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Abstract

In this expository note it is shown that a cone version of the Perron—
Frobenius theorem implies various generalizations of a matrix form of
Lyapunov’s famous theorem:

Si les équations différentielles du mouvement troublé sont telles qu’il
est possible de trouver une fonction définie V', dont la dérivée V soit
une fonction de signe fixe et contraire a celui de V, ou se réduise
identiquement a zéro, le mouvement non troublé est stable.

Lyapunov’s basic result on the stability of solutions of differential equations
[Lyap, Ch.I, §16, Th.I] is here quoted from the French translation of his
1892 memoir. Lyapunov also investigated a more restrictive concept, that of
asymptotic stability, in the case of linear differential equations with constant
coefficients where V' is a homogeneous form of degree m, see [Lyap, Ch. IIJ.
Gantmacher [Gant, Ch.XV, §5] considered the case of constant coefficients
r = Az, v € C*, A € C*, and restricted V to a homogeneous quadratic
form. Thus
V(z)=a"Hz, H*=H
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and

V(e)=d"He+ 2" Hi = 2*(A"H + HA)z.

Putting
Wi(x)=a"Kz, K> 0,

where
K » 0:= K positive definite,

and noting that
z(t) = 0ast — oo< R(A) <0, all A € spec(A),

he obtained a result [Gant, Ch.XV, Th.3’] that is usually called “Lyapunov’s
theorem” by matrix theorists which I state in a slightly more general form:

Theorem 0: Let A € C'" and let K » 0. Then there exists / » 0 such that
AH + HA* = K if and only if A is positive stable (i.e. has all eigenvalues in
the right half plane).

Gantmacher’s reformulation, see also [Hahn, Kap. II, §8], had a deep influ-
ence on the inertia theory of matrices as developed in the 1960’s and sub-
sequently, but I shall pursue this topic no further. Note that in Lyapunov’s
original formulation the theorem concerned the existence of a function V
with certain properties, while Gantmacher’s version concerns solving a ma-
trix equation. The two formulations are equivalent for we have:

VK>» 0, 3H>» 0, AH+ HA =K < dH >» 0, AH+ HA" » 0.

I had met this situation before in Perron—Frobenius theory. Thus we define,
for P € R™",
P>0:=p; >0, all (i,j),

P>0:=p; >0, all (i,))

and employ the spectral radius p(P) defined as usual by
p(P) = max{|A| : A € spec(P)}.

If P > 0 it follows by Perron—Frobenius that p(P) is an eigenvalue of P. We
further have, see e.g. [BePl, Theorem 6.2.],

Theorem1: Let A = ol — P where P > (). Then the following are equivalent:
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L. o> p(P).
2. For all y > 0, there exists > 0 such that Az = y. (viz. A~ > 0).
3. There exists @ > 0 such that Az > 0.

Again we have
Ve4d.

In [Schn] T found a unified treatment and generalized Lyapunov’s theorem.
The key is a generalization of Perron—Frobenius to cones which is due to
Krein-Rutman [KrRu] in a Banach space. We consider only the finite di-
mensional case here.

Definition: A subset C of a (finite dimensional) space V over R is a (pointed,
full, closed)) cone if

1.C+CCC, viz.z4+y€C, Ve,y €.
2. R,CCC, viz.az €C, Ya> 0,z € C.
3. CN—-C={0}, viz. z,—x € C =2 =0.

4. C-C=Vviz.VzeV, de,yel, z=2—y,
equivalently, the interior C° # ¢.

5. C is closed.
We now redefine for x € V:
x>0 : zel,

>0 : xel’

and for T" € Hom(V):
T>0: TCCC.

Again, Perron—Frobenius (Krein—-Rutman) applies: If T' > 0 then p(T') € spec(T'),
and as a consequence we obtain

Theorem 2 : Let C be a cone. Let T'= R — S € Hom(V):
T=R-S, R°">0, S>0.

Then the following are equivalent:



L. p(R7'9) < 1.
2. T71¢° C O (T-' > 0).
3. TCO'NCO £ ¢.

The obvious model is C = R, the set of all vectors with nonnegative compo-
nents in R”. In this case Theorem 2 is a slight generalization of Theorem 1
to splittings of type T' = R — S which Varga exploited and called regular
splittings, see [Varg, p. 88]. We, however, are interested in the following set

up:
V==H, C="P,,

where
‘H,, = real space of Hermitians inC"",

P, = cone of positive semidefinite Hermitians in H,,.

If R € Hom(H,) is defined by R(H) = AH A*, where A € C"" is nonsingular,
then R > 0 and R~ > 0. If S € Hom(H,,) is defined by S(H) = S, CrHC),
then S > 0. The operator R™*S in (1.) of Theorem 2 now becomes

R_IS = 22:1 (A_le X A‘lék)
where x is the Kronecker (tensor) product. Thus Theorem 2 specializes to:

Theorem 3 : Let A, Cy, k=1,...,s, be complex n x n matrices. Let H be
Hermitian. Then the following are equivalent:

1. A is nonsingular and

p(Si_ AT, x ATICy) < 1.

2. For all K » 0, there exists a unique H » 0 such that

AHA* —Xi_ CLHC; = K.

3. There exists an H » (0 such that

AHA® — S5_,CLHCE > 0.



4. A is nonsingular and there exists an H » 0 such that

p(Zi ATTCLHCEA Y HTY) < 1.

Condition (4.) of Theorem 3 is a consequence of (3.) and was pointed out
to me by S. Friedland.

