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� Introduction

Let A be a complex matrix and let Ck�A� be its kth compound� It was shown in ����
Formula ����	 that the maximal row sum �of moduli� of elements of Ck�A� is less than or
equal to the product of the k largest rows sums of A� and it follows that the product of
k largest �moduli of� eigenvalues of A is bounded above by the product of the k largest
row sums of A� The case of equality in these inequalities investigated in �
� Theorems I
and II	�

The results in ���	 and �
	 can be viewed as relating the l� norm of rows of a matrix
to the l� norm of its compounds �viewed as an operator on rows�� Working in terms of
columns� we consider in this paper the relations between other norms � of columns and
norms � of the compounds� We begin by proving a general result of the above type which
involves a constant �k��� ��� We evaluate this constant in some special cases that involve
the l�� l� and l� norms� Again � this leads naturally to upper bounds on the product of
the k largest eigenvalues or� equivalently� lower bounds on the product of the k smallest
eigenvalues� which involve products of norms of columns and of norms of rows of the
matrix�

As a consequence of our theorems� we obtain generalizations of results of ��	� ���	 and
���	 on bounds on norms of the adjoint matrix� which is essentially the n� � compound
matrix� to kth compound matrices� The application of our theorems to the adjoint case
sharpens the results in ��	� ���	 and ���	�

� Upper bounds on norms of compound matrices

Let A be a matrix in nn� For subsets � and � of f�� � � � � ng we denote by A��j�� the
submatrix of A whose rows are indexed by � and whose columns are indexed by � in their
natural order�

Let k be a positive integer� k � n� We denote by Ck�A� the kth compound of

the matrix A� that is� the
�
n

k

�
�
�
n

k

�
matrix whose elements are the minors detA��j���

�� � � f�� � � � � ng� j�j � j�j � k� We index Ck�A� by � � f�� � � � � ng� j�j � k �ordered
lexicographically��

Let � be a vector norm on n� and for a positive integer k� k � n� let � be a �submul


tiplicative� norm on mm where m �
�
n

k

�
� We de�ne

�k��� �� � maxf��Ck�B�� � B �nn� ��coli�B�� � �� i � �� � � � � ng�
where coli�B� denotes the ith column of B�

The following theorem is the main tool from which we derive our results�

�



Theorem ��� For an absolute operator norm � we have

��Ck�A�� � �k��� �� max
��f������ng
j�j�k

Y
i��

��coli�A��������

Proof� Assume �rst that A has no zero columns� Note that for every nonsingular
matrix R we have

Ck�AR
���Ck�R� � Ck�A��

In particular� if we choose the matrix R to be the diagonal matrix diag�ri� where ri �
��coli�A��� i � �� � � � � n� then Ck�R� is a diagonal matrix with diagonal elements

Q
i�� ri�

� � f�� � � � � ng� j�j � k� Since � is an absolute operator norm� it follows by Theorem �
in ��	� see also ��� p����� Theorem ������	� that

��Ck�R�� � max
��f������ng
j�j�k

Y
i��

ri�

Since the � norm of the columns of AR�� are equal to �� it now follows that

��Ck�A�� � ��Ck�AR
������Ck�R�� � �k��� �� max

��f������ng
j�j�k

Y
i��

��coli�A���

If A has zero columns then we apply the above procedure to the matrix A � 	I for 	

su�ciently small� and then use continuity arguments to prove our assertion�

Remark ��� Note that inequality ����� is sharp since� by de�nition of �k��� ��� equality
is attained for matrices whose columns have � norm ��

In the rest of this section we evaluate �k��� �� for cases that involve the lp norms�
p � �� ���� We denote these by jj�jjp� and use the same notation for both vector norms
and matrix operator norms�

The following proposition is proven in �
� Formulas �
� and ����	� The inequality �����
also occurs in the proof of Theorem � in ���	�

Proposition ��� For every � � f�� � � � � ng� j�j � k we have

jjcol��Ck�A�jj� � max
��f������ng
j�j�k

Y
i��

jjcoli�A�jj�������

Furthermore� if A has at least k nonzero columns then for a set � � f�� � � � � ng� j�j � k�
the following are equivalent�
�i� Equality holds in ������
�ii� We have Y

i��

jjcoli�A�jj� � max
��f������ng
j�j�k

Y
i��

jjcoli�A�jj��

and the columns of A indexed by � have disjoint supports�
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De�nition ��� A matrix A is said to be a monomial matrix if A � PD� where P is a
permutation matrix and D is a diagonal matrix�

Theorem ��	 We have �k�l�� l�� � ��

Proof� Since
jjCk�A�jj� � max

��f������ng
j�j�k

jjcol��Ck�A��jj��

it follows immediately from Proposition ��� that �k�l�� l�� � �� By Proposition ���� every
monomial matrix A satis�es

jjCk�A�jj� � max
��f������ng
j�j�k

jjcol��Ck�A��jj� � max
��f������ng
j�j�k

Y
i��

jjcoli�A�jj��

implying that �k�l�� l�� � ��

Theorem ��
 We have �k�l�� l�� �
�
n
k

�k
�
� Furthemore� if A is nonsingular and k 
 n

then

jjCk�A�jj� 

�
n

k

� k
�

max
��f������ng
j�j�k

Y
i��

jjcoli�A�jj�����
�

Proof� Let A �nn be such that jjcoli�A�jj� � �� i � �� � � � � n� The matrix B � A�A

is positive semide�nite with diagonal entries equal to �� Let �� � �� � � � � �n � � be the
eigenvalues of B� Note that �� � � � �� �n � trace�B� � n� It now follows that

�jjCk�A�jj��� � jjCk�B�jj� � ���� � � ��k �
�
�� � � � �� �k

k

�k
�
�
n

k

�k
�������

We thus have

�k�l�� l�� �
�
n

k

� k
�

�������

We now prove that equality holds in ������� By ��	� see also ��� Theorem �	� there exists
a positive semide�nite n � n matrix B with diagonal elements all equal to � and where
the eigenvalues of B are n

k
with multiplicity k and � with multiplicity n� k� We have

jjCk�B�jj� �
�
n

k

�k
�

Now� let A be the positive semide�nite matrix such that B � A�� Since the diagonal
entries of B are all equal to �� it follows that jjcoli�A�jj� � �� i � �� � � � � n� Also�

jjCk�A�jj� �
q
jjCk�B�jj� �

�
n

k

� k
�

�

�



proving that equality holds in ������� Finally� notice that if A is nonsingular then �n � �
and so strict inequality holds in ������ whenever k 
 n� Therefore� equality in ������
cannot be attained for nonsingular matrices� and using the techniques of the proof of
Theorem ��� one can prove the strict inequality ���
� whenever A is nonsingular and
k 
 n�

We remark that the inequality ������ in the case k � n� � is proven in ���� Theorem
�	� see also ��� Lemma �	� Our proof of this inequality is essentially the same as in ���	
and ��	� The equality case is� however� not handled in these two references�

Theorem ���� For k 
 n we have

�k�l�� l�� �
�
n

k

�
�k � ��

k��
� �������

Proof� Let A �nn be such that jjcoli�A�jj� � �� i � �� � � � � n� Let x be a vector in �nk�

and let y � Ck�A�x� For every subset � of f�� � � � ng of cardinality k we have

y� �
X

��f������ng
j�j�k

detA��j��x��������

We have k 
 n� Therefore� note that each subset � of f�� � � � ng of cardinality k is
contained in n�k di�erent subsets 
 of f�� � � � ng of cardinality k��� Therefore� we have

