.1) follows because all the expressions appearing in paren-
thesis in the line preceding it are mutually independent since they are made
up from the elements of different rows of A. Now, if for some i, o (i) # 7(7)
then because elements of A are independent we have that

E (ai,a(i)ai,T(i)) =k (ai,a(i)) E (ai,r(i)) =0
and therefore
sign(o)sign(7)E (alﬂ(l)alﬁ(l)) ...E (akyg(k)akﬁ(k)) = 0.

From this and equation (2.1) it follows that

E (det(A)2) = Z sign(o)*E (aia(l)) B (az,g(k)) .

o€S

Finally, since (alz’j) < .5, we have that

E (det*(4)) < n;fc

This concludes the proof. a

A further auxiliary result which we shall need is the following lemma.:



LEMMA 2.4 Let A be an n X n matriz whose elements are independent
random variables such that E (a;;) = 0. Let X be an £ x £ submatriz of A
and let Y be a k x k submatriz of A. If X #Y, then

E(det(X) det(Y)) = 0.

Proof: Since X # Y their respective elements cannot come from exactly
the same rows and exactly the same columns of M. Suppose that X contains
elements of ith row of A and Y contains no elements of that row. Now
det(X) is a sum of £! numbers, each of which is up to a sign to a product of
¢ elements of X. Similarly, det(Y") is a sum of k! numbers, each of which is
up to a sign a product of k elements of Y. Thus det(X)det(Y) is a sum of
2! x k! numbers each being equal, up to a sign, a product of £ elements of X
and k elements of Y. To complete the proof of the lemma we only need to
show that expectation of every such product is 0. Let

J4 k
H ajpysp H Qg ,ry
p=1 t=1

be such a product. This product contains exactly one element of i—th row
of A. Suppose, without loss of generality, that a;, s, is an element of the
i—th row of A. Then qa;, ,, is independent from

0 k
H ajpzsp H G’Qtﬂ't
p=2 t=1
(since elements of A are mutually independent) and therefore
l k
E (Hp:1 @y [Ti=1 aqmn)

l k
= FE (a’jl,sl) E (Hp:2 Qjp,sp | GQt;Tt) = 0.
—_———
=0

|

For our analysis of the behavior of the remainder of the characteristic
polynomial, the following definition will be helpful:

DEFINITION 2.5 Let Sy be the set of all subsets of {1,...,n} of cardi-
nality k. Suppose that A = (a; ;) € R™". For L € S, let G, be the n X n



matriz defined by
—a;j, ’Lf] e L
. _ 1 . . - -
9ij = \ ~n ifj ¢ Landi#j (2.2)
A—2L ifj¢Landi=j.
Now let L € Sj;, be fixed. Then there are exactly k(n — k) sets H in Sy
such that |[L N H| =k — 1. Denote these sets by L;, i = 1...k(n — k).

In our next lemma we shall use standard notation from matrix theory
in which if U € R™™ and L and L' are subsequences of strictly increasing
integers from between 1 and m, then U[L, L'] is the submatrix of U whose
rows and columns are determined by L and L'.

LEMMA 2.6 Suppose that A = (a;;) € R™" and let L € S}, and G, be as
given in Definition 2.5. Then

1 k(n—k)

—k
det (G;) = A k-1 <"— - ,\> - Avk=le
€ ( L) n gL + n ZZ:; €Lz’

where &1, is up to a sign det (A[L, L]) and &1, is up to a sign det (A[L;, L]).

Proof: We first notice that from the definition of G, in (2.2) it follows
that

—k
det (GL[L5 L)) = Av kL <>\ . )
n
and that det (G [L¢, L¢]) is up to a sign equal to (1/n)A\" *~1. Also for any
H € S such that [LNH| < k —1, the matrix G [H¢, L] has two rows with

all elements equal to —%. Therefore,
det (G ([H¢, L)) = 0

for any such H. From definition of G, it follows that det (G1[L, L]) is equal
up to a sign to det (A[L, L]) and det (G[L;, L]) is equal up to a sign to
det (A[L;, L]). The lemma now follows from the Laplace expansion of the
determinant. O

Let B = (% +ai7j) be an n x n matrix and suppose that pp(\) =

det(AI — B) is the characteristic polynomial of B. We now want to separate
pp(A) into its principal part which we define as

A" — )\nfl

10



and its remainder which we define as
gB(A) = pp(X) — (A" = A" (2.3)