The spectral radius of the operator in (1.) of Theorem 3 can be evalu-
ated in terms the eigenvalues of its constituent matrices (only) under spe-
cial assumptions. One such assumption is that the matrices A, Cy, k =
1,...,s, are simultaneously triangulable, viz. there exists () € C'" such that
Q7TAQ, Q7'CrQ, k =1,...,s, are (upper) triangular. In this case there ex-
ists an obvious natural correspondence (o, %1 yees 7%(5))7 1=1,...,n,of the
eigenvalues of A, Cy, k=1,...,s, such that every (noncommutative) poly-

nomial p(A, Cy,...,C;) has eigenvalues p(o;, %(1)7 o 7%(5))7 i=1,...,n. (A
theorem of McCoy’s assert that this latter property is equivalent to simul-
taneous triangulability). It was known to Frobenius that a set of pair-
wise commutative matrices is simultaneously triangulable. In particular, if
Cr,=CF k=0,...,s, then the C} can be simultaneously triangulated. See

[Taus] for more information and references on this topic.

It A, Cy, k=1,...,s, are simultaneously triangulable, then for the operator
RS in Theorem 3 we have

spec(R™'S) = {Zzzlai_l’y(k)dj_lﬁ(k) 2,7 =1,...,n}.
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We may apply Cauchy’s inequality to obtain [Schn, Theorem 1]:

Theorem 4 : Let A, Cr, k = 1,...,s, be complex n X n matrices which
can be simultaneously triangulated. Suppose the eigenvalues of A, (' under
a natural correspondence are oy, 7,7, ¢ = 1,...,n, k = 1,...,s. For

Hermitian H, let
T(H)y=AHA" - X;,_,CLHC}.

Then the following are equivalent:
1. €= |ag|* — Zz:1|’yi(k)|2 >0,1=1,...,n.
2. For all K » 0, there exists a unique H » 0 such that T(H) = K.

3. There exists an H » 0 such that T(H) » 0.



We note the following special cases:

If
T(H)=(B+1)H(B+1)"—(BHB"+IHI") = BH + HB"

then ¢, = 3; + 3; and thus we obtain Lyapunov’s Theorem.

If
T(H)=IHI*— CHC*

|* and thus we have a result due to Stein.

then ¢, =1 — |v;

We now turn to a generalization due to D.H. Carlson, published in [Hill]. Let
® = ¢* ¢ Cothot!
and consider the operator T' defined by
T(H) =X} -0 e CrhHCY,
for H € H,. We define the n x (s + 1)n matrix
C=1[Co, ..., C
and we obtain
T(H)=C(®x H)C" = C(U x I)(Ax H)(U" x I)C" = B(A x H)B",
where U is a unitary matrix, ® = UAU* and B = CU € C»t+Dn [f

Co, ..., Uy are simultaneously triangulable and we put
0 5 .
vi=0" =,
where (%(0) e 72(5))7 1 =1,...,n,is anatural correspondence of the eigenval-
ues, k = 0,...,s. Since the eigenvalues of By, £ =0,...,s, are Zfb:o’y}(;)uhk,
1 =1,...,n, Theorem 4 can be generalized to the following result, where by

7(®) we denote the number of positive eigenvalues of the Hermitian matrix

o.

Theorem 5 : Let C, 0 =1,...,s, be complex n x n matrices which can be
simultaneously triangulated. Su%ngjose the eigenvalues of Cy, ..., s under
a natural correspondence are %07 ...’yi(s), 1=1, ..., n. Let & = &~ ¢

Csttstl where 7(®) = 1. For Hermitian H, let
T(H) =X} =0 reCrll CF.

Then the following are equivalent:



L 4@y >0, e =1,...,n
2. For all K » 0, there exists a unique H » 0 such that T(H) = K.

3. There exists an H » 0 such that T(H) » 0.

Clearly the assumptions of Theorem 5 are satisfied if A € C* and C} =

A¥ k=1,...,n. Thus we derive a result independently due to Kharitonov
[Khar], see also [Gutm, Theorem 6.1].

Theorem 6 : Let A € C™ have eigenvalues o, 1 = 1,... ,n. Let K € C" be
positive definite and suppose that ® is a Hermitian matrix in C**157! with
7(®) = 1. Then the following are equivalent:

L. Zz,kzo O‘?‘Phk@f >0,1=1,...,n.
2. The (unique) solution H of 33 k=0 o AP H AP = K is positive definite.

Theorems 5 and 6 do not hold without the assumption that 7(®) = 1, as is
shown by the following example with 7(®) = 2. Let

By el ]
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AHA + CHC™ = [3 5].

Then

A perturbation argument shows that we can find H with 7(H) = 1 or
m(H) = 2 such that AHA* + CHC* » 0. However, a weaker result holds, see
[Hill] for remarks on this topic. We need an additional assumption, which
is again satisfied if the Cy, & = 0,...,s, commute pairwise and hence if
Cr =A% k=0,...s, see [CaPi] for information. Dropping the assumption
that 7(®) = 1, we still have

Theorem 7 : Let C, k = 0,....s, be complex n x n matrices which can
be simultaneously triangulated . Assume that for each distinct sequence
of corresponding eigenvalues (%(0)7 cee 72(5))7 i=1, ..., n,of Co, ..., C;
there exists a common eigenvector. Let ® = ®* ¢ Ct1s71 Then the
following are equivalent:



L 4®y" >0, e=1,...,n

3. There exists an H » 0 such that ZZ,k:O O HCY » 0.

As a special case of Theorem 7 we state

Theorem 8 : Let A € C* have eigenvalues «;, 1 = 1,... ,n. Suppose that ¢
is a Hermitian matrix in C**1**1 Then the following are equivalent:

h o =k L
L. Ei,k:o ofpppe; >0, 1 =1,... ,n.

3. There exists H » 0 such that Y} k=0 O AVH AP » 0.

Proofs of the last two theorems are implicit in [Hill] or [Khar].
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