X
��f������ng
j�j�k

detA��j��x� � �

n� k

X
��f������ng
j�j�k��

X
���
j�j�k

detA��j��x��������

Observe that the rightmost sum of ������ is the determinant of the �k�����k��� matrix
B obtained by appending the subvector of x �with possible di�erent signs of elements�
indexed by the subsets � of 
 of cardinality k as a row to the matrix A��j
�� Thus� if
we choose x such that jjxjj� � � then the matrix B has entries of modulus less than or
equal to �� and by the Hadamard determinant theorem� e�g� ��� p����� Theorem �����	 it
follows that detB � p

k � � k��� Hence� it follows from ������ and ������ that

jjCk�A�jj� �
�

n

k��

�p
k � � k��

n� k
�

�
n

k

�
�k � ��

k��
� �

proving our assertion�

Note that Cn�A� � det�A�� Therefore� in the case k � n the Hadamard determinant
theorem yields the following�

�



Theorem ���� We have
�n�l�� l�� �

p
n n�

In the cases k � � and k � n� � we have equality in ������ as follows�

Theorem ���	 We have ���l�� l�� � n�

Proof� In view of the inequality ������ all we have to show is that there exists an n�n

matrix A satisfying jjcoli�A�jj� � �� i � �� � � � � n and such that jjAjj� � n� It is easy to
check that the n� n matrix whose �rst row consists of ��s and all other entries equal to
� is such a matrix�

In order to establish the case k � n� � we �rst make an observation�

Observation ���
 For every positive integer n there exists an n� n complex matrix A

satisfying jaijj � �� i� j � �� � � � � n and AA� � nI� An example of such a matrix is the
Vandermonde matrix �

BBBBBBB�

� � � � � � �
� � �� � � � �n��

� �� �� � � � ��n��

���
���

���
���

� �n�� ��n�� � � � ��n����

	
CCCCCCCA
�

where � � e
��i
n � There are also the Hadamard matrices for those n�s for which they exist�

Theorem ���� We have �n���l�� l�� �
p
n n�

Proof� In view of the inequality ������ all we have to show is that there exists an n�n

matrix A satisfying jjcoli�A�jj� � �� i � �� � � � � n and such that jjCn��Ajj� �
p
n n� Let

A be an n � n complex matrix satisfying jaijj � �� i� j � �� � � � � n and AA� � nI� Then
A�� � �

n
A�� and so

Cn���A� � �det�A�DA��D�T �
det�A�

n
DAD�

where D is the diagonal matrix with alternating ��s and ���s along the diagonal� It now
follows that jjCn���A�jj� �

p
n n� proving our claim�

In order to consider some other combinations of norms� for a real number r we denote
�r	� � maxf r � � g�

Lemma ���� Let � be an absolute operator norm and let p and r be positive integers�
Then

�k��� lp� � n�
k
r
� k

p 	
�

�k��� lr�

�



Proof� By ��� p��� ��� and p��
 ��
	� for every vector v in n we have

jjvjjr � n�
�

r
� �

p 	
�

jjvjjp�������

Our claim now follows from Theorem ��� and from the fact that ����� is sharp�

From Theorems ���� ��� and ���� we obtain� by Lemma ����� the following corollary�

Corollary ���� We have
�k�l�� l�� �

p
n k�������

�k�l�� l�� � nk�������

�k�l�� l�� �
�
n

k

� k
�

�������

�k�l�� l�� �
�
n

k

� k
� p

n k�������

�k�l�� l�� �


���
��


�
n

k

�
�k � ��

k��
� � k 
 n

p
n n � k � n

�������

and

�k�l�� l�� �


���
��


�
n

k

�
�k � ��

k��
� � k 
 n

p
n n � k � n

�������

We conclude this section with two general remarks�

Remark ���� Note that one can de�ne �k��� �� using rows instead of columns and obtain
similar results where rows replace columns all over�

Remark ���� Denote by adj�A� the �classical� adjoint matrix of A� that is� the trans

posed matrix of cofactors� Note that the term adjugate is sometimes used instead of
adjoint to avoid confusion with the Hermitian adjoint A�� Since adj�A� � DCn���A