Since det(+) is a semilinear function in the columns of matrix, we see that

pp(\) = det(\[ - B) = En: > det (GL).
k=0 LeS;,

But then, as
A=A = Y det (G,
LeSy
we see that N
gB()\) == Z Z det (GL)
k=1L€ES,

Applying Lemma 2.6 we get that:

n k(n—Fk)
—k 1
) = 35 et (B L X e
k=1 LES) n no3

Thus, since |S| = (}), we have proved that:

LEMMA 2.7 Let B = (4 +a;;). Then

k=1 n
where
(%)
B, = )Y (2.4)
i=1
and
1 (7)k(n—k)
Cp = ~ X; (2.5)
noog

with Y;’s and X;’s being up to a sign determinants of different k X k sub-
matrices of the matric A = (a; ;)

In the next few results we estimate the expected values of the squares
of the coefficients By’s and Cj’s given in (2.4) and (2.5), respectively, and
of other related quantities all of which we shall require to estimate E(gp(\)
on certain circles in Lemma 2.13.

11



LEMMA 2.8 Let B = (% + aiyj) € R™", where the entries of A = (a; ;) €
R™" satisfy the requirements of Assumption 2.1. Let By and C}, be as given
in (2.4) and (2.5). Then

E(BY) < =
and

E (C,%) < =

Proof: Let us compute the Cy’s (the computation of By’s being similar,
but simpler). Now
(k) k(n—k)

k(n—k
>, X
=

with X;’s being up to a sign the determinants of different k¥ x k£ submatrices
of the matrix B = (—a; ). By Lemma 2.4

1
Cr = —
n

E(X;X;) =0

whenever ¢ # j, therefore

Mo \T Dkes
E(C}) = E Y xl = % E<<1Xj>2>.

=1 " i=1 "
By Lemma 2.3
A
E(x2) <X
(X5) <
Therefore
Wies (x) B8 1
= n’ = n2 n2k

We have thus shown that
(1)k(n—k) K i
1 ! 1 !
E(c)< X i (")k(n—k)—i.
j=1

Since k(n — k) < n? and



we have that

LEMMA 2.9 Let B = (% + ai,j) € R™", where the entries A = (a;;) €
R™" satisfy the requirements of Assumption 2.1. Let By and C}, be as given
n (2.4) and (2.5). Then

i+9)/2
E(|Bi||B;]) < G YoR
cli+i)/2
E(|Bi|lCj]) < G YoR
and
i+9)/2
E(|Cz ||CJ |) < W

Proof: The lemma immediately follows from the lemma above and the
Cauchy—Schwartz inequality. a

LEMMA 2.10 Let B = (%-I—ai,j) e IR™", where the entries of A =

(a;j) € R™ satisfy the requirements of Assumption 2.1. Let By and Cj
be as given in (2.4) and (2.5). Furthermore, let

> IBilIBjI+ > IBilICi+ Y |GillBjl+ Y |CGilICl.

i+j=k i+j=k i+j=k i+j=k
Then b2
4kc
E (Dk) < W .

Proof: The result follows from the fact that each of the four summations
above runs over at the most (k—1) pairs of indices 7, j and by Lemma 2.9. O

LEMMA 2.11 Let B = (% + ai,j) € R™™ and let gg(\) be the remainder

of the characteristic polynomial of B as defined in (2.3). Let 0 < € < 1.
Then

n
ff\l‘ax|gB Z |By| + |Cy|) " F 1.
Ax -

13



Proof: Lemma 2.7 we know that

gp(A) = kzn:l {Bk<

n—=k
n

— ,\> + Ck] Ak=1

This and the fact that

"Tfk — A‘ < 2 yield the conclusion of the lemma. O

LEMMA 2.12 Let B = (% —i—ai,j) € R™" and let gg(\), By, and Cy be
as given in (2.3), (2.4), and (2.5), respectively. Then

2 2n—2
max |gp(A)] < 4 Z e 27kp,.
A= e k=2

Proof: The result immediately follows from the definition of Dy in
Lemma 2.10 and by Lemma 2.11. a

LEMMA 2.13 Let B = (%—I—ai,j) € R™", where the entries of A =

(a;,j) € R™" satisfy the requirements of Assumption 2.1. Let gg()\) be the
remainder of the characteristic polynomial of B as defined in (2.3). Then

2 2n—2 k/2
4kc

E max |gg(A)]| < 4 E g2k T
Al = € 2 n

Proof: The lemma follows from Lemmas 2.12 and 2.10. O

LEMMA 2.14 Let B = (% +ai7j) e IR™", where the entries of A =

(a;j) € R™" satisfy the requirements of Assumption 2.1. Let gg(X) be the
remainder of the characteristic polynomial of B as defined in (2.3). Let
0<e<l1,a>c/? and en'’? > a. Then

2 627174 a
E(<|inaxelgB(A)|> ) < %G()

where G(«) is a constant which depends on o only.