T �D
where D is the diagonal matrix with alternating ��s and ���s along the diagonal� it fol

lows that for absolute norms our results in the case k � n � � yield an upper bound on
��adj�A��� In particular� our remark applies to the l�� l� and l� norms under discussion�
Our results can also be applied to the adjoint compounds found in ��� Chapter �	�

�



� Bounds on products of eigenvalues

For an n�n complex matrix A we denote by ���A�� � � � � �n�A� the eigenvalues of A ordered
in a non
increasing order of their moduli� In this section we �nd an upper bound on the
product jQk

i�� �i�A�j or� equivalently� a lower bound on the product jQn
i�k�� �i�A�j�

Our results follow from the following corollary of Theorem ���� Here we denote by
rowi�A� the �vector in

n which is the� transpose of the ith row of A�

Theorem ��� Let � be an absolute operator norm on mm where m �
�
n

k

�
� Then

�����
kY

i��

�i�A�

����� � �k��� �� min


���
��
 max
��f������ng
j�j�k

Y
i��

��coli�A�� � max
��f������ng
j�j�k

Y
i��

��rowi�A��

����
��� �

Proof� As is well known� the spectral radius ��Ck�A�� of Ck�A� satis�es

��Ck�A�� �

�����
kY

i��

�i�A�

����� ������

Also� we have ��Ck�A�� � ��Ck�A
T ��� Since � is an operator norm we have

��Ck�A�� � ��Ck�A��������

Our claim follows from ������ ����� and ������ where the latter is applied both to A and
AT �

It follows from Theorem ��� that in order to obtain a better upper bound on
���Qk

i�� �i�A�
���

in terms of the � norms of the rows and columns of A� we should pick us the � norm that
provides the lowest value of �k��� ��� We now apply this approach to the results of the
previous section� The best upper bound in terms of the l� norms of rows and columns
that can be derived from Theorem ��� and from the inequalities ������ and ������ is

Theorem ��� Let A �nn� Then

�����
kY

i��

�i�A�

����� � min


���
��
 max
��f������ng
j�j�k

Y
i��

jjcoli�A�jj� � max
��f������ng
j�j�k

Y
i��

jjrowi�A�jj�

����
��� ������

Remark ��� The upper bound on jQk
i�� �i�A�j given by ����� is sharp since equality is

attained for every monomial matrix A�

Remark ��	 The inequality ����� was already proven in Theorem � of ���	� see also ���
p����� Theorem ���	� using essentially the same techniques we do� The inequality �����
was also proven in Theorem � of ���	� and is weaker than �
� Formula ����	�

�



The following theorem states the best upper bound on jQk
i�� �i�A�j in terms of the

l� norms of rows and columns of A that can be derived from Theorem ��� and from the
inequalities ������ and �������

Theorem ��
 Let A �nn� Then

�����
kY

i��

�i�A�

����� �
�
n

k

� k
�

min


���
��
 max
��f������ng
j�j�k

Y
i��

jjcoli�A�jj� � max
��f������ng
j�j�k

Y
i��

jjrowi�A�jj�

����
��� ����
�

Remark ���� In order to justify that ���
� is indeed the best we can derive from Theorem
��� and from the inequalities ������ and ������� we have to show that for k 
 n we have

�
n

k

� k
� �

�
n

k

�
�k � ��

k��
� �

This follows from a stronger inequality� see Remark ���
 below�

Remark ���� Note that by Theorem ��� the inequality ���
� is strict whenever A is a
nonsingular matrix�

Remark ���� The upper bound on jQk
i�� �i�A�j given by ���
� is sharp� It is easy to

check that� as in the proof of the equality case in Theorem ���� equality holds for a
positive semide�nite n � n matrix A such that the positive semide�nite matrix B � A�

has diagonal elements all equal to � and where the eigenvalues of B are n
k
with multiplicity

k and � with multiplicity n� k�

Remark ���� Inequality ���
� is a generalization of Hadamard determinant theorem�
which is the special case of ���
� where k � n�

Remark ���� The special case of ���
� where k � n� �� that is� the inequality

�����
n��Y
i��

�i�A�

����� �
�
� �

�

n� �

�n��
�

min


����
���

max
k

nY
j��
j ��k

jjrowj�A�jj� � max
k

nY
j��
j ��k

jjcolj�A�jj�

�����
����
�

follows from ��� Theorem �	�

Remark ���
 Another result in Theorem � of ���	 could be stated as�����
n��Y
i��

�i�A�

����� � n max
k

nY
j��
j ��k

jjrowj�A�jj��

This inequality follows from the special case of our inequality ���
� where k � n � �� It
is� in fact� weaker than our result since

�
� �

�

n� �

�n��
�



p
e 
 n �n � ���






Remark ���� The upper bounds on jQk
i�� �i�A�j given by ����� and by ���
� are not

comparable� The bound given by ����� is better� for example� in the case of a monomial
matrix A� since in such a case the l� norm and the l� norm of the rows �and columns�
of A are the same� On the other hand� if A is an n � n complex matrix satisfying
jaijj � �� i� j � �� � � � � n and AA� � nI then the l� norm of any row and column of A is
equal to n� while the l� norm of any row and column of A is equal to

p
n� Therefore� the

left hand side of ����� becomes nk while the left hand side of ���
� becomes nk

k
k
�

� which is

a better upper bound�

The following theorem states the best upper bound on jQk
i�� �i�A�j in terms of the l�

norms of rows and columns of A that can be derived from Theorem ���� and from the
inequalities ������ and �������

Theorem ���	 Let A �nn� Then �����
kY

i��

�i�A�

����� �������

�
n

k

� k
� p

n k min


���
��
 max
��f������ng
j�j�k

Y
i��

jjcoli�A�jj� � max
��f������ng
j�j�k

Y
i��

jjrowi�A�jj�

����
��� �

Remark ���� In order to justify that ������ is indeed the best we can derive from The

orem ���� and from the inequalities ������ and ������� we have to show that for k 
 n we
have �

n

k

� k
� p

n k �
�
n

k

�
�k � ��

k��
�

or� equivalently�

h�k� n� �

�
n
k

�k
�
p
n k�

n

k

�
�k � ��

k��
�

�
nkp

k k
p
k � � k��

�
n

k

� � ��������

Note that
h��� n� � �� 	n�������

Since k � n� � we have ��n� ��k 
 �n�� which is equivalent to

k � �

k
�

�n � ���

n�
�

or
n
p
k � �p

k �n� ��
� ��������

��



It is easy to check that

h�k� n�

h�k � �� n� ��
�

�
n
p
k � �p

k �n� ��

�k

�������

It now follows from ������� ������ and ������ that for every k and n� k � n� we have
h�k� n� � �� proving �������

Remark ���� By ������� the upper bound on jQk
i�� �i�A�j given by ������ follows from

the one given by ���
�� The bounds given by ������ and by ����� are not comparable� The
bound given by ����� is better� for example� in the case of a monomial matrix A� since in
such a case the l� norm and the l� norm of the rows �and columns� of A are the same�
On the other hand� if A is an n � n complex matrix satisfying jaijj � �� i� j � �� � � � � n
and AA� � nI then the l� norm of any row and column of A is equal to n� while the l�
norm of any row and column of A is equal to �� Therefore� the left hand side of �����

becomes nk while the left hand side of ������ becomes nk

k
k
�

� which is a better upper bound�

Our �nal remark refers to products of smallest �moduli of� eigenvalues of a given n�n

matrix A�

Remark ���
 Since
Qn

i�k�� �i�A� �
det�A�Qk

i��
�i�A�

� it follows that all the results of this section

on upper bounds on the products jQk
i�� �i�A�j of k largest eigenvalues of A yield� whenever

A is nonsingular� lower bounds on the products jQn
i�k�� �i�A�j of n�k smallest eigenvalues

of A�
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