14



Proof: Follows from Lemma 2.13 with G(«) equal to the sum of conver-
gent series
X 4kck/?

PR
= ¢

LEMMA 2.15 Let B = (%—I—ai,j) € R™", where the entries of A =

(a;,j)R™ satisfy the requirements of Assumption 2.1. Let gg()\) be the
remainder of the characteristic polynomial of B as defined in (2.3). Let
0 < e <1 be fized. Then the probability that for all X such that |\| = €
the absolute value of the remainder |gg(X)| is strictly less than the absolute
value of the principal part |\™ — X"~ 1| of the characteristic polynomial tends
to 1 as n tends to infinity.

Proof: Let us fix @ > 1 and suppose that en'/2 > a. Notice that
A" — A=t > Llen=1(1 — ¢) when |A| = e. Therefore,

P(If\lax|gB()\)| < r/{lin

(A= (A=

1
A" — A"1‘> > P (max|gB(>\)| < "1 — e)) .
[A|=e 2
But then, by (the reverse case of) Markov’s inequality,

E <(maX|,\:e |gB(>\)|)2>
[%e”*1(1 — e)]2

P (maxpy_c lgs(W| < 3 (1-9) > 1~

2n—4
> 1 4" *G () _1_ 4G ()

[%en_l(l —e)rn (L —e)n’

where the last inequality follows from Lemma 2.14. Our result follows from
the inequality above. a

Proof of Theorem 1.1(i): Fix an 0 < € < 1. Then the principal part
of the characteristic polynomial has exactly n — 1 roots inside the open ¢
neighborhood of 0. Rouché’s theorem tells us that whenever the absolute
value of the principal part of the characteristic polynomial |\ — A\*71| is
greater than the absolute value of the remainder |gp(A)| on the circle of
radius € in the complex plain then the characteristic polynomial has exactly

15



as many roots inside the e-ball as the principal part. In our case it has
exactly n — 1 roots inside the e-ball. The previous lemma shows that the
probability of the above condition being true tends to 1 as n tends to infinity.
This concludes the proof of the main result.

REMARK 2.16 An implication of Theorem 1.1 is, of course, that, under
the assumptions of the theorem, the subdominant eigenvalues of the random
matrices B tend, in probability, to 0 as n tends to infinity.

REMARK 2.17 We can estimate the rate of convergence of the subdom-
inant eigenvalues of B to 0. Let m = maxo<i<y [Ai|. For 0 < p <1 and each
fixed positive integer n, let €(p,n) > 0 be the smallest number such that

P(m <e€(p,n)) > p.

From the rightmost expressions in the proof of Lemma 2.15, it follows that
for each p € [0,1), there is a constant C(p) such that

C(p)

e(p,n) < o
We call the interval [0,e(p,n)] a confidence interval. By this we mean that
with probability or confidence of at least p, the number m = maxo<;<p |\
is in this interval. An outcome of Theorem 1.1 is that for every p € [0, 1),
the right—end of the confidence interval tends to zero as some constant over
the square root of n as n tends to infinity.

REMARK 2.18 The considerations used to prove Theorem 1.1(i) can be
slightly modified to prove a similar result foe matrices B = (b; ;) € R™"
whose entries are given by % +a; j, where the a; ;’s are independent random
variables with E(a; ;) = 0, but now with Var(a; ;) = 5, where d > 0.

Thus far we have proved that for any 0 < ¢ < 1 and for sufficiently
large n, with great probability the characteristic polynomial of B has as
many roots in the open ball of radius € about the origin as the polynomial
A" — A"~! The same arguments, with minor modifications, can now be
used to show that for any € > 1 and for sufficiently large n, with great
probability the characteristic polynomial of B has as many roots in the open
ball of radius € about the origin as the polynomial A™ — A"~ L. Tt follows that
for any § > 0 and for n large enough, with great probability the spectral
radius of B is within § of 1. This establishes then the validity of part (ii) of
Theorem 1.1.

16



REMARK 2.19 Just as in the Remark 2.17, we can define é(p,n) > 0 to
be the smallest number such that

P(1—|M]] <élp,n)) = p.

and derive for each p € [0,1), a constant C(p) such that

é(p,n) <

Q
25

This leads again to a confidence interval [0, €(p, n)] such that with probability
or confidence of at least p, the number |1 —|A;|| is in the interval. The right
end point of the confidence interval tends to 0 as some constant over the
square root of n as n tends to infinity.
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